
REPURPOSING CODE METRICS FOR USE 

WITHIN MODERN DAY PROGRAMMING 
 
 

 

 

 

 

 

 

 

 

 

 

LUKE RICKARD 
 

 

 

 

 

 

 

 

 

 

 

 

 
A dissertation submitted in partial fulfilment of the requirements of Dublin Institute of Technology for 

the degree of M.Sc. in Computing (Advanced Software Development) 

 

July 2016 



	 ii	

I certify that this dissertation which I now submit for examination for the award of 

MSc in Computing (Advance Software Development), is entirely my own work and 

has not been taken from the work of others save and to the extent that such work has 

been cited and acknowledged within the test of my work.  

 

This dissertation was prepared according to the regulations for postgraduate study of 

the Dublin Institute of Technology and has not been submitted in whole or part for an 

award in any other Institute or University. 

 

The work reported on in this dissertation conforms to the principles and requirements 

of the Institute’s guidelines for ethics in research. 

 

Signed: _________________________________ 

 

Date: 4 July 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 iii	

ABSTRACT 

 

Code metrics have existed since the early day of programming. Prior to the 

development of modern day compilers, metrics were used to identify defects early in 

the development process. Over time the theories were reworked to keep abreast of the 

changing programming landscape the most notable of which was moving from 

procedural programming to the introduction of the widely used object-oriented 

paradigm. Manual assessment of code has always been an area of contention among 

programmers and the introduction of ‘best practices’ in automated fashion shifted code 

metrics into yet another area than its original intention.  

 

This dissertation aims to re-examine code metrics by identifying possible relationships 

that may exist between various metrics, analysing code to identify key characteristics 

that impact code metrics and then tie that back into their possible impact on modern 

day ‘best practices’ including topics like ‘code readability’. Results show that certain 

code metrics, combined with other coding factors can be combined to highlight code 

considered to be of a high ‘readability’ quality. 

 

 

 

 

 

 

 

 

 

 

 

Key Words: code metrics, software testing, unit testing, code coverage, cyclomatic 

complexity 

 

 

 

 



	 iv	

ACKNOWLEDGEMENTS  

 

First and foremost I owe a massive debt of gratitude to my supervisor Damian Gordon. 

His enthusiasm, support and guidance helped me immensely over the course of this 

dissertation. 

 

I would also like to add a special thanks to my sister Kelley for all her proof reading 

over the past few weeks.  

 

Special thanks also to my parents for their constant support and encouragement over 

the years. 

 

 

 

 

 

 

 

  



	 v	

Table	of	Contents	

1.	Introduction	.....................................................................................................................	1	

1.1	Project	Background	..............................................................................................................	1	
1.2	Project	Description	..............................................................................................................	2	
1.3	Project	Aims	and	Objectives	..............................................................................................	4	
1.4	Project	Evaluation	................................................................................................................	4	
1.5	Thesis	Roadmap	....................................................................................................................	5	

2.	Exploring	Metrics	............................................................................................................	7	

2.1	Introduction	............................................................................................................................	7	
2.2	Metrics	within	Software	Development	..........................................................................	7	
2.3	Definitions	...............................................................................................................................	8	
2.3.1	Object-Oriented	Programming	.................................................................................................	9	
2.3.2	Representing	Real-World	Items	..............................................................................................	9	
2.3.3	Instances	of	a	Class	........................................................................................................................	9	
2.3.4	Public	versus	Private	Methods	...............................................................................................	10	
2.3.5	Unit	Tests	.........................................................................................................................................	11	
2.3.6	Code	Coverage	...............................................................................................................................	11	

2.4	Code	Metrics	........................................................................................................................	11	
2.4.1	McCabe’s	Cyclomatic	Complexity	..........................................................................................	12	
2.4.2	Halstead	E’s	....................................................................................................................................	14	
2.4.3	Building	Upon	McCabe’s	Cyclomatic	Complexity	...........................................................	14	
2.4.4	Critiquing	Halstead	and	McCabe	...........................................................................................	15	

2.5	Metrics	for	Object-Oriented	Code	.................................................................................	19	
2.5.1	Chidamber	and	Kemerer	Metric	Suite	................................................................................	19	
2.5.2	Building	Upon	Chidamber	Object-Oriented	Metrics	.....................................................	24	

2.6	Applying	Object-Oriented	Best	Practices	to	Code	Metrics	...................................	30	
2.7	The	Law	of	Demeter	..........................................................................................................	32	
2.8	Conclusions	..........................................................................................................................	35	

3.	Applied	Metrics	............................................................................................................	37	

3.1	Introduction	.........................................................................................................................	37	
3.2	Alternative	Approaches	to	Code	Metrics	...................................................................	37	
3.2.1	Service	Oriented	Design	............................................................................................................	37	
3.2.2	Metrics	using	Program	Slicing	................................................................................................	39	
3.2.3	Tools	for	Metrics	..........................................................................................................................	43	
3.2.4	Code	Comments	............................................................................................................................	45	



	 vi	

3.2.5	Validation	of	Code	Metrics	.......................................................................................................	45	
3.3	Code	Metrics	&	Commercial	Applications	.................................................................	46	
3.3.1	Tackling	Project	Costs	................................................................................................................	46	
3.3.2	Evaluation	of	Code	Metrics	within	Hewlett-Packard	...................................................	48	
3.3.3	Alternative	Takes	on	Applying	Code	Metrics	...................................................................	49	
3.3.4	Classification	of	Metrics	based	on	Defect	Categories	...................................................	51	
3.3.5	Aggregation	of	Code	Metrics	...................................................................................................	55	
3.3.6	Evaluation	of	Metrics	through	Java	Developers	.............................................................	57	
3.3.7	Using	Code	Metrics	to	Automate	Reviews	.........................................................................	57	
3.3.7	Applying	Cyclomatic	Complexity	to	Y2K	............................................................................	58	
3.3.8	Standardisation	of	Metrics	.......................................................................................................	58	

3.4	Clean	Code	............................................................................................................................	59	
3.4.1	Meaningful	Names	.......................................................................................................................	60	
3.4.2	Functions	.........................................................................................................................................	61	
3.4.3	The	Stepdown	Rule	.....................................................................................................................	61	
3.4.4	Commenting	Code	........................................................................................................................	62	

3.5	Key	Findings	........................................................................................................................	62	
3.6	Conclusion	............................................................................................................................	63	

4.	Data	Exploration	..........................................................................................................	65	

4.1	Introduction	.........................................................................................................................	65	
4.2	Roslyn	Overview	................................................................................................................	65	
4.3.	Metrics	Tools	......................................................................................................................	67	
4.3.1	NDepend	..........................................................................................................................................	68	
4.3.2	Visual	Studio	Code	Analysis	....................................................................................................	68	
4.3.3	ReSharper	........................................................................................................................................	69	
4.3.4	Tableau	.............................................................................................................................................	69	

4.4	Roslyn	Metrics	.....................................................................................................................	69	
4.5	High	Scoring	Metrics	.........................................................................................................	71	
4.5.1	CSharpCodeAnalysis	Project	...................................................................................................	72	
4.5.2	Cyclomatic	Complexity	and	Class	Coupling	......................................................................	73	
4.5.3	Depth	of	Inheritance	and	Class	Coupling	...........................................................................	74	
4.5.4	Lines	of	Code	and	Class	Coupling	..........................................................................................	74	
4.5.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	.........................................................	75	
4.5.6	Cyclomatic	Complexity	and	Lines	of	Code	........................................................................	76	
4.5.7	Depth	of	Inheritance	and	Lines	of	Code	.............................................................................	77	
4.5.8	Examination	of	code	...................................................................................................................	78	



	 vii	

4.6	Low	Scoring	Metrics	..........................................................................................................	79	
4.6.1	MicrosoftCodeAnalysisCSharpScripting	Project	............................................................	80	
4.6.2	Cyclomatic	Complexity	and	Class	Coupling	......................................................................	80	
4.6.3	Depth	of	Inheritance	and	Class	Coupling	...........................................................................	81	
4.6.4	Lines	of	Code	and	Class	Coupling	..........................................................................................	82	
4.6.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	.........................................................	82	
4.6.6	Cyclomatic	Complexity	and	Lines	of	Code	........................................................................	83	
4.6.7	Depth	of	Inheritance	and	Lines	of	Code	.............................................................................	84	
4.6.8	Examination	of	code	...................................................................................................................	84	

4.7	Average	Scoring	Project	...................................................................................................	86	
4.7.1	RosylnTestPdbUntilities	Project	...........................................................................................	86	
4.7.2	Cyclomatic	Complexity	and	Class	Coupling	......................................................................	87	
4.7.3	Depth	of	Inheritance	and	Class	Coupling	...........................................................................	87	
4.7.4	Lines	of	Code	and	Class	Coupling	..........................................................................................	88	
4.7.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	.........................................................	89	
4.7.6	Cyclomatic	Complexity	and	Lines	of	Code	........................................................................	90	
4.7.7	Depth	of	Inheritance	and	Lines	of	Code	.............................................................................	90	
4.7.8	Examination	of	code	...................................................................................................................	91	

4.8	Key	Findings	........................................................................................................................	91	
4.8.1	Cyclomatic	Complexity	and	Class	Coupling	......................................................................	93	
4.8.2	Depth	of	Inheritance	and	Class	Coupling	...........................................................................	93	
4.8.3	Lines	of	Code	and	Class	Coupling	..........................................................................................	93	
4.8.4	Cyclomatic	Complexity	and	Depth	of	Inheritance	.........................................................	93	
4.8.5	Cyclomatic	Complexity	and	Lines	of	Code	........................................................................	93	
4.8.6	Depth	of	Inheritance	and	Lines	of	Code	.............................................................................	94	
4.8.7	Noteworthy	Points	......................................................................................................................	94	

4.9	Conclusions	..........................................................................................................................	94	

5.	Impact	of	Code	Readability	on	Metrics	.................................................................	96	

5.1	Introduction	.........................................................................................................................	96	
5.2	Developing	the	Extraction	Software	............................................................................	96	
5.2.1	MethodsPerClass	..........................................................................................................................	99	

5.3	Data	Preparation	..............................................................................................................	104	
5.3.1	FixingData	....................................................................................................................................	106	
5.3.2	Formatting	Type	Name	...........................................................................................................	109	
5.3.3	Filtering	of	Partial	Classes	.....................................................................................................	110	
5.3.4	Merging	the	Data	.......................................................................................................................	111	



	viii	

5.4	Exploring	the	Merged	Data	Set	....................................................................................	111	
5.4.1	Merged	Data:	Class	Coupling	and	Number	of	Public	Methods	..............................	111	
5.4.2	Merged	Data:	Class	Coupling	and	Number	of	Private	Methods	............................	112	
5.4.3	Merged	Data:	Cyclomatic	Complexity	and	Number	of	Public	Methods	.............	113	
5.4.4	Merged	Data:	Cyclomatic	Complexity	and	Number	of	Private	Methods	...........	114	
5.4.5	Merged	Data:	Depth	of	Inheritance	and	Number	of	Public	Methods	..................	114	
5.4.6	Merged	Data:	Depth	of	Inheritance	and	Number	of	Private	Methods	...............	115	
5.4.7	Merged	Data:	Lines	of	Code	and	Number	of	Public	Methods	.................................	116	
5.4.8	Merged	Data:	Lines	of	Code	and	Number	of	Private	Methods	...............................	116	

5.5	Key	Findings	......................................................................................................................	117	
5.6	Conclusions	........................................................................................................................	118	

6.	Evaluation	....................................................................................................................	119	

6.1	Introduction	.......................................................................................................................	119	
6.2	Tools	.....................................................................................................................................	120	
6.2.1	NUnit	...............................................................................................................................................	120	
6.2.2	Code	Coverage	............................................................................................................................	120	

6.3	Unit	Testing	Evaluation	.................................................................................................	121	
6.4	Evaluating	Merged	Data	.................................................................................................	126	
6.4.1	Binder	Class	.................................................................................................................................	128	
6.4.2	CodeGenerator	Class	................................................................................................................	129	
6.4.3	CSharpCompilation	Class	.......................................................................................................	130	

6.5	Summary	of	Key	Quantitative	Findings	....................................................................	131	
6.6	Qualitative	Evaluation	of	Code	Readability	............................................................	132	
6.6.1	Interviewee	Profiles	.................................................................................................................	132	
6.6.2	Software	Terminology	............................................................................................................	134	
6.6.3	Code	Readability	........................................................................................................................	135	

6.7	Summary	of	Key	Qualitative	Findings	.......................................................................	137	
6.8	Conclusions	........................................................................................................................	138	

7.	Conclusions	and	Future	Work	...............................................................................	140	
7.1	Introduction	.......................................................................................................................	140	
7.2	Conclusions	........................................................................................................................	140	
7.2.1	Existing	Literature	....................................................................................................................	140	
7.2.2	Data	Exploration	........................................................................................................................	141	
7.2.3	Impact	of	Code	Readability	on	Metrics	............................................................................	143	
7.2.4	Evaluation	....................................................................................................................................	145	



	 ix	

7.3	Future	Work	......................................................................................................................	146	
7.3.1	Introducing	New	Metrics	.......................................................................................................	146	
7.3.2	Alternative	Open	Source	Solutions	....................................................................................	147	
7.3.3	Programming	Paradigms	.......................................................................................................	147	
7.3.4	Community	Evaluation	...........................................................................................................	147	
7.3.5	Development	Methodology	..................................................................................................	148	
7.3.6	Design	Patterns	..........................................................................................................................	148	
7.3.7	Extracting	Data	Using	Platform	Libraries	......................................................................	148	
7.3.8	Open	Source	Testing	................................................................................................................	149	

	

	

	

	

	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	



	 x	

Table	of	Figures	

	
Figure	2.1:	Modelling	a	car	in	the	object-oriented	programming	paradigm	.............................	9	

Figure	2.2:	Object-Oriented	Code	Modelling	of	a	Car	and	Code	Creating	a	new	instance	of	

Car	called	toyota	......................................................................................................................................	10	

Figure	2.3:	Control	Graph	...............................................................................................................................	13	

Figure	2.4:	Cyclomatic	Complexity	of	Common	Control	Structures	............................................	14	

Figure	2.5:	Myer	highlighting	the	need	to	take	Else	branches	into	account	............................	17	

Figure	2.6:	Mapping	of	Metrics	to	OOD	Elements	................................................................................	23	

Figure	2.7:	A	Correlation	Matrix	of	Normalized	Measures	..............................................................	30	

Figure	3.1:	Categories	of	Cohesion	.............................................................................................................	38	

Figure	3.2:	C	Function	that	computes	the	sum,	average	and	product	numbers	from	1	to	n

	.........................................................................................................................................................................	41	

Figure	3.3:	C	function	in	Figure	3.2	in	a	program	dependence	graph	.........................................	41	

Figure	3.4:	Data	slices	for	C	function	as	defined	in	Figure	3.2	.......................................................	42	

Figure	3.5:	CQMM	activities	...........................................................................................................................	51	

Figure	3.6:	The	process	of	extracting	static	code,	churn	and	network	metrics	......................	53	

Figure	3.7:	Churn	Metrics	...............................................................................................................................	53	

Figure	3.8:	Code	Metrics	.................................................................................................................................	54	

Figure	3.9:	Network	Metrics	.........................................................................................................................	55	

Figure	3.10:	The	Squal	Model	.......................................................................................................................	56	

Figure	3.11:	Definition	of	integer	d	............................................................................................................	60	

Figure	3.12:	Suggested	names	for	integer	d	...........................................................................................	60	

Figure	3.13:	Example	of	code	using	poor	naming	convention	.......................................................	61	

Figure	3.14:	Example	of	code	with	refactored	variable	names	.....................................................	61	

Figure	4.1:	Visual	Studio	IDE	highlights	Bus	in	red	as	it	has	detected	an	error	.....................	66	

Figure	4.2:	Roslyn	open	source	solution	on	github.com	...................................................................	67	

Figure	4.3:	The	process	of	generating	metric	data	from	Roslyn	...................................................	69	

Figure	4.4:	Identifying	Projects	with	High	Scoring	Metrics	.............................................................	72	

Figure	4.5:	Identifying	Types	with	High	Scoring	Metrics	.................................................................	73	

Figure	4.6:	Cyclomatic	Complexity	and	Class	Coupling	.....................................................................	73	

Figure	4.7:	Depth	of	Inheritance	and	Class	Coupling	.........................................................................	74	

Figure	4.8:	Lines	of	Code	and	Class	Coupling	........................................................................................	75	

Figure	4.9:	Cyclomatic	Complexity	and	Depth	of	Inheritance	........................................................	76	

Figure	4.10:	Cyclomatic	Complexity	and	Lines	of	Code	....................................................................	76	

Figure	4.11:	Depth	of	Inheritance	and	Lines	of	Code	.........................................................................	77	



	 xi	

Figure	4.12:	CodeGenerator	Class	..............................................................................................................	78	

Figure	4.13:	GreenNodeExtensions	Class	................................................................................................	79	

Figure	4.14:	Identifying	Projects	with	Low	Scoring	Metrics	...........................................................	80	

Figure	4.15:	Cyclomatic	Complexity	and	Class	Coupling	..................................................................	81	

Figure	4.16:	Depth	of	Inheritance	and	Class	Coupling	......................................................................	81	

Figure	4.17:	Lines	of	Code	and	Class	Coupling	......................................................................................	82	

Figure	4.18:	Cyclomatic	Complexity	and	Depth	of	Inheritance	.....................................................	83	

Figure	4.19:	Cyclomatic	Complexity	and	Lines	of	Code	....................................................................	83	

Figure	4.20:	Depth	of	Inheritance	and	Lines	of	Code	.........................................................................	84	

Figure	4.21:	Figure	4.21:	CSharpPrimitiveFormatter	Class	............................................................	85	

Figure	4.22:	CSharpTypeNameFormatter	Class	...................................................................................	85	

Figure	4.23:	Cyclomatic	Complexity	and	Class	Coupling	..................................................................	87	

Figure	4.24:	Depth	of	Inheritance	and	Class	Coupling	......................................................................	88	

Figure	4.25:	Lines	of	Code	and	Class	Coupling	......................................................................................	88	

Figure	4.26:	Cyclomatic	Complexity	and	Depth	of	Inheritance	.....................................................	89	

Figure	4.27:	Cyclomatic	Complexity	and	Lines	of	Code	....................................................................	90	

Figure	4.28:	Depth	of	Inheritance	and	Lines	of	Code	.........................................................................	90	

Figure	4.29:	AsyncStepInfo	Class	................................................................................................................	91	

Figure	4.30:	High	Scoring	Metrics	..............................................................................................................	92	

Figure	4.31:	Low	Scoring	Metrics	...............................................................................................................	92	

Figure	4.32:	Average	Scoring	Metrics	.......................................................................................................	92	

Figure	4.33:	Small	Multiples	showing	Cyclomatic	Complexity	and	Lines	of	Code	................	94	

Figure	5.1:	Overview	of	Roslyn	Structure	...............................................................................................	97	

Figure	5.2:	MethodsPerClass	Class	Diagram	..........................................................................................	98	

Figure	5.3:	Definition	of	MethodsPerClass	.............................................................................................	99	

Figure	5.4:	Definition	of	DataSet	class	used	within	MethodsPerClass	.....................................	100	

Figure	5.5:	Definition	of	SetUp	method	.................................................................................................	100	

Figure	5.6:	Definition	of	the	foreach	statement	used	to	iterate	through	all	the	Roslyn	

binaries	.....................................................................................................................................................	100	

Figure	5.7:	Definitions	of	three	methods	used	within	MethodsPerClass	...............................	101	

Figure	5.8:	Definition	of	ExtractTypes	methods	...............................................................................	102	

Figure	5.9:	Definition	of	FormatName	...................................................................................................	102	

Figure	5.10:	Definition	of	FilterForPartialTypes	...............................................................................	103	

Figure	5.11:	Definition	of	AddTypesToWorkSheet	..........................................................................	103	

Figure	5.12:	Save	new	workbook	to	local	hard	disk	........................................................................	103	

Figure	5.13:	Data	Preparation	using	CRISP-DM	................................................................................	104	



	 xii	

Figure	5.14:	FixingData	Class	Diagram	..................................................................................................	105	

Figure	5.15:	Definition	of	FixingData	class	..........................................................................................	106	

Figure	5.16:	Definition	of	SetUp	method	..............................................................................................	106	

Figure	5.17:	Reading	in	data	from	workbook	on	local	hard	disk	...............................................	107	

Figure	5.18:	Definition	of	GetDataFromWorksheet	.........................................................................	107	

Figure	5.19:	Definition	of	FormatTypeName	......................................................................................	107	

Figure	5.20:	Definition	of	FilterForPartialTypes	...............................................................................	108	

Figure	5.21:	Definition	of	AddTypesToWorksheet	..........................................................................	108	

Figure	5.22:	Definition	of	SaveWorkbook	............................................................................................	108	

Figure	5.23:	Definition	of	FormatName	................................................................................................	109	

Figure	5.24:	Definition	of	FormatTypeName	......................................................................................	109	

Figure	5.25:	Definition	of	FilterForPartialTypes	...............................................................................	110	

Figure	5.26:	Definition	of	FilterForPartialTypes	...............................................................................	111	

Figure	5.27:	Class	Coupling	and	Number	of	Public	Methods	.......................................................	112	

Figure	5.28:	Class	Coupling	and	Number	of	Private	Methods	.....................................................	113	

Figure	5.29:	Cyclomatic	Complexity	and	Number	of	Public	Methods	......................................	113	

Figure	5.30:	Cyclomatic	Complexity	and	Number	of	Private	Methods	....................................	114	

Figure	5.31:	Depth	of	Inheritance	and	the	Number	of	Public	Methods	..................................	115	

Figure	5.32:	Depth	of	Inheritance	and	the	Number	of	Private	Methods	................................	115	

Figure	5.33:	Lines	of	Code	and	Number	of	Public	Methods	.........................................................	116	

Figure	5.34:	Lines	of	Code	and	Number	of	Private	Methods	.......................................................	117	

Figure	5.35:	Overview	of	findings	from	scatter	plots	.....................................................................	117	

Figure	6.1:	Definition	of	GeneratePrimes	Class	.................................................................................	122	

Figure	6.2:	Definition	of	GeneratePrimes	Class	Unit	Tests	...........................................................	122	

Figure	6.3:	Definition	of	Refactored	GeneratePrimeNumbers	Method	...................................	123	

Figure	6.4:	Definition	of	Private	Methods	used	by	GeneratePrimeNumbers	.......................	124	

Figure	6.5:	Definition	of	Unit	Tests	for	both	GeneratePrimes	and	PrimeGenerator	.........	125	

Figure	6.6:	Code	Coverage	results	for	both	GeneratePrimes	and	PrimeGenerator	...........	125	

Figure	6.7:	Code	Metrics	results	for	both	GeneratePrimes	and	PrimeGenerator	...............	126	

Figure	6.8:	Number	of	Private	Methods	and	Lines	of	Code	(A)	..................................................	127	

Figure	6.9:	Number	of	Private	Methods	and	Cyclomatic	Complexity	(B)	...............................	127	

Figure	6.10:	Binder	Code	Snippet	One	...................................................................................................	128	

Figure	6.11:	Binder	Code	Snippet	Two	..................................................................................................	128	

Figure	6.12:	Binder	Code	Snippet	Three	...............................................................................................	129	

Figure	6.13:	CodeGenerator	Code	Snippet	...........................................................................................	130	

Figure	6.14:	CSharpCompilation	Code	Snippet	..................................................................................	130	



	xiii	

Figure	6.15:	Interviewee	profiles	overview	........................................................................................	132	

Figure	6.16:	Number	of	years	interviewees	spent	working	in	Information	Technology	133	

Figure	6.17:	Job	titles	of	interviewees	...................................................................................................	133	

Figure	6.18:	Daily	interaction	with	code	of	interviewees	.............................................................	134	

Figure	6.19:	Testing	approaches	of	companies	that	interviewees	work	within	.................	134	

Figure	6.20:	Common	software	related	terms	interviewees	were	familiar	with	................	135	

Figure	6.21:	Code	snippets	presented	to	interviewees	to	be	rate	for	readability	..............	136	

Figure	6.22:	Code	snippets	presented	to	interviewees	to	be	rate	for	readability	..............	136	

Figure	6.23:	Experts	view	of	complexity	of	BubbleSort.java	.......................................................	137	

Figure	7.1:	Small	Multiples	of	Cyclomatic	Complexity	...................................................................	142	

Figure	7.2:	Overview	of	correlations	between	code	metrics	and	public	and	private	

methods	....................................................................................................................................................	144	

Figure	7.3:	Illustration	of	how	a	heat	map	looks	...............................................................................	148	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 1	

1. Introduction	
	

1.1	Project	Background	

Fagan (1976) was one of the early adopters of using static code analysis to identify 

errors early in the software development process. He argued that the cost involved in 

fixing errors increased the later the error was discovered during the development 

process. In 2002 van Emden and Moonen applied software inspection to detecting 

code smells within object-oriented languages. He describes code smells as “patterns 

that are generally associated with bad design and bad programming practices” for 

example, “code duplication” and “long methods”. This was in contrast to existing code 

inspection tools that looked at low-level aspects of code to identify problems with 

“pointer arithmetic, memory (de)allocation, null references […] etc.”. Yüksel and 

Sozer (2013) highlighted an issue with code inspections impacting developer 

productivity by having too many uncategorised alerts including false positives. In his 

research he proposed a technique to classify these types of alerts with a goal to 

providing real value through code inspections.  

 

Yüksel and Sozer (2013) highlighted the issue of static code analysis providing too 

many alerts to developers including false positives. This resulted in developers 

spending too much time investigating each alert to establish how significant it was. 

The research proposed an approach to classifying the alerts using machine-learning 

techniques. Steidl (2013) noted that a large part of source code is comments and 

although crucial to understanding the code they are not taken into account when 

evaluating the quality of the code. He argues that source code comments should be 

included in the metrics used when analysing code quality (Steidl et al., 2013). 

Balachandran (2013) stated that while peer code reviews was a cost-effective way of 

conducting code reviews it consisted of a significant amount of human capital. He 

argued that static analysis could be used to reduce manual code reviews. The paper 

looked at using checks for code violations and “common defect patterns” in an effort 

to reduce the amount of manual intervention involved.  

 

De Silva, Kodagoda, & Perera (2012) compared three complexity metrics including 

“McCabe’s Cyclomatic Complexity, Halstead’s software science and Shao and 
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Wang’s cognitive functional size”. The paper concluded that Shao and Wang’s 

cognitive functional style was most beneficial in real world applications.  Sarwar, 

Shahzad, & Ahmad (2013) looked at addressing the nesting problem with the 

Cyclomatic Complexity metric, a long established metric used to determine the 

complexity of code. Tosun, Caglayan, Miranskyy, Bener, & Ruffolo (2011) stated that 

researchers found that “code, churn, and network metrics as significant indicators of 

defects“. However, it also stated that not all may be informative for all defect 

categories.  

 

Casalnuovo, Devanbu, Oliveira, Filkov, & Ray (2015) used a large dataset provided by 

GitHub to explore “connection between asserts and defective occurrence”. This 

demonstrates how open source projects can provide the large datasets on which to 

conduct tests in an effort to gain new insights into old issues.  

 

Lei, Cheng, Bing, & Sato (2015) used code coverage as a “concrete measurement of 

testability” and demonstrated the necessity of testing less visible code areas.  

 

Overall it can be concluded that establishing which metrics to apply to a static analysis 

to in an effort to identify issues early in the software development life cycle (SDLC) 

has many challenges. While selecting one or two metrics may not be enough, applying 

all known metrics, can result in too many alerts being generated, as highlighted by 

Yüksel and Sozer (2013).  

 

1.2	Project	Description	

 

The majority of software metrics were developed in the 20th century when compilers 

simply compiled the code that was presented to them, but modern compilers optimise 

and re-structure code to achieve a more effective machine level code, which in turn 

changes the effectiveness of existing software metrics. This research seeks to bring 

software metrics into the 21st century by using them in a hitherto unanticipated way by 

attempting to determine their effectiveness as indicators of code quality and 

readability. 
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Although there has been a long history of defining code metrics that can be used to 

detect issues through the use of static code analysis, early in the development process, 

there is still much discussion as to which of these metrics are most valuable and there 

is much room for discussion as to application in modern day software development. 

There are many approaches that can be taken in applying code metrics, the most 

obvious being their intended use from when first developed but as previously 

mentioned much of this has been solved by modern day compilers. That said certain 

parts are still valid, such as determining the complexity of piece of code. As De Silva 

et al. (2012) found, asking programmers how complex a piece of code is can lead to 

wide range of viewpoints.  

 

van Emden & Moonen (2002) brought a new dimension to the area by introducing the 

concept of detecting ‘code smells’ as part of static code analysis. This moved code 

metrics away from being simply a binary search for code that is either good or bad and 

looks to how the code is styled or if the code adopts best practice.  

 

The main issues of focus for this research regarding code metrics are: 

1. Researching the existing area of code metrics in depth in order to gain a 

complete picture and identify key theories that have been developed. 

2. The introduction of coding best practices into the area of code metrics. 

3. Evaluating if the code metric theories can be used in commercial development 

of software 

4. Identifying relationships between the various code metrics  

 

Points One and Three above will be researched using existing literature whereas Points 

Two and Four will be the subject of formulating a new data set and examining the data 

through the use of visuals in an effort to identify relationships and examine sample 

code to detect common patterns that make point to causation of the metric scores. It is 

in attempting to identify this causation that the link between code metrics and modern 

best practices in programming will be analysed.  

 

In order to test the hypothesis sample code will be required. To ensure the data is of 

practical value a popular open source project will be selected and analysed. The 

provides a higher value to the data set as it will be an open source solution that is in 
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active use and therefore have all complexities and trade-offs that are commonly made 

when developing code in the real world and not just exhibit textbook style and 

practice. This will involve sourcing tools to extract the new metric data and then 

creating data visualisations in an effort to identify any possible relationships that may 

exist. In addition, code samples will be analysed at times in order to identify possible 

characteristics in the code that result in the various code metric results. It is there 

characteristics in the code that may also be able to help new insight into the impact 

common best practice has on code metrics.  

 

1.3	Project	Aims	and	Objectives	

 

The key research question can be stated as follows: Can metrics from the past century 

be repurposed to for use in modern day programming?  

 

The research question can be broken down into the following objectives: 

• Conduct research in the more broad area of code metrics 

• Identify key metrics that have provided value over the years 

• Introduce new modern day best practices to the area 

• Identify how these metrics can assist or impact modern day best practice 

 

The key hypothesis formulation here is as follows: 

• H0: Metrics defined for the 20th century coding issues are repurposed for 21st 

century coding issues. 

 

• H1: Metrics used to identify coding issues in the past can be repurposed to 

identify good coding practices for modern day programming 

	

1.4	Project	Evaluation	

The process of evaluation will use a Mixed Method Approach, first there will be a 

quantitative evaluation, which will involve taking any findings and evaluating using a 

combination of unit testing and code coverage metrics to assist in determining the 
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validity of the findings. In addition, it will also involve assessing the code where the 

finding was made in an effort to identify any possible causation. Secondly, there will 

be a qualitative assessment done in the form of interviews by people from the 

information technology industry. Ideally they would have a background in testing or 

software development. In addition to assessing any finds that may arise as a result of 

the research the interviews will also attempt to gain insight into the level of 

understanding that currently exists within the software industry in relation to code 

metrics.  

 

1.5	Thesis	Roadmap	

 

Chapter Two will seek to lay a solid foundation by examining in depth some the most 

important areas of code metrics. This will provide the building blocks from which the 

subsequent chapters can build.  

 

Following this Chapter Three will look to explore areas that have grown out of the key 

concepts from Chapter Two. There will also be special attention paid to the various 

attempts that were made to use code metrics with established commercial 

organisations.  

 

Chapter Four will seek to explore new metric data in an attempt to identify any new 

insights. This involves identifying a popular open source project in order to analyse 

data that is used in practice within the industry and extract metrics from that data using 

commercially available tools. This exploration phase will rely on creating data 

visualisations in order to identify these new insights. In addition, it will also examine 

code snippets at random in an effort to identify any patterns or characteristics that 

cause the metrics to be. 

 

Chapter Five will consist of taking one or more key findings from Chapter Four and 

exploring it in more depth. This may take the form of examining a relationship 

between two or more metrics or a characteristic found through the random sampling of 

code.  
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Taking any findings from Chapter Five, Chapter Six will attempt to evaluate these. 

There are various tools available that may assist in this process including unit testing 

of code and code coverage i.e. the percentage of code exercised by a given suite of 

tests. In addition, this section will also consist of a qualitative element of assessment.  

 

Chapter Seven will present the conclusions of this research, and also suggest future 

directions that this project might take. 
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2. Exploring	Metrics	

2.1	Introduction	

 

Metrics in software engineering are defined by different researchers in a variety of 

different ways, so much so that it is difficult to establish a consensus as to what exactly 

metrics are. The term is used in many aspects of the overall Software Development 

Lifecycle (SDLC) and can be described as having some sort of measurable component. 

This chapter will begin with a general discussion on software metrics that will assist 

with framing where code metrics, the main topic of this research, fits into the overall 

picture. It will then look to define some of the terminology that is contained 

throughout this paper so as to remove any possible ambiguity.  From there the paper 

will dive deep into the area of code metrics.  

 

Starting with McCabe’s Cyclomatic Complexity, the paper will dig into the original 

thought processes of the area in order to establish a solid understanding of the key 

areas that code metrics have grown out of. Building on from McCabe and looking at 

the various critiques offered on his approach and others the chapter will then shift 

towards the object-oriented paradigm of software development with special attention 

to be paid to Chidamber & Kemerer’s (1991) suite of software metrics. From there it 

will move to van Emden’s (2002) work on bringing modern best practices of what are 

known as ‘code smells’ to the area of code metrics and finish by looking at arguably 

one of the most fundamental principles in object-oriented programming, known as The 

Law of Demeter.  

 

2.2	Metrics	within	Software	Development	

 

Metrics in relation to software is a very broad as it can relate to many different aspects 

of software or the development of software. For example, the ratio between developers 

and testers could be a metric or the number of bugs found per 100,000 lines of code 

could also be a metric. There are many books and papers that discuss metrics in the 

form of project management that are often referred to as software metrics, for example, 

the budget for a software project i.e. what percentage has been spent on average each 
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day versus what percentage of the software is completed. For this reason it is 

extremely important to define what is being referred to as a metric within this research. 

It will focus on what are known as code metrics. These are metrics taken directly from 

code already written by developers. It is in effect software, either in the form of 

commercially available tools or as a result of in-house development that is used to 

analyse code as it is written. As will be shown throughout this chapter, it can be used 

to extract varying types of data, for example, identify areas of the code as having a 

high-level of complexity and therefore be considered as having a higher risk of being 

defective. In addition, it is important to realise that these checks are generic i.e. the 

same checks can be performed on all areas of the code without any specific software 

being developed for a particular feature or subcomponent.  

 

The earlier decades of programming involved a large amount of procedural code 

whereas the 1990s saw an explosion of object-oriented languages with C++, Java and 

Microsoft’s C# growing in popularity. Although this research does not focus on any 

one particular language, Microsoft’s C# will provide the basis for data exploration and 

experimentation in later chapters.  

 

Prior to looking at code metrics, some definitions will be provided to some of the key 

concepts and themes found throughout the paper.  

 

2.3	Definitions	

 

This section will introduce some definitions of the various concepts found throughout 

the paper.  
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2.3.1	Object-Oriented	Programming	

 

	
Figure	2.1:	Modelling	a	car	in	the	object-oriented	programming	paradigm 

	

2.3.2	Representing	Real-World	Items	

The most conceptual way to comprehend object-oriented programming is to consider 

Figure 2.1 above showing a car. Object-Oriented programming provides programmers 

with a means to take a real world object like the car above and represent it as within a 

programme. To do this, the car above would be a class. The class would literally be 

called Car (with an uppercase C). Within the Car class, there are mainly two things: 

properties and methods. The properties are like items of the car such as FuelType, 

TireSize, MaxSpeed, and NumberOfGears etc. whereas methods allow 

behaviours of the class to be performed. For example, the Car class could have 

methods called DriveForward or ChangeGear (Meyer, 1988).  

 

2.3.3	Instances	of	a	Class	

Once the Car class has been defined, this allows another part of the code outside of 

this particular class create instances of the Car class. The Car class is no use 

programming-wise until an instance of the class is created. Most programming 

languages provide the new keyword to do this. In the case of the Car class, the new 
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instance called Toyota could be created. Now the programmer can use the properties to 

get information about the Toyota car that has been created while also using the 

methods DriveForward and ChangeGear in order to get the Toyota car to do 

useful things. When talking about methods, the word ‘invoke’ will be used. Figure 2.2 

shows car as represented in object-oriented programming and the piece of code using 

the new keyword to create an instance of the car called toyota. The new instance has 

access to the methods including DriveForward (Jacobson, 1992).  

 

	
Figure	2.2:	Object-Oriented	Code	Modelling	of	a	Car	and	Code	Creating	a	new	instance	of	Car	called	

toyota

 

Behind the scenes programming languages send messages to methods that invoke them 

but the details of this are beyond the scope of this paper and are not required in 

understanding the basic concepts being presented here. The Car class above, as an 

example, is very simplified but provides the overall concept of how classes can be 

used within programming language to model items in the real world, like cars or boats 

or people etc.  

 

2.3.4	Public	versus	Private	Methods	

The Car class above had two methods, DriveForward and ChangeGear, both of 

which allow other parts of a program to invoke them, once an instance of the Car 

class has been created. A class can have two types of these methods, public and 

private. The methods in the Car class were both public as code outside of the class 

could invoke them. Private methods on the other hand are not accessible outside of the 

class. They are restricted in access and are therefore only available to code within the 
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class. There are many reasons why a programmer would choose to make a method 

within a class private, but for now it is suffice to say that is something controlled by 

the programmer and can be used to set access levels to different pieces of class 

functionality (Meyer, 1988). 

 

2.3.5	Unit	Tests	

A key aspect of developing software is testing the software. Software testing is an 

entire area in itself with many different practices from manually testing entire products 

to automated tests that run each time a new piece of code added to product. One of the 

many concepts that arise is that of unit testing. Unit testing allows the tester to write 

tests that exercise every avenue of a piece of code. The test would normally break 

down a large application and select a segment as small as a class and perform tests on 

every aspect of that class. A unit test should normally only test one thing. For example, 

a unit test can test that an if-statement, a piece of code that checks if a value or 

combination of values returns true of false, performs correctly for all inputs. One if-

statement could have multiple tests depending how what needs to be taken into 

account to evaluate the if-statement (Osherove, 2015).  

 

2.3.6	Code	Coverage	

As previously mentioned, unit tests evaluate all avenues of a piece of code to ensure 

the code is executing as expected. A key aspect of writing unit tests is determining 

when all of these avenues have been covered. Tools are available that allow a tester to 

calculate what is known as code coverage. Code coverage tools provide the percentage 

value of the code that has been covered by a given suite of tests (Osherove, 2015).  

 

2.4	Code	Metrics	

 

From the earliest days of code development the issue of defects and defective code has 

been a challenge for software engineers and organisations dependent on large-scale 

software platforms. Beginning with Fagan (1976) arguing that the cost of fixing such 

defects increased the later they were discovered in the development process has led to 

a lot of theorising as to how best tackle the issue. One area of focus was to develop a 



	 12	

generic way to statically analyse in an effort to identify areas with a high risk of being 

defective. One of the earliest works in this area came from McCabe (1976) and has 

become the benchmark against which many other theories are either compared against 

or branches from. 

 

2.4.1	McCabe’s	Cyclomatic	Complexity	

Thomas McCabe (1976) posed a question regarding the development of software: 

“How to modularize a software system so the resulting modules are both testable and 

maintainable?” McCabe argued that given the considerable portion of software 

development that is devoted to testing and maintenance of a system that a 

mathematical technique was required in order to quantify which modules of a system 

would be “difficult to test or maintain”. In an attempt to answer this question, McCabe 

(1976) defined a complexity measure, using graph theory that measures and controls 

the number of paths through a program. Providing examples in FORTRAN programs 

McCabe showed that complexity is independent of physical size and “complexity 

depends only on the decision structure of a program” (T. McCabe, 1976).  

 

The first issue that arises with this approach is the problem that “Any program with a 

backward branch potentially has an infinite number of paths.” Although using the 

total number of paths through a program is possible, it has been found to be 

impractical and therefore McCabe’s Cyclomatic Complexity measure is defined in 

terms of basic paths – “that when taken in combination will generate every possible 

path” (T. McCabe, 1976).   

 

In order to explain the Cyclomatic Complexity measurement, McCabe presents some 

mathematical preliminaries.    

 

Definition 1: The cyclomatic number V(G) of a graph G with n vertices, e edges, and p 

connected components is  

V G = e− n+ p 

 

Theorem 1: In a strongly connected graph G, the cyclomatic number is equal to the 

maximum number of linearly independent circuits. 
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Using this theorem, McCabe then associated a given program with a directed graph 

that has unique entry and exit nodes. “Each node in the graph corresponds to a block 

of code in the program where flow is sequential and the arcs correspond to branches 

taken in the program” (T. McCabe, 1976). 

 

The graph shown in Figure 2.3 is a control graph where it is assumed that each node 

can be reached by the entry node and that each node can reach the exit node, with “a” 

being the entry node and “f” being the exit node (T. McCabe, 1976). 

 

 

	
Figure	2.3:	Control	Graph 

 

As exit node ‘f’ has been branched back to the entry node ‘a’ the graph is now strongly 

connected i.e. “there is path joining any pair of distinct vertices” and therefore fulfils 

theorem 1.  

 

McCabe (1976) defined the Cyclomatic Complexity of some common control 

structures: 
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Figure	2.4:	Cyclomatic	Complexity	of	Common	Control	Structures 

 

In addition, McCabe (1976) also identified some properties of the Cyclomatic 

Complexity  

 
1. V G ≥ 1 

2.  V G  is the maximum number of linearly independent paths in G; it is the size of the basis set. 

3. Inserting of deleting functional statement to G does not affect V(G). 

4. G has only one path if and only if 𝑉 G = 1. 

5. Inserting a new edge in G increases V (G) by unity. 

6. V G  depends only on the decision structure of G.  
 

2.4.2	Halstead	E’s	

According to Halstead (1972) the effort required to generate a program “can be 

derived from simple counts of distinct operators and operands and the total 

frequencies of operators and operands”. Given these, Halstead computes the number 

of mental comparisons required to generate a program (Curtis, Sheppard, Milliman, 

Borst, & Love, 1979).  

 

2.4.3	Building	Upon	McCabe’s	Cyclomatic	Complexity	

Cutis et al. (1979) used three software complexity measures, namely McCabe’s 

Cyclomatic Complexity, Halstead’s E and “the length as measured by the number of 

statements” in an attempt to estimate the future maintenance cost of a software 

program. He argued that with the cost of maintaining the program to be three times 

greater than the cost of the initial development, such a measurement could prove 

invaluable to the software managers (Curtis et al., 1979).   
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First, they look to Halstead’s 1972 theory stating that, “algorithms have measureable 

characteristics analogous to physical laws”. Halstead defined the amount of effort 

required to generate a program as “simple counts of distinct operators and operands 

and the total frequencies of operators and operands”. Using these four quantities 

Halstead calculates “the number of mental comparisons required to generate a 

program” (Curtis et al., 1979).   

 

They then take McCabe’s definition of complexity of counting the number of “basic 

control path segments which, when combined, will generate every possible path 

through the program”. While noting that no exact mathematical relationship exist 

between McCabe’s and Halstead’s metrics they do point out that as the number of 

control paths increases in a program there would be an anticipated increase in the 

number of operators and therefore a significant correlation between the two would not 

be surprising (Curtis et al., 1979).   

 

They go on to examine the differences between psychological complexity, the 

characteristics that make a program difficult to understand to human readers and 

computational complexity, correctness of the program that both Halstead and McCabe 

analysis are attempting to define. In an effort to understand to what extent both of 

these metrics “assess the psychological complexity of understanding and modifying 

software”, they found that “assessing the psychological complexity of software 

appears to require more than a simple count of operators, operands and basic control 

paths” (Curtis et al., 1979).   

 

2.4.4	Critiquing	Halstead	and	McCabe	

Shen, Conte and Dunsmore (1983) offered a critique of Halstead’s theory of software 

science and looked at some of the metrics published in the intervening years since 

Halstead’s first publication circa 1977. Noting that as software metrics are growing 

with ever increasing importance and simple measures such as lines of code are an 

inadequate measure of complexity, they stated that there was a multitude of factors that 

affect programmers productivity including the “type of program being developed, size 

of the program, implementation language, interface complexity among modules in the 



	 16	

program, experience of the programmers involved programming techniques 

employed” as well as the environment itself. Even taking all these factors into account 

they found it did not lead to a “useful” estimator of programming effort required.  

They instead argued in favour of a “model of the programming process based upon a 

manageable number of major factors that affect programming” as they believed this 

would lead to more useful metrics for software managers to work with.   

 

Their analysis had some criticisms of the software science, such that some of the early 

code samples used to validate software science was quiet small and there were many 

ambiguities around deciding which operators and operands should be included in the 

count citing the example of the GO TO label as being “a unique operator for each 

unique label”. Overall they did concede that software science E “is at least as good an 

effort measure as most others being used” (Shen, Conte, & Dunsmore, 1983).  

 

McCabe’s Cyclomatic Complexity defines a “mathematical technique that will provide 

a quantitative basis for modularisation and allow us to identify software modules that 

will be difficult to test or maintain”. On rejecting ‘lines of code’ as there was no 

obvious relationship between length and module complexity, McCabe defined the 

measure of complexity by examining the number of control paths through a module 

(Shepperd, 1988).  

 

McCabe used graph theory to overcome the issue of a having an infinite number of 

paths through code that contains a backward branch. By representing each executable 

statement as a node with the edges representing the control flow, any piece of 

procedural software could be depicted as a directed graph. Given this representation of 

the code and provided this directed graph is strongly connected i.e. every vertex is 

reachable from every other vertex, it can be used to determine the number of basic 

paths contained in the program, which, when combined together, “can generate all 

possible paths through the graph or program” (Shepperd, 1988).  

 

Sheppard (1988) offered a critique of McCabe’s Cyclomatic Complexity as a software 

metric. He cites Myer’s criticism that the metric “fails to distinguish between 

selections with and without ELSE branches”.  This is shown in Figure 2.5 below, 
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where Myer’s metric takes the ELSE into account unlike the McCabe’s Cyclomatic 

Complexity (Shepperd, 1988).  

 

	
Figure	2.5:	Myer	highlighting	the	need	to	take	Else	branches	into	account 

 

Sheppard (1988) also notes the fact that McCabe’s thinking in defining the complexity 

revolved around FORTRAN as opposed to more recent languages of the time, namely 

Ada. This in turn makes the mapping from code to graph more ambiguous. In addition, 

Sheppard also highlights the controversy around the metric being “insensitive to 

complexity contributed from linear sequences of statements”. 

 

The fact that v = 1 will remain true for “a linear sequence of any length” was another 

area of controversy and had other researchers offer alternatives to McCabe’s proposal. 

These included Hansen’s 2-tuple of Cyclomatic Complexity although Baker and 

Zweben also took issue with this approach (Shepperd, 1988).  

 

Another criticism of McCabe’s Cyclomatic Complexity was that it increased when 

applying what are considered good programming practices. As noted by Sheppard 

(1988) only two out of twenty six of Kernighan and Plauger’s rules of good 

programming style resulted in a decrease in the complexity. All decisions carry the 

same weight for McCabe’s Cyclomatic Complexity regardless of why nesting was 

applied in a particular fashion. Many researchers would argue that modularity of a 

program is better viewed through ‘coupling’ and ‘cohesion’, something that is not 

captured by McCabe’s metric (Shepperd, 1988).  

 

While noting that the difference between software engineering and other established 

branches of engineering was the lack of an accepted set of metrics with software 
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engineering, Gill and Kemerer (1991) argued that the absence of which would lead to 

software development remaining in a “stagnant craft-type” mode that made it difficult 

to pass knowledge to the next generation of engineers. By having well-established 

metrics, engineers could quantify projects and evaluate tools and processes more 

effectively.   

 

They highlighted the maintenance of software systems as one of the key areas in need 

of a metric and evaluating the complexity of code that needs to be modified. He cites 

McCabe’s description of the primary purpose of the metric as to “identify software 

modules that will be difficult to test or maintain”.  Their paper does not seek to 

evaluate whether McCabe’s Cyclomatic Complexity fully captures all the complexity 

of a system but rather answer Sheppard’s question regarding McCabe’s complexity 

measure; can McCabe’s Cyclomatic Complexity serve as a “useful engineering 

approximation” (Gill & Kemerer, 1991).   

 

They argue that while the assumptions which exist linking code complexity to high 

maintenance cost have been criticized as relatively weak, studies have shown that a 

large amount of resources have gone into engineers attempting to understand code 

when making changes during maintenance. Their paper goes on to look at the 

relationship between McCabe’s Cyclomatic Complexity and the maintenance of 

software systems. Included in their findings, Gill and Kemerer (1991), found that 

metrics proposed by Myers and Hansen as well as McCabe’s Cyclomatic Complexity 

were all highly correlated. As consistent with Sheppard’s findings, the data suggested 

there was unlikely to be “any practically significant different results using” Myers or 

Hansen’s metrics over McCabe’s. In addition, it was also found that the length 

measure was also highly correlated to the complexity measure. Taking this 

information, Gill (1991), defined a complexity density metric defined “as the ratio of 

Cyclomatic Complexity […] metric to thousand lines of executable code”. Although 

citing the use of a small sample, Gill (1991), did note the results of his experiments as 

“sufficiently interesting“ to warrant further study and if they continued to hold that the 

use of the complexity density was a quantitative way to determine software 

maintainability.   
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Sarwar et al. (2012) argued that due to McCabe’s Cyclomatic Complexity being 

introduced using the linear programming language Fortran and as this langauge 

contains no functions or classes and hence these concepts were ommitted, this measure 

of complexity is not suffice for code developed using the Object-Oriented Paradigm or 

Service-Oriented Architecture. They attempted to calculate the complexity of the 

Windows Communication Foundation (WCF), a framework that implements Service 

Oriented Architecture and presented a complex algorithm that he argued could be used 

in estimating the production and maintenance cost of a project using this framework 

(Sarwar, Ahmad, & Shahzad, 2012). 

 

2.5	Metrics	for	Object-Oriented	Code	

 

2.5.1	Chidamber	and	Kemerer	Metric	Suite	
Chidamber and Kemerer (1991) presented a suite of software metrics within the 

object-oriented paradigm. They were based on the insight and experience of existing 

software engineers working with object-oriented code and evaluated against widely 

accepted software metric evaluation criteria. It was argued that in order for the object-

oriented paradigm to move from what was a ‘craft’ to a more conventional 

engineering, metrics and measures were a requirement. In addition to this, outlined 

areas in which such metrics could be used to aid management including: cost and 

schedule estimating, recruitment forecasting and future maintenance requirements.   

 

They began by highlighting some of the criticisms of current software metrics, both 

procedural language metrics and object-oriented language metrics. While the former of 

these is more often criticised for “being without solid theoretical base” and “failing to 

display what might be termed normal predictable behaviour”, the latter’s criticisms 

are more focused on not supporting key object-oriented concepts such as classes, 

inheritance, encapsulation and message passing. They presents six metrics that are 

specific to object design as it is considered a “unique aspect” of object-oriented 

programming (Chidamber & Kemerer, 1991).  
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Chidamber and Kemerer (1991) refers to Booch’s (1986) definition of object-oriented 

design as “the process of identifying objects and their attributes, identifying 

operations suffered by and required of each object and establishing interfaces between 

objects” and breaks down the design of classes into three steps, namely, defining 

objects, identifying object attributes and establishing the communication between 

objects. They cite Wand (1990) in defining two things as being coupled if one of them 

“acts upon” the other while taking Bunge’s (1977) definition of the similarity of two 

objects, “the intersection of the sets of properties of two objects” as the basis for 

defining the cohesiveness of methods as the “degree of similarity” between methods. 

Having a high degree of similarity between methods means they have a higher degree 

of cohesiveness and therefore a higher degree of encapsulation. He goes on to use 

Bunge’s (1977) definition of complexity, “numerosity of its composition” i.e. 

something complex has a large number of properties, as a base for defining complexity 

to be “the cardinality of its set of properties”.  

 

They go on to look at the scope of properties within a class noting that Wand (1987) 

defines a class on “the basis of the notion of scope”. From this Chidamber (1991) 

defines two concepts relating to the inheritance hierarchy within the first being depth 

of inheritance, the height of a class within the inheritance tree, and secondly number of 

children of a class, the number of descendants of that class. He argues that these 

concepts are useful in determining the scope of a class such that while the depth of 

inheritance can establish by what degree a class is influenced by “the properties of its 

ancestors” the number of children “indicates the potential impact on descendants” 

(Chidamber & Kemerer, 1991).  

 

Finally, they look at measures of communication within object-oriented programming 

noting that objects only form of communication is through message passing and 

therefore defines a response set for an object as “the set of all messages that can be 

invoked in response to a message to the object”. In addition he highlights that this set 

may include methods outside of the object as methods from one object may invoke 

methods from another object in response to an incoming message.  
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Based on four years of projects developed by software engineers Chidamber and 

Kemerer (1991) go on to define six metrics that while specific to object-oriented 

design are not language specific.  

 

Weighted Methods Per Class (WMC) 

Weighted Methods Per Class (WMC) is defined as: 

  

WMC = 𝑐𝑖
!

!!!

 

 

If all static complexities are considered to be unity, WMC = n, the number of methods.  

 

WMC refers directly to the complexity of a class and Chidamber (1991) argues that the 

number of methods and the complexity of the methods of a class are an indicator as to 

how much time and effort will be involved in maintaining the class. He goes on to 

state the larger the class, the greater the potential impact on the child classes inheriting 

from that class. Finally, he makes the point that classes with large numbers of methods 

do not lend themselves for reuse (Chidamber & Kemerer, 1991).  

 

Depth Of Inheritance Tree (DIT) 

Depth of Inheritance of a class is the DIT metric for that class. Chidamber (1991) 

argues that the deeper a class is within a hierarchy, the greater number of methods it 

will inherit and therefore the more complex the class becomes (Chidamber & Kemerer, 

1991).  

 

Number Of Children (NOC) 

Number Of Children (NOC) is defined as:  

 

NOC = number of immediate sub-classes subordinated to a class in the class hierarchy.  

 

This metric looks to determine how many subclasses will inherit the behaviour of the 

parent class. Chidamber (1991) argues that it is more favourable to have depth over 

breadth in a class hierarchy as it promotes reuse through inheritance stating it is not 
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considered “good practice” to have “standard number of subclasses“ and that higher 

up classes should have more child classes than classes lower in the hierarchy. He goes 

on to point out that classes with a large number of children may require more testing 

(Chidamber & Kemerer, 1991).  

 

Coupling between Objects (CBO) 

Coupling between Objects (CBO) is defined as:  

 

CBO = Number of non-inheritance related couples  

 

This takes the concept of two objects being considered coupled if they “act upon” 

each other i.e. one invokes methods of the other. Chidamber (1991) argues that this 

form of coupling hampers the reuse of the class and inter-object coupling should be 

kept to a minimum as the class will be sensitive to changes making maintenance more 

difficult (Chidamber & Kemerer, 1991).  

 

Response For a Class (RFC) 

Response For a Class (RFC) is defined as:  

 

RFC = | RS | where RS is the response set for the class. 

 

In this metric, the response set is the “set of methods available to the object” while the 

cardinality “is a measure of the attributes of an object“. In addition, Chidamber 

(1991) also notes that as it includes methods from outside the object, “it is also a 

measure of communication between the objects”. He argues that the larger the number 

of methods that are invoked in response to a message, the more complex that class 

becomes and therefore the more testing it will require. In addition, he goes on to point 

out that the larger the number of methods available outside of a class, the greater the 

knowledge required to test the class (Chidamber & Kemerer, 1991). 

 

Lack of Cohesion in Methods (LCOM) 

Lack of Cohesion in Methods (LCOM) is defined as: 

 

Consider a Class C1 with methods M1, M2, … Mn  
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Let (Ii) = set of instance variables used by method Mi.  

There are n such sets (I1)…. (In) 

 

LCOM = the number of disjoint sets formed by the intersection of the n sets. 

 

This follows the concept of looking for the degree of similarity of methods by 

examining the common instance variables. If there are no common instance variables 

then the degree of similarity is zero. It should be noted that this does separate out 

where “each of the methods operates on unique sets of instance variables and the case 

where only one method operates on a unique set of variables”. The fewer number of 

disjoint sets implies greater similarity of methods (Chidamber & Kemerer, 1991).  

  

Chidamber (1991) argues that this metric is important as a lack of cohesion between 

classes indicates that the class is trying to do too much and should therefore be split 

into multiple classes. Having low cohesion in classes indicates a degree of complexity 

within that class (Chidamber & Kemerer, 1991).  

 

	
Figure	2.6:	Mapping	of	Metrics	to	OOD	Elements 

 

 

Chidamber (1991) cites Weyuker’s (1988) list of properties used when evaluating 

software metrics, which he then applies to the previous six metrics, outlined above. 

The properties are  

 

• Property 1: Non-coarseness 

• Property 2: Non-uniqueness (notion of equivalence) 

• Property 3: Permutation is significant 

• Property 4: Implementation not function is important 
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• Property 5: Monotonicity 

• Property 6: Non-equivalence of interaction 

• Property 7: Interaction increases complexity 

 

Chidamber (1991) found that all six failed to meet property three and property seven. 

In addition to this, the RFC metric failed to satisfy property six and the DIT metric 

failed to satisfy property five but only in the case of “combining two objects in 

different parts of the tree” (Chidamber & Kemerer, 1991). 

 

Chidamber (1991) provides some reasoning as to why not all of the metrics satisfy all 

of the properties. In the case of all six failing to property three he suggests that the 

permutations within an object are not necessarily significant while arguing that in the 

case of property seven, interaction increases complexity, is not applicable to object-

oriented design.  

 

2.5.2	Building	Upon	Chidamber	Object-Oriented	Metrics	

Li and Henry (1993) argue that software metrics provide a “quantitative means” 

within the software development process citing a quote by DeMarco that ”you cannot 

control what you cannot measure”. In addition they argue that these same are 

dependent on statistical validation. Their paper, mainly concerned with the Object-

Oriented programming paradigm, looks at existing software metrics, while also 

proposing new ones. Finally, they validate these metrics on data collected from 

existing commercial software systems.  

 

They identify two categories of software metrics, the first being software product 

metrics, that focuses on source code and design documentation, while the second, 

software process metrics, focuses on the man hours involved in a project, noting that 

his paper is only concerned with the former.   

 

Prior to looking at metrics specific to the Object-Oriented programming paradigm, Li 

and Henry (1993), reviews certain metrics used with procedural programming namely 

Halstead’s software science metrics and Bail’s size metrics that are lexical measures 

i.e. they count specific lexical tokens in a program. They also note McCabe’s 



	 25	

Cyclomatic Complexity, based on deriving a directed graph from the programs control 

flow, and a group of metrics that measure the inter-connectivity of system components.  

 

On comparing procedural paradigm metrics to that of objected-oriented metrics they 

note the that “object oriented metrics are not as numerous as those in the procedural 

paradigm” They go on to look at the different characteristics exhibited between the 

procedural paradigm and the object-oriented one, highlighting concepts that only exist 

within object-oriented programming and not procedural programming, namely 

inheritance, classes and message passing and highlighting the fact that metrics 

previously mentioned do not cover such characteristics (Li & Henry, 1993).  

 

They looked at three groups of object-oriented metrics. Group one consisted of the 

metrics proposed by Chidamber and Kemerer (1991), the second group looked at the 

metrics proposed within the paper while the last group looked at size metrics in the 

object-oriented paradigm (Li & Henry, 1993).  

 

Chidamber and Kemerer (1991) who proposed six object-oriented design metrics, 

namely: Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling 

Between Objects (CBO), Response For a Class (RFC), Lack of Cohesion of Methods 

(LCOM), and Weighted Method per Class (WMC). Only Coupling Between Objects 

CBO was not used from this list (Li & Henry, 1993).  

 

Depth of Inheritance Tree (DIT) 

The DIT measures the position of a class in the inheritance hierarchy. The aim here is 

to gauge how many properties can be accessed from the class in question with classes 

lower in the hierarchy of inheritance the more properties the class may inherit from the 

super-classes above it. As pointed out by Li (1993) this higher the DIT metric, the 

harder it is to maintain the class.  

 

The root class’ DIT is zero:  

 

DIT = inheritance level number; ranging from 0 to N; where N is positive integer (Li 

& Henry, 1993) 
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Number of Children (NOC) 

The NOC measures the number of direct children a class has. It is the reverse concept 

of the DIT already mentioned. The more children a class has the more a change to that 

class can impact the system.  

 

The calculation of the NOC is as follows: 

 

NOC = number of direct sub-classes; ranging from 0 to N; where N is a positive 

integer (Li & Henry, 1993) 

 

Response For a Class (RFC) 

The RFC metric measures the cardinality of the response set of a class. Li (1993) 

suggests that a class with a higher the RFC metric the harder it is to maintain “since 

calling a large a large number of methods in response to a message makes tracing an 

error more difficult”. The RFC is calculated as follows: 

 

RFC = number of local methods + number of methods called by local methods; 

ranging from 0 to N; where N is a positive integer.  

 

Lack of Cohesion of Methods (LCOM) 

LCOM measures the lack of cohesion of a class. Stevens et al. best define cohesion, as 

a “measure of the degree to which the elements of a module belong together”, 

therefore, a module considered as being highly cohesive means “all elements are 

related to the performance of a single function” (Stevens, Myers, & Constantine, 

1974). 

 

“The calculation of LCOM is the number of disjoint sets of local methods. Disjoint sets 

are a collection of sets that do not intersect with each other. Any two methods in one 

disjoint set access at least one common local instance variable:  

 

LCOM = number of disjoint sets of local methods; no two sets intersect; any two 

methods in the same set share at least one local instance variable; ranging from 0 to 

N; where N is a positive integer” (Li & Henry, 1993). 
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Weighted Method per Class (WMC) 

WMC measures the static complexity of all the methods. This is calculated by 

summing together McCabe’s Cyclomatic Complexity as applied to each method in the 

class.  

 

WMC = summation of the McCabe’s Cyclomatic Complexity of all local methods; 

ranging from 0 to N; where N is a positive integer.  

 

Li and Henry (1993) define two objects as coupled if they “act upon each other”.  The 

research identifies three types of coupling between objects: coupling through 

inheritance, coupling through message passing and coupling through data abstraction. 

We will now look at each of these in more detail (Li & Henry, 1993).  

 

Coupling through inheritance 

Li and Henry (1993) argue that although inheritance is used to promote software reuse 

it can also violate encapsulation and information hiding. It adds complexity by 

exposing attributes, encapsulated in the super class, in a less restricted sub-class (Li & 

Henry, 1993).  

 

Coupling through message passing  

In the object-oriented paradigm, messages are sent from one object to another as a 

form of communication. Message Passing Coupling (MPC) is a measurement of the 

complexity of message passing between the classes.  

 

MPC = number of send-statements defined in a class.  

 

This helps to establish how dependent local methods are upon methods in other 

classes. It does not indicate the number of messages received by the class (Li & Henry, 

1993).  

 

Coupling through Abstract Data Types (ADT) 

ADT is where a data type is defined by its behaviour from the point view of the user of 

that data type. Li and Henry (1993) argues “a variable declared within a class X may 

have a type of ADT which is another class definition, thereby causing a particular type 
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of coupling between the X and the other class, since X can access the properties of the 

ADT class”. This metric is called as Data Abstraction Coupling and is defined as:   

 

DAC = number of ADTs defined is a class. 

 

In other words, the more ADTs a class has, the more complex coupling is taking place 

within that class (Li & Henry, 1993). 

 

Lastly, Li and Henry (1993) looked at size metrics used within the Object-Oriented 

paradigm namely Number of Methods (NOM and two additional size metrics.  

 

Number of Methods (NOM) 

As local methods define a class interface, Li (1993) argues that the Number of 

Methods (NOM) is the best interface metric to use. It is simply defined as  

 

NOM = number of local methods 

 

In other words, the more methods exposed by a class, the more complex that class 

becomes (Li & Henry, 1993).  

 

SIZE1 

Li (1993) takes the Lines of Code (LOC) metric, calling it SIZE1 and calculates it 

simply by counting all the semicolons in a program. It is defined as  

 

SIZE1 = number of semicolons in a class.  

 

SIZE2 

The second size metric used by Li (1993), SIZE2, is the number of properties inclusive 

of attributes and methods that are defined in a call. It is defined as  

 

SIZE2 = number of attributes + number of local methods. 

 

In total Li (1993) defines ten metrics for use within the object-oriented paradigm. They 

are abbreviated as follows 
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DIT = Depth of Inheritance Tree 

NOC = Number of Children 

MPC = Message Passing Coupling 

RFC = Response For Class 

LCOM = Lack of Cohesion Of Methods 

DAC = Data Abstraction Coupling 

WMC = Weighted Method Complexity 

NOM = Number of Methods 

SIZE1 = Number of Semicolons per Class 

SIZE2 = Number of Methods plus number of Attributes  

 

In addition, they define the maintenance effort for the study as  

 

Change = number of lines changed per class in its maintenance history (Li & Henry, 

1993). 

 

While noting that prior knowledge of the relationship between software maintainability 

and software metrics is sparse within the object-oriented paradigm, they set one of the 

goals of their research as to identify a relationship between the two (Li & Henry, 

1993).  

 

Li and Henry (1993) found that there was a “strong relationship between the metrics 

and the maintenance effort“ within the object-oriented paradigm. In addition, it was 

found that the maintenance effort could be predicted from the combinations of the 

metrics collected from the code (Li & Henry, 1993). 

 

Systa, Ping and Muller (2000) argues that identifying metrics within object-oriented 

programming requires a different approach to that of imperative programming 

languanges in that key metrics that need to be  identified are related to design and 

overall code quality. These include the coupling, cohesion and complexity between 

classes as well the complexity of the inheritance hierarchy. They point out that by 

identifying high or low complexity areas of a system or tightly coupled areas, can 

assist in decision making when adding new features or performing maintenance work.  
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They used the suite of object-oriented metrics as defined by Chidamber and Kemerer 

which were then broken into three categories: inheritance, communication and 

complexity metrics. These were then applied to FUJABA systems, a system designed 

to do round trip engineering using the Unified Modeling Lanange (UML), Story 

Driven Modeling (SDM), Design Patterns and Java. The results are shown in Figure 

2.7 below where they are defined as a coefficient of greater than 0.4 as being 

correlated.  

 

	
Figure	2.7:	A	Correlation	Matrix	of	Normalized	Measures 

 

2.6	Applying	Object-Oriented	Best	Practices	to	Code	Metrics	

 

van Emden and Moonen (2002) proposed taking the technique of software inspections, 

used to improve software quality, and using it to detect bad programming design 

patterns within the code, known as code smells. Software inspection is the process of 

carefully examing code in some fashion i.e. traversing the code to generically, in an 

effort to identify aspects of it that may highlight postive or negative issues early in the 

software development lifecycle. One of the major arguments in favour of code 

inspections is that the cost of identifying and fixing issues in code descreases the 

earlier in the cycle it is discovered.    

 

Originally, code inspections focused on low-level bug chasing, attempting to identify 

null references or out of bounds excpetions, whereas van Emden and Moonen (2002) 

sought to instead use this process to detect ‘code smells’ a methapor introduced by 

Martin Fowler in his book Refactoring: Improving the Design of Existing Code. Code 

smells provide a rule of tumb or a guiding principle when refactoring code and can be 
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used to decide when and what to refactor. Examples of code smells are duplicated 

code, long methods or classes, too much funtionality in a class or violating 

encapsulation.  

 

By introducing this process when developing code, it can ensure that coding standards 

are being applied to all areas when developing on a large-scale software system. 

Coding standards are a way for a company to ensure that all code being generated is of 

the same standard regardless of who and where it is written. van Emden and Moonen 

(2002) argues experience has shown that publishing a set of coding standards alone is 

not enough as there are various reasons why some engineers will simple ignore them 

or feel somehow restricted by them and therefore not apply them to code being 

developed.  

 

The identification of code smells is not an exact science and requires a mix of factors 

to be taken into account when defining them for a particular project inclduing past 

experience of issues that have arisen, the domain being developed and the subjective 

opinions of engineers working on the code. Therefore an important aspect of applying 

the detection of code smells in a project is that the configurable (van Emden & 

Moonen, 2002).  

 

van Emden and Moonen (2002) distinguishes the two different types of code smells 

into “primitive smell aspects and derived smell aspects” for example a method 

containing a switch statement would be considered a primitive aspect whereas a a class 

not using any of the methods provided by its superclass would be a derived aspect. 

This allowed her to apply a four step approach to analysing the code; Find all entities 

of interest, inspect them for primitive smell aspects, store information about entities 

and primitive smell aspects in a repository and finally, derive smell aspects from the 

repository.   

 

van Emden and Moonen (2002) applied a defined set of code smells to the CharToon 

system that consisted of 46,000 lines of code (less comments and blank lines) and 147 

classes. They were able to succcessfully highlight the code smells the majority of 

which came from the use of typecasts. They highlight the fact that most automatic 

code inspection tools, namley C analyser LINT and the Java version of which is 
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JLINT, focus on identifying defects in the code in an effort to build higher quality code 

whereas the approach here is to ensure that good design practices are adhered to. He 

points to an interesting area of future work that involves taking what Beck and Fowler 

describe as “maintenance smells”. These are smells that arise while code is being 

maintained and include concepts such as divergent change, different parts of a class are 

changed for different scenarios, shotgun surgery, changing many classes for one 

related change and parallel inheritance hierarchies, being forced to subclasses in one 

place in order to add a subclass elsewhere. Detecting smells such as these cannot be 

done by simply looking the current source code alone but would require analysing the 

change sets as code patches are pushed for maintenace or new features added (van 

Emden & Moonen, 2002).  

 

2.7	The	Law	of	Demeter	

 
Perhaps one of the most significant metrics or measure that can be applied within an 

object-oriented program was introduced by Lieberherr, Holland and Riel (1988) and is 

a simple language independent rule that made applying the concept of modularity and 

encapsulation within an object-oriented programming more intuitive for programmers. 

It is known as the Law of Demeter. It argues that the benefit of applying the Law of 

Demeter included minimising code duplication, number of parameters in methods and 

number of methods per class. In addition, it would reduce coupling between methods, 

improve information hiding and narrower interfaces would lead to more maintainable 

code. 

 

Based on and named after the Demeter system, which provided high-level class based 

object oriented systems that allowed for a larger number of utilities such as parsers, 

printers and type checkers to other class-based object-oriented systems, Lieberherr, 

Holland and Riel (1988) argued that the Law of Demeter promoted “maintainability 

and comprehensibility”. It was designed with a view to growing software over time as 

opposed to ‘big bang’ updates and in order to achieve this the code would have to be 

written in a well-formed manner.  
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They define the Law of Demeter, as: “For all classes C, and for all methods M 

attached to C, all objects to which M sends a message must be instances of classes 

associated with the following classes: 

 

1. The argument classes of M (including C). 

2. The instance variable classes of C. 

 

Objects created by M, or by functions or methods which M calls, and objects in global 

variables are considered as arguments of M” (K. Lieberherr, Holland, & Riel, 1988). 

 

The Law of Demeter has two primary purposes; making modifications to program 

simpler and reducing the complexity of the code by restricting the “number of types” 

the programmer is aware of when writing within a method.  

 

The motivation behind the Law of Demeter is to make the software “as modular as 

possible” and by abiding by it, methods will only be aware of the “immediate 

structure” of the class to which it belongs. This in turn means that any changes to the 

class will only require examining the methods within that class as to what impact the 

change will have. It reduces “nested message sending’s” and prohibits the nesting of 

“generic accessor function calls” i.e. calls that return objects that existed before the 

function is called (K. Lieberherr et al., 1988).  

 

Lieberherr’s (1988) aim was to condense many well-known principles into a “single 

statement”, one that could be checked at compile time. They include coupling, 

information hiding, information restriction, localising information, narrow interfaces 

and structural induction.  

 

Coupling 

Generally it is considered good practice, within object-oriented software design, to 

have minimal coupling between classes. By abiding by the Law of Demeter, which 

limits the methods that can be called from within a given method and therefore, 

reduces the amount of coupling that can occur between various classes within a 

program (K. Lieberherr et al., 1988).  
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Information hiding 

The Law of Demeter promotes information hiding by preventing methods from 

retrieving a “subpart of an object” and enforcing them to traverse intermediate 

methods in small steps to perform the same result. Even though programmers of 

object-oriented languages can prevent the use of certain methods by making them 

private, a feature that complements the law, Lieberherr et al. (1988) goes further than 

and argues that these methods should still be used in a restricted way regardless of 

them being public (K. Lieberherr et al., 1988).  

 

Information restriction 

Based on Parnas (1986) work on the modular structure of complex systems, Lieberherr 

et al. (1988) restricts the use generic method calls and argues that information 

restriction complements information hiding. As was the case with information hiding, 

methods can be public, but their use is restricted.  

 

Localising information 

The Law of Demeter ensures that on examining a method, a programmer is only 

required to be aware of the types that are closely related to the class within which the 

method exists. This allows them to be independent of the rest of the system, leading to 

less complexity within the system (K. Lieberherr et al., 1988).  

 

Narrow interfaces 

The Law of Demeter promotes the use of narrow interfaces between interacting 

entities. Lieberherr et al. (1988) argues that a method should only have access to as 

much information as it requires in order for it do its job. 

 

Structural induction 

The Law of Demeter is based upon the fundamental thesis of Denotational Semantics 

i.e. “The meaning of a phrase is a function of the meanings of its immediate 

constituents”. Lieberherr et al. (1988) highlight a trade-off to applying the Law of 

Demeter that although it decreases the complexity of the methods, it increases the 

number of methods. This may lead to an issue where there are “too many operations in 

a type” i.e. too many methods in a class. In order to solve this issue, he argues that 
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functional abstractions should not be provided via a method but instead a module, 

therefore hiding all of the underlying low-level methods.  

 

They outline an approach when creating instances of classes where a factory class is 

employed that contains the code that creates the new class and in turn is used to 

provide instances of the class when required. This in effect prevents multiple places in 

the code where a class is created and therefore needs to be updated when a change is 

required (K. Lieberherr et al., 1988).  

 

They outline two variations of the Law of Demeter, namely weak and strong, the 

former defining instance variables as only those within the given class while the later 

defines them as anything within the given class and any inherited from parent classes 

(K. Lieberherr et al., 1988).  

 

2.8	Conclusions	

 

This chapter began defining some of the concepts used throughout this research. It 

looked at how real world items are represented within the object-oriented 

programming paradigm through the use of classes.  

 

From there, it studied in detail McCabe’s Cyclomatic Complexity, a technique that 

allows a piece of to be measured with relation to its perceived complexity. Building 

upon this, the chapter touched on other metrics such as Halstead’s E and then 

examined various critiques of these theories.  

 

Among the criticisms of McCabe’s Cyclomatic Complexity was Sheppard who cited 

Myer’s finding that it failed to take account for ELSE branches. Sheppard also took 

exception to the fact that it revolved around FORTRAN and not more modern 

languages of the time.  

 

Regardless of these criticisms, many of which are valid, McCabe’s complexity 

measure has become a key cornerstone that many other theories have been built 

around.  
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The second half of the chapter began by looking at Chidamber and Kemerer metric 

suite for the object-oriented paradigm and continued by examining in detail how this 

suite was then built upon over time. The work of Chidamber and Kemerer was 

ultimately found to be both timely and accurate. The suite of metrics as defined here 

became a foundation on which many other theories have been built over time.  

 

Following this, the research looked van Emden and Moonen who offered a new slant 

on code metrics by introducing the concept of analyzing code for what are known as 

‘code smells’ i.e. code that is considered to be bad practice, in an attempt to identify 

this in automated fashion as new code is committed to a project.  

 

Arguably one of the key offshoots from the traditional thinking in the area of code 

metrics was van Emden and Moonen’s work that merged both code metrics and the 

concept of ‘code smells’. This brought a new lens that code metrics could be viewed 

through. No longer were metrics solely for the purpose of detecting coding errors but 

were now being used to identify bad practice i.e. not something a modern day compiler 

might reject but something that had, up until then, only be analyzed by the human eye. 

 

The chapter concludes by looking at one of the most important pieces of research with 

regard to applying the concept of modularity and encapsulation with object-oriented 

programming that is known as The Law of Demeter. Purposely designed to be simple 

in nature and language independent, it assists programmers in applying a key principal 

when developing software. Building upon this, the next chapter will look at various 

metrics that have grown out of these theories and importantly the various attempts of 

applying the metrics within established commercial organisations. In addition, it also 

seek to build upon van Emden and Moonen’s work by introducing the concept of 

‘clean code’ put forward by Martin (2008) with a view to analyzing its impact on code 

metrics. 
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3. Applied	Metrics	
 

3.1	Introduction	

 

Following on from the previous chapter that looked at some of the fundamental 

theories within code metrics, this chapter will be skewed towards how these and other 

metrics faired when applied within established commercial organisations. In addition, 

it will also look at some new, albeit less well-known metrics that have been put 

forward over the years, some of which could be considered off-shoots from what was 

in the previous chapter.  

 

The chapter will close by looking to build upon van Emden (2002), where the concept 

of introducing ‘code smells’ analysis into the area code metrics, and introduce some 

key as aspects of work by Martin (2008) from his ‘clean code’ concepts. This includes 

challenging some of the established thinking around comments in code and identifies 

practices to follow in naming and constructing functions. In addition to this, it will also 

look at what Martin (2008) calls the Stepdown Rule.  

 

3.2	Alternative	Approaches	to	Code	Metrics	

This section will look at a range of alternative approaches to code metrics. 

 

3.2.1	Service	Oriented	Design	

Perepletchikov, Ryan and Frampton (2007) presented a set of design-level metrics that 

examined the various types of cohesion within service-oriented design. Taking the 

definition of cohesion from Stevens et al. as a “measure of the degree to which the 

elements of a module belong together” therefore a module to be considered as being 

highly cohesive means “all elements are related to the performance of a single 

function”. They expand on this citing the semantic categories of cohesion, namely: 

Coincidental, Logical, Temporal, Procedural, Communicational, Sequential and 

Functional. This ordinal scale ranges from the weakest to the strongest form, in this 

case Coincidental to Functional. In the case of object-oriented design Eder et al. has 

redefined cohesion as the “degree to which the methods and attributes of a class 
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belong together” where the semantic ordinal scale for object-oriented classes is: 

Separable, Multi-faced, Non-delegated, Concealed and Model. 

 

While noting that the previous work did not map cohesive metrics to their semantic 

category, they do just that and map quantitative metrics to the qualitative categories of 

cohesion. They observe some differences between traditional software systems that 

could be as a collection of interconnected objects and Service Oriented Architecture 

that break the application into stateless services that are autonomous to others within 

the system. This concept adds a new layer of abstraction, a service on top of classes 

that serve to aggregate groups of methods.  

 

They redefine the cohesion categories while proposing two additional ones, external 

and implementation thus giving a completed list of: Coincidental, Logical, 

Communicational, External, Sequential, Implementation and Conceptual. Each of 

these is defined as follows: 

 

Categories Description 

Coincidental A service encapsulates unrelated functionality i.e. its interface 

provides unrelated functionality that has no meaningful 

relationship. 

Logical A service provides common utility functionality e.g. data update 

and/or retrieval. 

Communicational Service operations use the same data abstractions. 

External Service consumers use all service operations. 

Sequential Service operations are sequentially connected. 

Implementation All service interface operations are implemented by the same 

implementation operations. 

Conceptual There are meaningful semantic relationships between operations 

of a service in terms of some identifiable domain level concept. 
Figure	3.1:	Categories	of	Cohesion 

 

Perepletchikov et al. (2007) identifies the following metrics: Service Interface Data 

Cohesion (SIDC), Service Interface Usage Cohesion (SIUC), Service Sequential 
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Usage Cohesion (SSUC), Strict Service Implementation Cohesion (SSIC), Loose 

Service Implementation Cohesion (LSIC) and Total Interface Cohesion of a Service 

(TICS).  

 

3.2.2	Metrics	using	Program	Slicing	

Al Dallal (2009) looked at a similarity-based functional cohesion metric and argued 

that cohesion is an important factor to be considered when evaluating software design. 

From a software engineering point of view, cohesion is desirable as it provides 

reusability and maintainability modules. In her paper, Al Dallal (2009) introduces a 

metric based on the strongest level of cohesion, functional cohesion that refers to how 

closely module parts are related based on outputs. The metric, similarity-based 

functional cohesion (SBFC), measures the functional cohesion of a module for both 

procedural and object-oriented languages, by looking at the “degree of similarity 

between the data slices” of a module.  

 

Al Dallal (2009) argues that cohesion is an indication of a high quality software 

design. A highly cohesive module is one that cannot be easily split into separate 

modules and he looks to measure basic cohesiveness of modules. Citing Yourdon and 

Constantine’s proposed seven levels of cohesiveness each of which indicate how much 

a module contributes towards performing a task. In ascending order, in accordance 

with their desirability, they are: coincidental, logical, temporal, procedural, 

communicational, sequential and functional. On the other hand, Emerson, using a 

control flow graph as the basis for representing a module, proposed three levels: data 

cohesion, control cohesion and superficial cohesion. When examining levels of 

cohesion in a module, the module is seen as a set of procession components and a 

module that has a single processing or highly related one is considered to be highly 

cohesive. He contends that functional cohesion is the most desirable level as it 

provides for reusability and maintainability. 

 

Al Dallal (2009) looked at Weiser’s program slicing concept, where “the value of a 

variable at some point in a program is called a program slice” and sought to take 

Longworth’s suggestion of using sliced-based metrics to indicate cohesiveness. Ott 
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and Thuss first introduced the idea of slice-based metrics where slices were the output 

of each module as the output variables indicated the tasks the module.   

 

Bieman and Ott introduced the concept of applying data slices to the measuring of 

functional cohesion by measuring output variables of modules. In addition, Al Dallal 

(2009) also noted metrics used to measure various types of cohesion including between 

methods in a class, lack of cohesion between methods, normalised Hammering 

distance (NHD), scaled Normalised Hammering distance, class cohesion (CC) and a 

sensitive class cohesion metric (SCOM). 

 

Al Dallal (2009) introduces a new metric called similarity-based functional cohesion 

(SBFC) used to measure the function cohesiveness within procedural programs as well 

as methods within object-oriented ones. The measurement technique employed by 

SBFC is based upon Bieman and Ott’s data slicing concept of measuring cohesion. 

Taking three metrics from Bieman and Ott, metrics that at times contradict each other 

when measuring cohesiveness, the SBFC metric provides a single measure that 

eliminates the ambiguity caused by having three individual metrics. He conducted an 

empirical study that demonstrated high correlations between similarity-based 

functional cohesion SBFC and the Bieman and Ott metrics. In addition, SBFC satisfied 

all the properties as outlined by Briand et al. for module cohesiveness and is also 

useful when refactoring weakly cohesive modules. In effect, the similarity-based 

functional cohesion (SFBC) “measures similarity between pairs of data slices”.    

 

 “Program slicing is the task of finding all the statements in a program that directly or 

indirectly influence the value of a variable occurrence”. This can be either static or 

dynamic, where static involves finding all statements that affect the value of a variable 

and dynamic finds the slice based on a set of inputs. Al Dallal’s (2009) paper is mainly 

concerned with intra-procedural slicing, the process of computing the slices of a given 

procedure as opposed to inter-procedural slicing, computing the slices of a multi-

procedural program. From an intra-procedural point, there are three main algorithms, 

data flow equations, information flow relations and program dependence graphs 

(PDG) and Al Dallal argues that of these PDG’s is the more efficient. PDG represents 

simple statements, that include assignment statement, read and write statements, and 

control predicates as nodes. Conditional and compound statements are represented by 
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more than one node. In addition, there are two types of edges within a PDG, a data 

dependence edge and a control dependence edge where a data dependence edge 

indicates that the connected nodes have a computation in one node that depends 

directly on a value computed in the other node and a control dependence edge “implies 

that the result of the predicate expression” of one node is a factor for deciding whether 

to execute code at the other node (Al Dallal, 2009).  

 

	
Figure	3.2:	C	Function	that	computes	the	sum,	average	and	product	numbers	from	1	to	n 

 

	
Figure	3.3:	C	function	in	Figure	3.2	in	a	program	dependence	graph 

 

Figure 3.2 above shows an example C function that computes the sum, average and 

product of numbers from 1 to n, where n is an integer value >= 1 while Figure 3.3 is 

the same C function represented as a program dependence graph (PDG) where solid 

lines represent control dependence edge and dotted lines represent data dependence 
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edges. Citing Briand and Ott four properties for cohesion metrics, namely, non-

negativity and normalisation, null value and maximum value, monotonicity and 

cohesive modules, Al Dallal (2009) argues that a cohesion metric must satisfy all these 

properties to be considered a cohesive indicator.  

 

Al Dallal (2009) further cites Bieman and Ott as having introduced the concept of data 

slicing and “applied it as an abstraction to measure the functional cohesion of the 

module”. Using the C function example in Figure 3.2, the data slices found for C 

function are shown in Figure 3.4 below  

 

	
Figure	3.4:	Data	slices	for	C	function	as	defined	in	Figure	3.2 

 

Al Dallal (2009) cites Bieman and Ott categorisation of data slices into two: glue 

token, a data token that exists in more than one data slice and super-glue token, a data 

token that exists in all slices of data and glue stickiness while stickiness of a glue token 

was based on how many data slices it bound. In their work, Bieman and Ott used three 

cohesion metrics, namely strong functional cohesion (SFC), ratio of super-glue tokens 

to total number of data tokens in a module, weak functional cohesion (WFC), ratio of 

glue tokens to total number of data tokens in a module and adhesiveness (A) of the 

module, the ratio of total adhesiveness of glue tokens to the total possible adhesiveness 

or each data token is used by each data slice.  

 

Noting that each of the three metrics have a value of between zero and one, Al Dallal 

(2009) highlights the difficulty with having three metrics when only attempting 

measure one thing, namely that three figures do not provide immediate clarity and the 

second being the difficulty when trying to compare two or more modules. For 

example, the metrics may be SFC=0, WFC=1 and A=0.67 which does not make it 

immediately obvious as to whether the module has low cohesion or high cohesion and 
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secondly how does that compare to a module with cohesion measurements of 

SFC=0.25, WFC=0.75 and A=0.58. 

 

Al Dallal (2009) cites Bonjia and Kidanmariam metric, class cohesion that uses the 

degree of similarity between methods as the basis for the measurement, that is the ratio 

of the number of shared attributes versus the number of distinct attributes referenced 

by both methods. From this the cohesion is defined as “ratio of the summation of the 

similarities between all pairs of methods to the total number of possible pairs of 

methods“.   

 

Al Dallal (2009) notes that most cohesion metrics for object-oriented programs 

examine the interactions between methods and instance variables. The similarity-based 

functional cohesion (SBFC) relies on Bieman and Ott’s work where data slices of the 

modules are used as abstractions for measuring functional cohesion. By taking each 

pair of data slices individually as opposed to all at once, the SBFC metric is more 

precise and sensitive to changes.  

 

Al Dallal (2009) concludes that the simplicity of the similarity-based functional 

cohesion (SBFC) metric will lead to a greater adoption among software engineers 

therefore improving the quality and modularity of products in the long run. An 

experimental study that compared SBFC to Bieman and Ott’s metrics supported the 

hypothesis that SFBC was a cohesion indicator.   

 

3.2.3	Tools	for	Metrics	

Novak, Krajnc and Zontar (2010) argued that static code analysis tools were becoming 

more crucial in the software development lifecycle (SDLC) and created taxonomy of 

commonly used tools. He classified the tools in categories: technology, availability of 

rules and extensibility. The tools use techniques including syntactic pattern matching, 

data flow analysis, model checking and verification theorems. They looked the 

emergence of code reviews as a “successful fight against maintainability problems” as 

they can increase reliability and security while noting the process of manually 

reviewing code by senior engineers takes time. In contrast the use of automated tools 



	 44	

are fast, can be run more often while containing the same level of knowledge as a 

human reviewer (Novak, Krajnc, & Zontar, 2010).  

 

They define static code analysis as the analysis of “software that is executed without 

actually running programs”. Static code analysers generally build state models of the 

code and then determine how the program reacts in each state. This compares to 

dynamic analysis, where the program is executed, normally with test inputs. In 

addition, they also state that both methods are prone to false positives. 

 

They highlight some of the issues that static code analysers can detect including 

common mistakes that compilers do not check for such as “memory overruns, cross 

site scripting attacks, injections and various other boundary cases “. Static code 

analysers operate in different ways, some on source code and intermediate code others 

examine libraries created. The types of issues that static code analysers can identify 

are:  

 

• Syntactic problems 

• Unreachable source code  

• Undeclared variables 

• Uninitialized variables 

• Unused functions and methods 

• Variables used prior to initialisation 

• Unused values from functions 

• Incorrect use of pointers  

 

While there are many benefits of using static code analysers, they come up short in 

certain aspects, including identification of poor code design or malicious code.  

 

Novak et al. (2010) concludes that while there are many benefits to using static code 

analysis tools including the early detection of issues within the software development 

lifecycle, they should be used in conjunction of manual code analysis and other code 

reviewing tools. 
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3.2.4	Code	Comments	

Steidl et al. (2013) argued that although many software developers consider code 

comments to be crucial in understanding the development most quality analysis 

systems ignore system commenting on evaluating the system. The paper presented a 

detailed approach to categorizing comments using machine learning techniques and by 

providing metrics tailored to suit each category showed how the quality aspects of the 

model could be assessed. 

 

Steidl defined the problem as quality analysis systems either ignoring comments 

completely or restricting the comment ratio as a metric i.e. not giving enough value to 

it and provided a comment based classification that resulted in a semi-automated 

approach for both quantitative and qualitative evaluation of the quality of the 

comments. 

 

 It found that comment classification provided better quantitative insights into system 

documentation over the existing simple comment ratio metric.  

 

3.2.5	Validation	of	Code	Metrics	

Schneidewind (1992) argued that software metrics themselves should be subject to the 

same rigor as all other areas of engineering and therefore need to be validated in the 

same way to ensure they measure what they say they measure prior to use. His paper 

proposes a “validation methodology” that is not specific to any particular metric and is 

mapped to six criteria: association, consistency, discriminative power, tracking, 

predictability and repeatability that allow the user to gain an understanding of how 

metric can be applied (Schneidewind, 1992).  

 

Meneely, Smith and Williams (2013) argued that the burden of proof in validating new 

software metrics resulted in a debate on what constitued a “valid” software metric. His 

paper conducted a systematic literature review that extracted forty-seven unique 

validation criteria and performed comparitive analysis on them. It was found that there 

was wide “diversity of motivations and philosphies” that indicated that the process 

was a complex one. 
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Anderson (2004) cited the ISO 9126 Production Evaluation Standard to identify all the 

attributes of high quality software: Functionality, Reliability, Usability, Efficiency, 

Maintainability and Portability. He goes on to identify a range of metrics that can be 

used to determine a risk factor as to the likelyhood of defects occuring or the difficulty 

level of maintainance required for the system. The metrics identified are: McCabe’s 

Cyclomatic Complexity metrics which measures lineraly independent paths through a 

program module, Halstead Complexity measures that analysese operators and 

operands, Henry and Kafura metrics that examine coupling between modules and Troy 

and Zweben metrics which look at the complexity of structure and calls coming in and 

out (Anderson, 2004). 

 

3.3	Code	Metrics	&	Commercial	Applications	

 
In addition to the theorising of code metric many practitioners of software 

development introduced code metrics to large-scale industrial projects. 

 

3.3.1	Tackling	Project	Costs	 	

Coleman, Ash, Lowther, and Oman (1994) cite several examples of noteworthy people 

estimating the cost of maintaining software over its initial development cost ranging 

from Fred Brooks estimate that maintenance was “40% or more of the cost of 

developing it” while Dean Morton, executive vice president and chief operating officer 

at Hewlett-Packard estimated between 60 to 80% of research and development 

personnel were involved in “maintenance activities” and went to say that 40 to 60 per 

cent “of the cost of production” was maintenance related.  

 

Taking these statistics as to the cost of maintenance in software related projects, 

Coleman et al. (1994) went on to demonstrate how analysing software to generate data 

on maintainability could be used to help when making business related decisions for 

these projects, including buy versus build decisions and subcomponent quality 

analysis. They looked at five previously defined methods for quantifying software 

maintainability arguing that all five “compute reasonably accurate maintainability 

scores” based on existing metrics 
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• Hierarchical multidimensional assessment models 

• Polynomial regression models 

• An aggregate complexity measure 

• Principal components analysis 

• Factor analysis  

 

The Hewlett-Packard (HP) management team selected hierarchical multidimensional 

assessment models and Polynomial regression models, as they required quick and easy 

indices for use by engineers. These were then applied to industrial system within HP. 

 

Hierarchical multidimensional assessment models  

Using Oman and Hagemeister’s hierarchy model, Coleman et al. (1994), divided up 

maintainability into “three underlying dimensions or attributes”, namely control 

structure, information structure and typography, naming and commenting. After 

identifying each metric, an “index of maintainability for each dimension can be 

defined as a function of those metrics”.  The three dimensional scores can then be 

summed up to give an overall maintainability index. In this case they “used existing 

metrics to calculate a deviation from acceptable ranges and then use the inverse of 

that deviation as an index of quality”. 

 

They go on to explain that by using a method called weight and trigger-point-analysis 

can be used to “quantify maintainability by calculating a “degree of fit” from a table 

of acceptable metric ranges“. When the value falls outside of this range, it is an 

indication that the maintainability is lower for that component. For example, if the 

“acceptable range” for the average lines of code is between 5 and 75, then values 

falling outside of this range would be considered as an indication that the code is of 

lesser quality. 

 

Polynomial regression models 

Coleman et al. (1994) describes polynomial regression models as a “statistical method 

for predicting values of one or more response (dependent) variables from a college of 

predictor (independent) variables”. He explains that these models were intended for 
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use by maintenance practitioners and as such were “calibrated to HP engineers’ 

subjective evaluation”. One noteworthy finding was the fact that of fifty regression 

models constructed, while trying to identify simple models that were generic enough to 

use on wide range of systems, “all tests clearly indicated that Halstead’s volume and 

effort metrics were the best predictors of maintainability”. The most applicable 

regression model was a “four-metric polynomial based on Halstead’s effort metric and 

on metrics measuring extended Cyclomatic Complexity, lines of code and number of 

comments”. It should be noted that regarding number of comments metric that small 

modules with large blocks of comments skewed the results and therefore required the 

model to be tweaked to measure comments as a percentage with an upper ceiling limit 

imposed.   

 

Coleman et al. (1994) applied the metrics outlined above to industrial systems within 

Hewlett-Packard and the US Department of Defence and presented the results 

unaltered. Overall, they concluded that “automated maintainability analysis” is 

possible at various system levels and the metrics were applied to eleven software 

systems and assisted in can assist in making decisions regarding including buy versus 

build decisions and subcomponent quality analysis.  

 

3.3.2	Evaluation	of	Code	Metrics	within	Hewlett-Packard	

Grady (1994) argued that the major uses of software metrics were project estimation 

and progress monitoring, evaluation of work products, process improvement through 

failure analysis and experimental validation of best practices. Basing his paper on 

practical experience working on projects with Hewlett-Packard, he broke down each 

area in detail but this paper is only concerned with the section; evaluation of work 

products (Grady, 1994).  

 

Cyclomatic Complexity 

Grady (1994) outlines how Hewlett-Packard (HP) successfully used Cyclomatic 

Complexity, a metric based on a programs decision count i.e. all the programs 

conditional statements to build graphs that help locate problem areas within the code. 

During one such study involving over 800,000 lines of code the engineers plotted a 

relationship between program decision counts and code updates checked into the 
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source control which found that seventy five per cent of the changes fell where the 

decision count was highest. “The number of updates was proportional to the number 

of decision statements”. By drawing a trend line and adding in the cost and schedule 

effects of changing modules more than three times “they concluded that fourteen was 

the maximum decision count to allow in a program”. He duly notes that McCabe 

originally suggested ten based on testing difficulty. An additional interesting 

observation by Grady (1994) is when he points out that the Cyclomatic Complexity is 

a “measure of control complexity” and therefore is more valuable in control-oriented 

applications as was the case here as opposed to data-oriented applications. 

 

Design complexity 

Grady (1994) looks at a metric used in data-oriented complexity called fanout squared. 

He explains that the fanout of a module is number of calls from that module and that 

fanout squared was used in three studies and had shown to correlate well to “the 

probability of defects”. What is most interesting with this particular metric is that it 

can be calculated prior to writing the code i.e. at the design phase. Grady (1994) cited 

an example where a defect-prone module was identified as the source to fifty per cent 

of the defects although it only contained eight per cent of the code. When the fanout 

squared of this module was examined against all the thirteen modules in the system, it 

had the largest number of them all. Overall, there was a strong correlation between the 

fanout squared metric and the post-release defect count.  

 

3.3.3	Alternative	Takes	on	Applying	Code	Metrics	

Constantine (1996) classifies metrics specific to software usability into three 

categories: preference metrics, that are that assess aspects such user interface design 

for ease of use, performance metrics, that quantifiable metrics which attempt to 

determine error rates or execution time and predictive or design metrics that look to 

evaluate the properties of the design such as screen layouts. His paper looked at user 

interface design metric called Visual Coherence, based on the software engineering 

concept of cohesion, the degree to which component parts are considered conceptually 

or semantically interrelated. Visual Coherence is used to “measure how closely an 

arrangement of visual components matches the semantic relationships among the 

concepts represented by that component”. The use of Visual Coherence as a predictive 
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metric was found to assist in predicting “user preferences, ease of use ratings of 

interpretability, attractiveness, and quality of layout” (Constantine, 1996).  

 

Kontogiannis (1997) argues that the cloning of code fragments in large-scale systems 

results in “redundant code, higher maintenance costs, and less modular systems” and 

proposes to use five metrics, including McCabe’s and Kafura complexity metrics, to 

identify this code duplication including scenarios where instance variable names differ 

and statements have been added. By using these standard software engineering 

metrics, Kontogiannis (1997) attempted to identify the duplicated code by “examining 

structural and data flow characteristics” and found that it could successfully retrieve 

sixty per cent of duplicated code (Kontogiannis, 1997).  

 

Plosch et al. (2010) argues that software quality is a key factor for any software 

product and continuous monitoring is an “indispensable” task in the software 

development lifecycle. By analysing the outputs of different static code analysers, they 

developed a method systematically assessing and improving the quality of software 

development projects. Their paper focused on code quality as opposed to overall 

software quality and defines it as the “capability of source code to satisfy the state and 

implied needs for the current software project”. While noting that continuous quality 

monitoring is important as fixing issues sooner in the development cycle is less 

expensive, They also cite Balzert who states the “early fixing of source code related 

problems prevents propagation of these errors into subsequent phases” (Plosch et al., 

2010). 

 

While pointing to previously documented “classical” software metrics like McCabe’s 

Cyclomatic Complexity or Chidamber and Kemerer’s object-oriented metric suite, 

Plosch et al.’s paper (2010) argues that being solely reliant on metric is not sufficient 

and static code analysers are indispensable to ensure code is adhering to best practice 

guidelines. 

 

Although there is a range of tools available to perform static code analysis, none 

supported “continuous code quality management”, hence Plosch et al. (2010) 

developed a tool called ConQAT that integrates the results of various other static code 

analysers into a dashboard overview. They looked at applying the Code Quality 
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Monitoring Method (CQMM) that systematically improves code quality of a software 

project and based on the Evaluation Method for Internal Software Quality (EMISQ). 

While EMISQ worked on the basis of a “one-time assessment”, CQMM extends this 

to continuously measuring by automation many of the steps involved.  

 

 

	
Figure	3.5:	CQMM	activities 

 

As shown in Figure 3.5, CQMM consists of eleven activities that are divided into three 

major groups: Setup and Tailor, Measure and Enhance and Adjust and Control.  

 

Plosch et al. (2010) conducted feasibility studies with selected projects with two 

software projects written in Java with 30,000 and 10,000 lines of code respectively.  

This concluded that although the application of the method worked the experiments 

were too limited to gain any further general conclusions. The pilot projects did indicate 

that CQMM could be integrated into development projects with different goals. At 

time of publication, CQMM was due to be rolled out in 25 projects within the Indian 

division of Siemens AG. 

 

3.3.4	Classification	of	Metrics	based	on	Defect	Categories	

Tosun et al. (2011) conducted a case study on software metrics for different defect 

categories. He argued that although past research had shown “code, shurn and network 

metrcis” as indicators of defects, that not all metric sets are indicators within all defect 

categories and only one of the metric types may be responsible for the majority of  a 

defect category. Previous work by Tosun et al. indicated that “defect category sensitive 

prediction models” preform better than general models as “each category has different 

characteristics in terms of metrics”. 
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Building on previous work, Tosun et al. (2011) extended the model taking into account 

churn, code and network metrics and found that churn metrics were best for predicting 

all defects while code and network metrics correlation varied depending on category. 

For example, network metrics had a higher correlation than code metrics for defects 

reported during functional testing where the reverse was found when defects were 

reported during system testing.  

 

Tosun (2011) set out to investigate “the most representitive metric set for predicting 

different defect categories” and outlined three reserch objectives: 

 

• Analyse the relationship between metric sets and defect categories 

• Predicit defects using the most representative metric set 

• Build specialised prediction models for three defect categories 

 

They analysed the history of a large-scale enterprise product in order to extract “static 

code and churn metrics at software method/function level“. The product spanned a 

histroy of over 20 years of updates of which they selected a part of this product 

consisting of 500,000 lines of code. 
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Figure	3.6:	The	process	of	extracting	static	code,	churn	and	network	metrics 

 

Tosun (2011) extracted static code, churn and network metrics six months prior to 

release date, the process of which is shown in Figure 3.6 above, and this provided a 

base point. To extract network metrics, they built a call graph of the network by 

extracting caller-callee relations.  

	
Figure	3.7:	Churn	Metrics 
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Figure	3.8:	Code	Metrics 
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Figure	3.9:	Network	Metrics 

 

Once the snapshot was taken any defect recorded against a module, labelled that 

module as defective. Defects were also labelled by their categories: field defects, 

system testing defects and functional testing defects (Tosun et al., 2011).    

 

Tosun et al. (2011) began by conducting  a statistical analysis to “understand the 

relationship between metrics and defect categories”. From this it was evident that 

“churn metrics have strong correlations with all defect categories“ and that code 

metrics are more significant than system testing defects over network metrics. In 

addition, network metrics have higher correlations with functional testing defects and 

field defects.  

 

3.3.5	Aggregation	of	Code	Metrics	

Mordal-Manet et al. (2011) built an empirical model for continuous and weighted 

metric aggregation. Arguing that software metrics alone are not enough to determine 

the quality of software and hence there is a trend towards aggregating various metrics 

in an effort to make better determinations when analysing software for quality 

purposes. Citing the example of combing Cyclomatic Complexity with test coverage 

highlights the importance of covering complex methods over accessors, they present 

the issues they encountered on designing a quality model called Squale, a model 
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validated over a four year period with two large multinational companies: Air France-

KLM and PSA Peugeot-Citroen (Mordal-Manet et al., 2011).  

 

While noting the fact that software metrics are becoming more of an objective 

measurement of software quality, they argue that these metrics computed individually 

and therefore do provide an overall quality assessment at a higher level. Although 

aggregation models sich as the ISO 9126 have been created, Mordal-Manet et al. 

(2011) notes several issues with it, including the fact it is difficult to compute, models 

based on it provide overall assesment with simple averages weighthing which is seeing 

as just smoothing out results and often results are translated into discrete scales i.e. 

good, average or bad. They explain how the Squal Model uses formulas to aggregate 

metrics in an effort to provide a quality indication for the overall project. This model 

was designed in 2006 and put into production in Qualixo, Air France-KLM and PSA 

Peugeot-Citroen.  

 

The Squal Model is composed of four levels, divided into two groups.  

 

	
Figure	3.10:	The	Squal	Model 

 

The model is composed of metrics, high-level criteria and factors. As Mordal-Manet et 

al. (2011) explains, “Each computed metric gives a mark in its own range while 

criteria and factors give a mark between 0 and 3”. Then “transforming raw marks into 

global marks in a given interval occurs in a new level between criteria and metrics 
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called practices”. Practices are an important part of the model as as it transfroms low 

level metrics into high-level marks reflecting software quality (Mordal-Manet et al., 

2011).  

 

By including the practices section, the Squal Model overcomes the issues of the ISO 

9126 model of providing an overall quality assesment without retaining the low-level 

metrics on which the data was based. It bottom-up approach ensures that the high-level 

quality results are continiously based on concrete, repeatable measures (Mordal-Manet 

et al., 2011).  

 

3.3.6	Evaluation	of	Metrics	through	Java	Developers	

De Silva et al. (2012) undertook an empirical study of three code complexity metrics; 

McCabe’s Cyclomatic Complexity, Halstead’s software science and Shao and Wangs’ 

cognitive functional style, in order to determine which was most suitable in the real 

world. On the matter of metric evaluation, they cite Weyuker’s nine properties and 

Briand et al. five properties as the most commonly used. However, he argues that 

determining a complexity metric using a theoretical properties is not reliable and thus 

conducted an emperical study using thrity developers on ten open source java 

programs. 

De Silva et al. (2012) analysed the ten java programs and manually calculated the 

metrics for each followed by having thirty programmers rank the programs based on 

their own judgement as to the complexity of them. Overall, they determined that Shao 

and Wangs’ cognitive functional style as the most suitable to be used in practice. In 

additon, they concluded that effective lines of code and experts ranking had a high 

correlation while Halstead’s two formulae, actual length and estimated length also had 

a high correlation. 

 

3.3.7	Using	Code	Metrics	to	Automate	Reviews	

Balachandran (2013) argued that using a Review Bot, a tool that integrated automatic 

static analysis into the code review process. It was found that developers agreed to fix 

93% of all automated comments generated by the review bot tool. This in-turn reduced 

the amount of manual time required to review code. In addition, the Review Bot also 
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made recommendations in the assignment of the reviews based on file change history 

of source code. 

 

3.3.7	Applying	Cyclomatic	Complexity	to	Y2K	

McCabe (1996) proposed an approach to the Year 2000 date issue, where the year field 

was truncated to two fields and hence when moving from 1999 to 2000 would in fact 

set the year to 00, using an extended version of the original Cyclomatic Complexity 

measure to deal specifically with data (McCabe, 1996).  

 

By specifying a set of data elements such as “a single element” or “all elements of a 

particular data type, or all global elements”, this data-complexity metric is 

“calculated by first removing all control constructs that do not interact with the 

referenced data elements in the specified set and the computing the Cyclomatic 

Complexity”. By specifying all the global data elements, such as date, gives “an 

external coupling measure that determines encapsulation”. This could in turn be used 

to quantify that the Year 2000 upgrade effort required (McCabe, 1996).    

 

3.3.8	Standardisation	of	Metrics	

Ordonez and Haddad (2008) argues that although metrics are widely recognised they 

are yet be standardised within the software industry. His paper looked at some the 

existing software metrics in addition to documenting experiences from companies in 

the industry including Hewlett-Packard (HP), Motorola, NASA and Boeing. They cite 

an article by William T. Ward who described Hewlett-Packard’s (HP’s) “10 x software 

quality improvement” initiative. Taking data from a “software metrics database and an 

industry profit-loss model to develop a method to compute the actual cost of a software 

defects” (Ordonez & Haddad, 2008).  

 

The Software Quality Engineering Group estimates the turnaround time on fixing 

defects to be approximately 20 hours. Taking this as a starting point and by applying it 

to a product that had approximately 110 defects found and fixed during the testing 

process leads to a Figure of around 2200 hours of engineering time or $165,000 

(taking a rate of $75 per engineering hour) giving a cost of approximately $1500 per 

defect. In addition, Ordonez and Haddad (2008) note that these costs are purely 
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calculating profit and loss based on engineering time they do not take into account the 

loss of sales to a company for a product being late to market or any contractual costs 

that may be incurred as a result of project delays due to defective software.  

 

Quoting Tom DeMarco “You can’t control what you can’t measure”, Ordonez and 

Haddad (2008) point out that all other engineering disciplines use quantitative 

measurements to gain better control over projects and quality within those projects. 

Although they outline a variety of metrics used within the development of software 

including cost and effort estimation, productivity measures, data collection, quality 

assessment, reliability models, process metrics, project metrics and product metrics the 

focus for this paper will be on project metrics. They argue that these project metrics 

that include, lines of code, Cyclomatic Complexity and code coverage during test 

execution, can lead to high quality products.  

 

They also examined the use of metrics in detail at Hewlett-Packard (HP), Motorola, 

NASA and Boeing. Of notable interest is NASA’s application of design and code 

reliability metrics where NASA’s Software Assurance Technology Centre (SATC) 

source code analyser to identify error prone modules “based on source code 

complexity, size, and modularity”. From the various incarnations of complexity, SATC 

used Cyclomatic Complexity, the number of independent paths, and “found that by 

combining size and complexity makes the most effective evaluation”. They noted, 

“large modules with high complexity tend to have the lowest reliability”. In addition, 

they listed out the metrics used by the NASA for object-oriented quality analysis as: 

Weighted Methods per Class (WMC), Response For a Class (RFC), Coupling Between 

Objects (CBO), Depth In Tree (DIT) and Number Of Children (NOC). They overall 

found that metrics used early in the development of software did prevent defects later 

in the project and this in turn decreased overall development costs. 

 

3.4	Clean	Code	

 
van Emden and Moonen (2002) introduced the concept of code smells to the area of 

code metrics in an attempt to automate the process of identifying bad pratices 

developed by Martin Fowler in his book Refactoring: Improving the Design of 
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Existing Code. Building upon this, this paper will introduce a selection of modern 

thinking in the context of software development as outlined in his book, Clean Code, 

by Robert C. Martin (2008). It introduces several key concepts in an attempt to bring 

together some of the most important aspects to be considered when developing 

software. The phases most often used are “craft” and “clean” and are considered as key 

concepts by Martin. The concepts presented here will include topics such as 

meaningful names, writing functions and the commenting code.  

 

3.4.1	Meaningful	Names	

Martin (2008) argues, “choosing good names takes times but saves more than it takes“. 

If a developer is writing the name of the variable and leaves a comment beside it, then 

that name does not reveal the true intent of that variable. An example is shown in the 

code snippet below.  

 

	
Figure	3.11:	Definition	of	integer	d 

 

Defining an int with the name d tells the reader of this code nothing. It provides no 

context for which the variable exists. If, as the comment suggests, stores the number of 

elapsed time in days then there are many other names that would provide actual 

meaning the variable (Martin, 2008). 

 

	
Figure	3.12:	Suggested	names	for	integer	d 

 

Martin (2008) argues that it is not the simplicity of the code that comes into play, it is 

the implicitly i.e. the degree to which the context is not explicit in the code itself.  

 

To reinforce this point, Martin provides an example.  
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Figure	3.13:	Example	of	code	using	poor	naming	convention 

 

The code provided above is actually a snippet from the board game, minesweeper.  

Taking this into context and by simply renaming of variables, the functionality of the 

above piece of code becomes much more obvious. 

 

	
Figure	3.14:	Example	of	code	with	refactored	variable	names 

 

With newly renamed variables, it quickly becomes clear what the code is doing and 

how it fits into an overall context, all with changing how the code is written. 

 

3.4.2	Functions	

Martin argues that functions should be small with no more than two to four lines of 

code, do only one thing and only have one level of abstraction. This makes the 

function easy to read for anyone looking to understand the code.   

 

3.4.3	The	Stepdown	Rule	

By combining these short functions with the Stepdown Rule, Martin argues that code 

should be written using top-down approach, which allows for reading the code from 

top to bottom, “descending one level of abstraction at a time”.  
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3.4.4	Commenting	Code	

Martin argues for a slightly more nuanced version of writing comments in code than 

one would normally associate with the approach of the more comments in code the 

better. “Nothing can be quite so helpful as a well-placed comment. Nothing can clutter 

up a module more than frivolous dogmatic comments. Nothing can be quite so 

damaging as an old crufty comment that propagates lies and misinformation.” (Martin, 

2008) 

 

Martin’s main points against writing comments in code is twofold; first, comments that 

are not kept up to date when code is updated are misleading and lead the reader astray 

and secondly they are normally used to compensate for a developer not being able to 

write his/her code clearly enough. 

 

3.5	Key	Findings	

 

Although it was defined in an era when coding was predominately of the procedural 

paradigm, McCabe’s Cyclomatic Complexity has become a cornerstone on which 

many other code metric theories are based.  

 

Chidamber and Kemerer’s metric suite laid the foundation of metrics at a time when 

the object-oriented paradigm was surging in popularity among programmers.  

 

By introducing ‘code smells’ to code metrics van Emden and Moonen (2002) brought 

a new viewpoint to how code metrics could be used in modern programming. No 

longer was it simply a way of measuring for complexity or areas at high risk of being 

defective but also brought the concept of enforcing coding principals early in the 

development of software.   

 

The Law of Demeter, a language independent rule, that allows for developers to ensure 

that basic concepts of modularity and encapsulation are applied in the development of 

object-oriented code.  
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The section on clean code introduced the idea of viewing code metrics through a new 

lens. It challenges well-established practices around code comments and argues for 

strict naming conventions in order to allow second readers of code readily follow the 

logic of the code.  

 

3.6	Conclusion	

 
This chapter began by looking at some less well-known code metrics including 

service-oriented design that attempted to define design-level metrics and program 

slicing, a similarity-based functional cohesion metric. Although these metrics 

introduced some new areas there was little or no evidence that additional research 

grew from them nor any attempts made to apply them within industry. 

 

Other notable points touched on were the growing number of tools within the area, 

sometimes referred to as static code analysers, while Steidl et al. (2013) argued that 

comments in code should be weighted i.e. code with high number of comments should 

be considered of more value.  The first section concluded with a look at how code 

metrics can be validated and ultimately highlighted how diverse opinions are on this 

matter.  

 

The next section examined the application of code metrics within industry and looked 

at various attempts to use them within established organisations. Companies from 

Hewlett-Packard (HP) to Siemens and Air France-KLM were among those that 

implemented metrics of sort in an attempt to identify area at high risk of being 

defective. While there were indications of success it could be argued that it was patchy 

and often the code metric analysers added layers of complexity.  

 

The chapter concluded by introducing a subset Martin’s (2008) ‘clean code’ concepts. 

This looked at principles that should adhered to when writing code and included 

theories on making variable and method names meaningful, writing small and concise 

functions, using the Stepdown Rule approach to laying out classes and arguing against 

having large numbers of comments within the code. This last point regarding 

comments was in direct contrast to what had been encountered earlier in the chapter 
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where Steidl et al. (2013) argued that the larger the number of comments in the code, 

the better, whereas Martin (2008) argues that comments can be misleading as many 

times they are not updated when the code is changed and are normally used to 

compensate for poorly written code.  

 

The next chapter look to gain new insights into code metrics by creating a new dataset 

and exploring it in detail. In order to accomplish this, a popular open source project 

will need to be identified along with tools that can be used to extract the data. Once the 

data is extracted, then data visualisation will be created in order to explore the data in 

greater depth.  
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4. Data	Exploration	
 

4.1	Introduction	

 

This chapter will discuss the selection of an open source project from which code 

metrics can be generated and explored in detail. By opting for a popular open source 

project that is used within industry and extracting raw data from the research will be 

provided with metrics that are true reflection of the constant trade-offs that are made 

when programming in the real world. The newly generated data set will include 

various different metrics that will allow this research to explore for possible 

relationships between them while at times taking code snippets for additional analysis 

in search of common code patterns that may occur.  

 

It begins with an overview of the open source project, followed by a detailed 

description of the various tools required to extract the code metrics data and in turn 

presents data visualisations. These visuals can in turn be used to identify possible 

relationships between the various metrics. It will achieve this by first looking at 

metrics for the solution at a high-level and then select projects with high, low and 

average metrics to see if any relationships hold true in each category.  

 

Each of these will in-turn follow the same process of analysis, by creating scatter-plots 

that compare each of the metrics side-by-side in an effort to identify where 

relationships exist and hold true regardless of the metrics for the given project. At 

various points, code examples will be included in an effort to identify causation of 

what the scatter plot correlations are indicating. 

 

The chapter will conclude by looking at any findings that may provide further insight 

into the relationships that exist between the various metrics.  

 

4.2	Roslyn	Overview	
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With modern computers, the compiler used to compile human readable code into low-

level code that can be interpreted by a machine, is done at an incredibly fast rate and is 

not given a lot of thought by developers. The details of how compilers work is beyond 

the scope of this research but is suffice to say that human readable code, i.e. code that 

programmers write, is not consumable by a machine and therefore specialist code is 

written the converts this human readable code into machine readable code. This 

process is known as compiling the code (Aho Alfred, Ravi, & Ullman Jeffrey, 1986). 

Over time tools for writing code, known as integrated development environments 

(IDE) have grown in popularity. They allow programmers to write code with built-in 

features that warn them early in the process if the code is incorrect. For example, the 

IDE shown in Figure 4.1 is indicating that there is an issue with the code. In this 

example, the IDE cannot find an existing class Bus and therefore has highlighted it as 

an issue before the programmer has even attempted to compile the code.  

 

For these features to be built into IDE’s the IDE must be able to access the underlying 

solution that is compiling the code. One of these solutions, used within the .NET 

ecosystem, is called Roslyn.  

 

	
Figure	4.1:	Visual	Studio	IDE	highlights	Bus	in	red	as	it	has	detected	an	error 

 

Roslyn is one of many projects provided by the .NET Foundation, an independent 

organisation that aims to open development around the .NET ecosystem. The open-

sourced code with over 13,000 commits and 154 contributors consists of over 100 

projects and thousands of classes, making it the perfect candidate on which to analyse 

code metrics.  
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Figure	4.2:	Roslyn	open	source	solution	on	github.com 

 

The Roslyn project opens up all the details of how the .NET compiler is implemented 

and provides API’s that developers can harnessed in order to gain access to the 

information contained with the compiler. This in turn allows IDE’s such as visual 

studio to call these API’s as the programmer is writing the code and provide instance 

feedback on various aspects of what is being written. As shown in Figure 4.1 above, 

the visual studio IDE has highlighted the word Bus in red. It has detected an error 

before the programmer has even compiled the code.  

  

4.3.	Metrics	Tools	

This section will look at the various tools required to access, build and generate code 

metrics for the Roslyn solution as well as those used to generate data visualisations in 

an effort to do further exploratory work on the data.  

 

In order to generate a new data set of metrics from the Roslyn open source solution, 

various tools were evaluated in order to determine their suitability. By combining 

different commercially available tools to extract the required data from the solution, it 

reduced the need for new tools to be developed. In addition to the tools providing the 

required capabilities to perform their function, it was also important that licenses were 

available at no cost for a period of months.  

 

This section will provide an overview of these tools and evaluate their suitability.  
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4.3.1	NDepend	

NDepend is a static analysis tool for .NET code, which enables the user to generate 

data relating to code metrics for a project. Developed by Patrick Smacchia circa 2004, 

it covers many well-known code metrics including Cyclomatic Complexity, class 

coupling and lines of code. Overall NDepend was not chosen although it could 

generate code metrics, it in effect generated too much data with no obvious way for it 

to be broken down, for example, exported to an Excel document for further analysis. 

This is possibly related to the software being proprietary with a focus on it being an 

all-encompassing analysis tool, which in turn makes it less favourable to be used as 

part of this research. NDepend does not appear to have any student licenses available 

and hence is only available for free for an initial 30-day evaluation period. 

 

4.3.2	Visual	Studio	Code	Analysis	

Visual Studio is the integrated development environment for the .NET platform. 

Developed by Microsoft circa 1997 with new releases on an average of every two 

years, Visual Studio has several versions available, most of which require a 

commercial license with the exception of the community edition, which is free.  Visual 

Studio as a product has a wide range of functionality, including the ability to write 

code in various languages, including C#, F# and visual basic, provides compilers to 

build code with enterprise editions providing functionality around load testing and 

other advanced features. For the purpose of this research Visual Studio will be mainly 

used to build existing open source projects with the aim of extracting code metrics for 

further analysis.   

 

In addition, Visual Studio comes with the ability to generate code metrics including 

Cyclomatic Complexity, class coupling, lines of code and depth of inheritance that 

enables the code metrics of the project to be analysed. In contrast to NDepend, Visual 

Studio also provides functionality that allows all of the metric data generated to be 

exported out into an Excel document and therefore allows for further analysis into the 

data beyond what the initial tools provided for. This makes the Visual Studio code 

metric data more suited for research, as the goal is to take the data generated by 

existing tools and further develop this with additional analysis and insights.   
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4.3.3	ReSharper	

Developed for commercial purposes by JetBrains, ReSharper is a plugin that adds 

additional functionality for developers using Visual Studio. First launched circa 2000, 

it was the basis for JetBrains to go on and develop many fully-fledged IDE for the 

most popular programming languages including PHP, Java and Python. Its features 

include the ability to find types and code snippets more easily, renaming of classes and 

other types. The main functionality used for this research is in its ability to allow code 

in a Visual Studio project to be refactored more easily with functionality such as 

extracting new methods from existing code, examples of which will be detailed later. It 

should be noted that JetBrains provide a yearlong student license on all of there 

products.   

 

4.3.4	Tableau	

Tableau is commercial software that specialises in data visualisations. Developed by 

the Tableau software company based in Seattle, it allows Excel formatted data to be 

imported providing basis for data exploration by enabling the end-user to create 

various data visuals to further explore the data. By exporting metrics from Visual 

Studio and viewing it from various angles in Tableau allows for a deeper analysis of 

what was initially produced by Visual Studio. By combining existing functionality of 

readily available tools and further exploring that same data with Tableau allows for 

more in-depth data exploration of the data.  It should be noted that Tableau also 

provides student licenses. 

 

4.4	Roslyn	Metrics		

 

This section will explore the data generated from the Roslyn project using the Visual 

Studio metrics analysis tools.  

	
Figure	4.3:	The	process	of	generating	metric	data	from	Roslyn 

Building	 Extracting	 Exploring	
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The following steps were required in generating the data: 

 

1. Building the Roslyn project  

Open source projects normally provide build scripts that allow projects to be 

built i.e. compiled into a lower-level machine code as not all large projects can 

be built from within Visual Studio given the size of the project. This is 

generally due to required dependencies being built in a particular order prior to 

the main project itself being built. In the case of Roslyn, once the project was 

initially built from the command line, it was then possible to rebuild a subset of 

the components from within Visual Studio. The binaries generated by the 

project were then outputted to a binaries folder. This made Roslyn quite 

friendly to work with.  

 

2. Extracting the raw metrics data 

Visual Studio provides an analysis option for both the solution and on a per 

project basis. For this particular solution the analysis failed to generate on 

several attempts and therefore the data was collected on a per project basis. It 

should be noted that although this took slightly longer to complete, it had no 

impact on the resulting data and therefore time was not invested in identifying 

the issue(s) that caused the problem with generating the data a solution level. 

Once the metrics data was generated, it could be easily exported into an Excel 

document. It should be noted that Visual Studio did not provide any 

functionality to alter the data in any way or allow for a subset of the data to be 

exported. It only allowed for all generated data to be exported. In addition, it 

was not possible to export the data without using Excel (a product developed 

by Microsoft as part of there office package) i.e. the Open Office equivalent 

would not suffice.   

 

3. Data exploration using data visuals 

Once the data was saved to an Excel file, it could then be easily imported into 

Tableau. From here visuals were created in an effort to explore the data in 

depth starting with some high-level flipped bar charts and then scatter plots in 

attempt to identify possible correlations between metrics.  
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As a starting point to analyse the code, the metrics were taken at a project level, each 

of which contained anywhere from a few hundred to a few thousand classes. This 

section will take a look at various areas of the code and analyse each for four metrics, 

namely: class coupling, Cyclomatic Complexity, depth of inheritance, and lines of 

code. Each of these metrics were first examined at project level to give overall 

comparisons and then selected projects with various criteria, for example showing 

extremely high or low metrics, were selected for further analysis at the class level.  

 

4.5	High	Scoring	Metrics	

 

The top ten projects for each of the four metrics, class coupling, Cyclomatic 

Complexity, depth of inheritance and lines of code, are shown as flipped bar charts 

below. A preliminary analysis of the metrics indicated the CSharpCodeAnalysis 

project as having the highest for all four metrics.   
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Figure	4.4:	Identifying	Projects	with	High	Scoring	Metrics 

 

 

4.5.1	CSharpCodeAnalysis	Project	

Taking a closer look at this project reveals an array of the classes that contribute to this 

particular project having the highest metrics in the overall code base. Shown below is 

metrics calculated on a per type basis within the CSharpCodeAnalysis project. Unlike 

the previous flipped bar charts shown, the metrics for projects all indicate that this 

project had the highest metric count for all four measured, this collection of visuals 

show the different types providing the highest metric counts and although the Binder 

class is top in two of the four metrics, SyntaxFactory is second in two of them.  
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Figure	4.5:	Identifying	Types	with	High	Scoring	Metrics 

 

Taking this as a starting point, the metrics were then used to generate scatter plot 

visuals pitting the four metrics against each other. Similar to the creation of the 

flipped-bar charts Tableau allows for the selection of columns versus rows to generate 

a scatter plot. In addition, a filter was applied to colour code the types that were 

forming the trend line in the graph. As there were four metrics in play, six scatter plots, 

complete with trend lines were created that attempt to provide further insight into the 

data by analysing the various correlations between the metrics. Each of these visuals 

will now be examined in turn.   

 

4.5.2	Cyclomatic	Complexity	and	Class	Coupling	

 

	
Figure	4.6:	Cyclomatic	Complexity	and	Class	Coupling 
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The first of the scatter plots created, show a relatively close relationship between 

Cyclomatic Complexity and class coupling although it could be argued that the 

relationship is somewhat stronger within the lower counts of the metrics. Logically this 

would make sense as the more classes coupled together would likely lead to an 

increase the amount of logic contained within that class and therefore an increase in 

Cyclomatic Complexity.  

 

4.5.3	Depth	of	Inheritance	and	Class	Coupling	

 

 

	
Figure	4.7:	Depth	of	Inheritance	and	Class	Coupling 

 

Not much of a relationship was found during comparisons of depth of inheritance with 

class coupling.  This is not surprising as both class coupling and inheritance have a 

similar goal in adding functionality to a class either by referencing another class in the 

case of class coupling or by inheriting behaviour from the class above with inheritance 

and therefore a class is likely to do only one these and not both.   

 

4.5.4	Lines	of	Code	and	Class	Coupling	
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Figure	4.8:	Lines	of	Code	and	Class	Coupling 

 

While lines of code and class coupling show some correlation it was strongest when 

both metric scores are low. Although this is interesting from a data exploration point of 

view it is unlikely that there is much causation associated here as logically a class 

containing hundreds of lines of code would not necessarily be coupled to many other 

classes and vice versa i.e. a class coupled to many other classes would not necessarily 

have to have many lines of code.  

 

4.5.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	
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Figure	4.9:	Cyclomatic	Complexity	and	Depth	of	Inheritance 

 

Interestingly, Cyclomatic Complexity and depth of inheritance lack any sort of 

correlation. It would appear that as more classes are built into an inheritance hierarchy, 

the Cyclomatic Complexity dissipates.   

 

4.5.6	Cyclomatic	Complexity	and	Lines	of	Code	

 

	
Figure	4.10:	Cyclomatic	Complexity	and	Lines	of	Code 
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The correlation between Cyclomatic Complexity and lines of code was by far the 

closest of all the compared metrics. The correlation holds on both the low end of the 

metrics scores right up to a class that has over two thousand lines of code, having a 

Cyclomatic Complexity score of above twelve hundred.  

 

4.5.7	Depth	of	Inheritance	and	Lines	of	Code	

 

	
Figure	4.11:	Depth	of	Inheritance	and	Lines	of	Code 

 

Lastly lines of code and depth of inheritance showed little to no correlation.  

 

Overall this section provides an initial overview of the various metric data gathered 

from the Roslyn project. While some metrics have shown extremely strong correlation, 

for example Cyclomatic Complexity and lines of code, others, namely depth of 

inheritance and lines of code have shown little to no correlation.  
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4.5.8	Examination	of	code	

In an effort to dig a little further into the data in an attempt to identify any possible 

causation for the above correlations, code samples from the project were examined for 

the various classes that appeared in the visuals above.  

 

CodeGenerator class 

 

	
Figure	4.12:	CodeGenerator	Class 

 

This first code example shows one of the private methods within the 

CodeGenerator class. It makes for an interesting example of code that has the 

potential to have high Cyclomatic Complexity as it has a structure of nested if-

statements with an else on the closing if. This is exactly the type of structure that can 

cause a high Cyclomatic Complexity, as there are a lot of paths the code can take 

during execution. 

 

GreenNodeExtensions class 
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Figure	4.13:	GreenNodeExtensions	Class 

 

The GreenNodeExtensions class is an interesting example of a class that contains 

relatively low number of lines of code but quite a high Cyclomatic Complexity. This 

would indicate that the large number methods relative to class size is an impacting 

factor on the calculating of the Cyclomatic Complexity. In addition, the inclusion of 

the ternary operator, a short handed if-statement, in the method ToGreenList above 

will also increase the complexity of the class and may not be immediately obvious on 

first inspection.  

 

While this section looked in detail at the project that generated the highest code 

metrics of the Roslyn solution, the following section will look at the project that 

generated the lowest metrics. Again, each of the metrics was compared using scatter 

plots in an attempt to identify which of the correlations above held true.  

 

4.6	Low	Scoring	Metrics	

 

As projects scoring lower metrics tend to have lower numbers of classes and in-turn 

less code, a project with a relatively low score was selected for analysis (not the actual 

lowest as it would be redundant exercise to examine a project containing very little 

code). The flipped bar charts below were created to give an overview of all of the 

lowest scoring projects in the Roslyn solution.   
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Figure	4.14:	Identifying	Projects	with	Low	Scoring	Metrics 

 

4.6.1	MicrosoftCodeAnalysisCSharpScripting	Project	

From the flipped bar charts above, the MicrosoftCodeAnalysisCSharpScripting project 

was selected for a detailed analysis using the same format as CSharpCodeAnalysis 

seen in the last section. By generating the same visuals, and comparing the metrics 

against each other using scatter plots, it allows for direct comparisons to be made 

between projects with high scoring metrics and projects with lower scoring metrics.  

 

4.6.2	Cyclomatic	Complexity	and	Class	Coupling	
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Figure	4.15:	Cyclomatic	Complexity	and	Class	Coupling 

 

While the previous comparison between Cyclomatic Complexity and class coupling 

showed a relatively close correlation, it now appears to be non-existent when the 

overall metric scores are considerably lower.  

 

4.6.3	Depth	of	Inheritance	and	Class	Coupling	

 

	
Figure	4.16:	Depth	of	Inheritance	and	Class	Coupling 
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Not unsurprisingly, for depth of inheritance and class coupling the trend of no 

significant correlation appears to have continued as no real correlation has appeared 

when the metrics are considerably lower.  

 

4.6.4	Lines	of	Code	and	Class	Coupling	

 

	
Figure	4.17:	Lines	of	Code	and	Class	Coupling 

 

In contrast to previous analysis where there appeared to be a slight correlation when 

metrics were lower, this appears to have dissipated and therefore was unlikely to have 

been of any significance.  

 

4.6.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	
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Figure	4.18:	Cyclomatic	Complexity	and	Depth	of	Inheritance 

 

The non-existence of any relationship between Cyclomatic Complexity and depth of 

inheritance appears to continue regardless of how low or high the metrics are.  

 

4.6.6	Cyclomatic	Complexity	and	Lines	of	Code	

 

	
Figure	4.19:	Cyclomatic	Complexity	and	Lines	of	Code 

 



	 84	

Again the relationship between Cyclomatic Complexity and lines of code appears to be 

the strongest regardless of how high the metric data indicates. 

 

4.6.7	Depth	of	Inheritance	and	Lines	of	Code	

 

	
Figure	4.20:	Depth	of	Inheritance	and	Lines	of	Code 

 

Continuing the trend from the previous comparison when metrics were a lot higher, 

there is little to no relationship between depth of inheritance and lines of code.  

 

4.6.8	Examination	of	code	

As with the previous section, code was analysed in an effort to shed further light on the 

cause for the correlations above.  

 

CSharpPrimitiveFormatter class 
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Figure	4.21:	Figure	4.21:	CSharpPrimitiveFormatter	Class 

 

Similar to the second code example shown in the last section, the 

CSharpPrimitiveFormatter class is a small class with a high Cyclomatic 

Complexity relative to class size.  

 

CSharpTypeNameFormatter class 

 

	
Figure	4.22:	CSharpTypeNameFormatter	Class 

 

The method, GetPrimitiveTypeName within the 

CSharpTypeNameFormatter class contains a switch statement. This type of logic 

within a class is another example of how the Cyclomatic Complexity of class can 
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dramatically increase with relatively few lines of code. It increases the number of paths 

the class has to execute for all possible input values without the class appearing to 

grow very much.  

 

4.7	Average	Scoring	Project	

 

The two previous sections looked in depth at the various metrics when compared head 

to head against each other. This resulted in certain metrics namely Cyclomatic 

Complexity and lines of code showing strong correlations regardless of whether the 

metrics are the highest or among the lowest in the overall Roslyn solution. Continuing 

this data exploration this last section will take an average, mid-level project from the 

Roslyn solution and again look for correlations through the use of scatter plot data 

visuals.  

 

Referring back to the initial flipped bar charts showing the projects with the highest 

metrics, another project was chosen from the lower end of this section named 

RosylnTestPdbUntilities.  

 

4.7.1	RosylnTestPdbUntilities	Project	

This section follows the same format as the previous two in an effort to either further 

establish metrics that have a strong correlation when compared against each other or to 

discredit previously identified strong correlations.  
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4.7.2	Cyclomatic	Complexity	and	Class	Coupling	

	
Figure	4.23:	Cyclomatic	Complexity	and	Class	Coupling 

 

Interestingly when Cyclomatic Complexity and class coupling were compared with 

high scoring metrics it showed a relatively close correlation whereas that correlation 

appeared to have fallen away when the metrics were on the opposite end of the scale 

with extremely low metrics. On examination of the generated scatter plot for a project 

considered to be in the mid-range of the overall metrics score for the overall Roslyn 

solution, it appears that this correlation has resurfaced.  

 

4.7.3	Depth	of	Inheritance	and	Class	Coupling	
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Figure	4.24:	Depth	of	Inheritance	and	Class	Coupling 

 

Previously there was little or no relationship between depth of inheritance and class 

coupling with this project showing the closest of all three to any sort of relationship 

between the two metrics.  

 

4.7.4	Lines	of	Code	and	Class	Coupling	

	
Figure	4.25:	Lines	of	Code	and	Class	Coupling 
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Having first noted a slight correlation in the high scoring metrics, one that appeared to 

have fallen away when the metrics scores were significantly lower, seems to have 

resurfaced when the metrics score moved back up to an average level.  

 

4.7.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	

 

 

 

	
Figure	4.26:	Cyclomatic	Complexity	and	Depth	of	Inheritance 

 

As consistent with the two previous projects it is starting to become well established 

that no relationship exists between Cyclomatic Complexity and depth of inheritance 

regardless of the metric score of the overall project.  
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4.7.6	Cyclomatic	Complexity	and	Lines	of	Code	

	
Figure	4.27:	Cyclomatic	Complexity	and	Lines	of	Code 

 

As consistent with the previous two projects, Cyclomatic Complexity and lines of code 

have the strongest correlation regardless of what the overall metrics scores are for the 

given project.  

 

4.7.7	Depth	of	Inheritance	and	Lines	of	Code	

 

	
Figure	4.28:	Depth	of	Inheritance	and	Lines	of	Code 
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Consistent with the previous projects depth of inheritance and lines of code have 

shown no sign of a relationship. 

 

4.7.8	Examination	of	code	

As consistent with the previous sections, code examples were examined to identify any 

possible causation for the above correlations.  

 

AsyncStepInfo class 

 

	
Figure	4.29:	AsyncStepInfo	Class 

 

As consistent with the previous code examples, small methods, irrespective of access 

modifier, appear to increase the Cyclomatic Complexity of the class overall.  

 

4.8	Key	Findings	

 

The data exploration conducted above indicates that while some metric pairings 

showed no correlation regardless of the overall metric score of that project other metric 

pairings show quite strong correlations. In addition, some pairings were inconsistent 

i.e. show correlations in some cases but this correlation then fell away depending on 

the overall metric score for the project.  
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Figure	4.30:	High	Scoring	Metrics 

 

	
Figure	4.31:	Low	Scoring	Metrics 

 

 

	
Figure	4.32:	Average	Scoring	Metrics 

 

Figures 4.28 through to 4.30 are scatterplot matrices generated from the visuals seen in 

the preceding sections of this chapter. These allow for an overview of the data in an 

effort to identify trends. One immediate and standout trend noticeable by scanning 

along the third row of each visual is the lack of correlation between Depth of 

Inheritance and any other metric. In addition, the strong correlation between Line of 
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Code and Cyclomatic Complexity is also notable. The next section will look at these 

and other findings in detail. 

 

4.8.1	Cyclomatic	Complexity	and	Class	Coupling	

Having initially shown a relatively close correlation when project metrics scores were 

high, the same relationship appeared to fall away when the metrics score was at the 

extreme lower end the scale only for it to regain slightly when project metrics 

recovered to an average level.  

 

4.8.2	Depth	of	Inheritance	and	Class	Coupling	

Overall depth of inheritance and class coupling showed little to no relationship. A very 

slight correlation was visible in the average metric scoring project but not something 

of any real significance.  

 

4.8.3	Lines	of	Code	and	Class	Coupling	

Similar to Cyclomatic Complexity and class coupling, lines of code and class coupling 

showed a slight correlation when the overall metrics score was high that completely 

fell away when the metric score was at the extreme low end. This correlation 

recovered slightly for the average scoring project possibly indicating that it occurs for 

reasons unknown where metrics scores are higher end of the scale.  

 

4.8.4	Cyclomatic	Complexity	and	Depth	of	Inheritance	

Cyclomatic Complexity and depth of inheritance were two of the most consistent non-

existing relationships. All three projects regardless of overall metrics score showed no 

relationship between Cyclomatic Complexity and depth of inheritance.  

 

4.8.5	Cyclomatic	Complexity	and	Lines	of	Code	

Showing the most consistency for an existing relationship was Cyclomatic Complexity 

and lines of code. As can be seen in the small multiples visual below, there was a 

consistent correlation between Cyclomatic Complexity and lines of code.  
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Figure	4.33:	Small	Multiples	showing	Cyclomatic	Complexity	and	Lines	of	Code 

 

4.8.6	Depth	of	Inheritance	and	Lines	of	Code	

Similar to depth of inheritance and Cyclomatic Complexity there is consistently no 

sign of a relationship between depth of inheritance and lines of code. This was shown 

in all three comparisons regardless of the overall metrics score for the project.  

 

4.8.7	Noteworthy	Points	

It should be noted that the metric that appear to form little or no relationship with any 

other metric it was compared against, was depth of inheritance. It consistently failed to 

establish any correlation regardless of overall metric score on the project or metric it 

was compared against.  

 

In addition, the various code examples indicated a trend towards in increase in 

Cyclomatic Complexity when the number of methods in the class increased, regardless 

of access modifier i.e. public or private methods. Although one example contained a 

ternary operator, a short-handed if-statement, this did not appear to be required in 

order for the Cyclomatic Complexity to increase. The occurrence of a large number of 

methods within a class appeared to lead to an increase in the overall Cyclomatic 

Complexity of the class.  

 

4.9	Conclusions	

 
After identifying the Roslyn open source solution as having all the attributes required, 

including size, complexity in terms of its overall functional requirements and actively 
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worked on as a project, to become the basis of the data set this chapter looked at the 

various tools involved to extract the data and create the visuals for exploration.  

 

Flipped bar charts were used to identify which projects within the solution had high, 

average and low metrics. The same format was then used to analyse each one. This 

enabled the research to identify any relationships that may have carried from one 

project to another. From time to time code snippets were also selected at random to 

help shed light on what coding characteristics were causing the various metrics.  

 

While the exploration phase did highlight some findings in terms of the relationships 

between various metrics, the main two are the consistent relationship between 

Cyclomatic Complexity and lines of code and the complete lack of relationship 

between depth of inheritance and any other metric it was paired against. In addition, it 

was also noted that through random examination of the code, there appeared to be a 

relationship between the Cyclomatic Complexity and the number of private methods 

within a class.  

 

It is this last point that will become the focus of the next chapter. In order to explore 

this relationship more closely i.e. the relationship between Cyclomatic Complexity and 

the number of private methods, the area will be expanded out to include both public 

and private methods and all the metrics that were examined in this chapter. For this to 

be achieved, a way of extracting a new data set containing information relating to the 

number of both public and private methods needs to be defined. Following that, the 

new data set will need to be merged with the data that was examined in this chapter.  
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5. Impact	of	Code	Readability	on	Metrics	
 

5.1	Introduction	

 

While the previous chapter explored the metrics data generated from the Roslyn open 

source solution, looking for possible correlations between the metrics, this chapter will 

take one its key findings and further expand upon it in an effort to gain new insight. 

 

The focus in this chapter will be on a possible relationship between an increase in the 

Cyclomatic Complexity of a class and the number of private methods within that class. 

In order to expand upon this further, the scope will be widened. The chapter will look 

to examine all metrics seen in the previous chapter against the number of both public 

and private methods within a class. In order to do this, additional data relating to the 

number of methods per type will be required from the Roslyn solution. As this data is 

not readily available with existing tools, additional software was developed to extract 

this data and merge it with the existing data from the previous chapter. This then 

enabled more visuals to be created in the form of scatter plots to further examine for 

possible correlations.  

 

This chapter will begin by walking through all software that was developed in order to 

extract the new data while highlighting issues encountered in the process. It will then 

look at the process of merging this data with the existing data generated in the previous 

chapter. Due to differences in data format, an iterative process was employed until a 

satisfactory data set was generated.   

 

5.2	Developing	the	Extraction	Software	

 

As no tools were readily available to extract data related to methods contained with the 

various types of the Roslyn solution, additional software was developed. This section 

will explain, step-by-step, the details of how the software works. 
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Figure	5.1:	Overview	of	Roslyn	Structure 

 

Figure 5.1 shows an overview of how the Roslyn solution is structured and the 

direction of dependencies at a high level. By harnessing the Assembly class provided 

by the .NET platform the code loads each binary i.e. the compiled dynamic link library 

(DLL) file and using a concept known as reflection can extract large amounts of data 

about the binary.  The focus of the code, as explained in detail below is to filter out 

only the data required for this research i.e. the public and private methods of each, 

format the data and save it out to an Excel spread sheet.  
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Figure	5.2:	MethodsPerClass	Class	Diagram 

 

The methods developed include: 

• MethodsPerClass method whose job is to process each binary i.e. 

compiled DLL from the Roslyn solution, and extract out the data about the 

number of both public and private methods contained in each type. 

• SetUp method whose job is to create the initial Excel worksheet that the data 

will be saved into. This includes defining the column headings that the new 

data will be saved under.  

• GetTypesFromBinary method whose job is to find the binary on the local 

hard disk and load it into memory. 

• FilterFunc method whose job is to extract out only the types that are 

required from the binary. By design Microsoft’s .NET Assembly class 

returns large amounts of data and therefore filtering is often required.  

• ExtractTypes method whose job is to map the required data back to the 

DataSet class. This is the nested class shown in the class diagram of Figure 5.2 

above.  
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• FormatName method whose job is to remove unwanted characters from the 

type names as they are returned from the Assembly class. 

• AddTypesToWorksheet method whose job is to insert a new row into the 

worksheet. Each insert consists of a type and the number of public and private 

methods for that type. The full list of extracted data corresponds to the nest 

DataSet class shown in Figure 5.2. 

 

5.2.1	MethodsPerClass	

The class written to perform the data extraction was called MethodsPerClass. This 

first figure shows the properties of the class.  

 

	
Figure	5.3:	Definition	of	MethodsPerClass 

 

The properties of the class contain the relevant details as to what the class requires in 

terms of location of the binaries of the Roslyn solution, the name of the file the data 

will be saved to while the list of binaries the code was to execute on was loaded into a 

list named _binaries. One other notable inclusion here is a type called 

XLWorkbook, a type imported from a package called ClosedXML. ClosedXML is an 

open source library available from the nuget package store that allows operations to be 

completed on Excel files, including the creation of the files, opening existing files and 

updating files.  
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Figure	5.4:	Definition	of	DataSet	class	used	within	MethodsPerClass 

The DataSet class provided a type for each piece of information collected from the 

binaries listed above. The job of this nested type within the program will be explained 

in more detail shortly but in essence this defines that for particular type various pieces 

of information were collected including the Name, NumberOfPublicMethods, 

NumberOfPrivateMethods etc. was collected.  

 

	
Figure	5.5:	Definition	of	SetUp	method 

 

The SetUp method defined here sets up the initial Excel worksheet, where the 

collected data will be added, and also defines the names seen in the DataSet to each 

of the columns within that Excel spread sheet.  

 

	
Figure	5.6:	Definition	of	the	foreach	statement	used	to	iterate	through	all	the	Roslyn	binaries 
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The main execution of the code is to apply four steps to each of the binaries, as 

follows: getting the types from the binaries, extracting the required information into 

the DataSet type defined earlier i.e. more information than required is returned and 

therefore only the required information is extracted out at this point. This will be 

covered in more detail shortly, filtering out duplication caused by partial types and 

finally applying the list of DataSets to the worksheet. The program completes by 

saving the worksheet to a local directory. Each of these steps will now be examined in 

more detail. 

 

	
Figure	5.7:	Definitions	of	three	methods	used	within	MethodsPerClass 

 

The code above shows three private methods, the bottom two of which are called by 

the first method, GetTypesFromBinary. This method takes the string name of the 

binary and calls the third of the three methods shown above, LoadAssembly. This 

method in-turn uses the Assembly class provided by the .NET framework to load the 

assembly from the directory previously defined in the properties shown earlier. Once 

the assembly is loaded, control returns to the calling method, 

GetTypesFromBinary.  

 

Using the chaining of methods the next action preformed is GetTypes. This method, 

provided by the Assembly type, is used to load the binary and returns all the types 

found within that binary. It then continues to convert the binaries into a list to be 

returned to the calling method, but before doing so applies a FilterFunc, the 

second method defined above. The FilterFunc returns true or false to the Where 

clause, depending on whether or not the name of the type begins with an angle bracket 

or underscore.  
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The reasoning behind applying the FilterFunc will be explained shortly. It should 

be noted that the Where clause to a method provided GetTypes returning an 

IEnumerable an interface definition provided by the .NET framework but the details of 

which are beyond the scope of this research.  

 

	
Figure	5.8:	Definition	of	ExtractTypes	methods 

 

The next step in the process is to extract only the information that is required for the 

data being assembled i.e. the details of public and private methods contained in a class. 

This is required as the GetTypes call shown earlier returns are large amount of data 

by default when called on a binary.  

 

For the purpose of this research only a small subset of this data is required. The 

ExtractTypes method defined above employs the use of lambda expression, the 

details of which are beyond the scope of this explanation, but it is sufficient to say that 

the method is taking each required piece of information from each of the types in the 

list sent to it by the calling method, creating a new instance of DataSet for each, 

extracting the data it requires and returning the resulting list back to the calling 

method.  

 

	
Figure	5.9:	Definition	of	FormatName 

 

In addition, this method also calls an additional method, FormatName. This removes 

any back ticks that appear in the names. The details of this will be explained fully in 

the next section. 
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Figure	5.10:	Definition	of	FilterForPartialTypes 

 

At this point the code has loaded the binary and extracted the information from each 

type and placed it in a list of DataSet types. The next step of the process is to filter 

out partial types. As this particular piece went through several iterations the details will 

be explained in the next section.  

 

	
Figure	5.11:	Definition	of	AddTypesToWorkSheet 

 

When all the data is collected and filtered the code then appends the data into a 

manageable format of an Excel sheet. The AddTypesToWorksheet method 

defined above simply loops through the list of DataSet types inserting each into a 

cell on the Excel worksheet.  

 

	
Figure	5.12:	Save	new	workbook	to	local	hard	disk 

 

The last part of program execution is to save the workbook to the local hard disk.  
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5.3	Data	Preparation	

 

The previous section provided a brief overview of the code used to collect the method 

information from the Roslyn solution. At three points in the overview, it was noted 

that certain aspects of code would require further explanation in the context of how the 

data was prepared. The areas were the application of a FilterFunc, filtering out partial 

types and formatting of the type name, each of which will be explained in due course.  

 

These areas are in effect dealing with anomalies that arose when attempting to merge 

the data generated by the code above with the data previously generated using the 

visual studio tools for calculation of metrics that were examined in the previous 

chapter. These anomalies lead to both the changes highlighted in the preceding code 

along with the creation additional code to clean the data provided by code metrics 

analyser in visual studio. This section will now discuss this iterative process in detail.   

 

	
Figure	5.13:	Data	Preparation	using	CRISP-DM 

 

As no readily available software had the ability to generate a data set containing the 

number of methods in each type, new code was written to extract the data from the 

Roslyn solution. An overview of this code was provided in the previous section. On 

comparing the generated data with the original metric data it was clear that anomalies 

were present that meant the data could not be easily merged. This included the naming 

of types and whether partial types should be considered separately or as part of their 

complete class etc. A process of cleaning the data to allow both data sets to be merged 

together was required.  
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The process undertaken to clean both sets of data followed the Cross Industry Standard 

Process for Data Mining or CRISP-DM. This is shown in the diagram above. It 

provides a standard process for data to be generated, data preparation, modelling and 

evaluation. The two areas that required this iterative process were the formatting of the 

name and handling of partial types, both of which will be explained in detail shortly. 

Prior to looking at these issues in detail, a walk-through of the code written to clean 

the code metric data, generated by visual studio will be undertaken.  

	
Figure	5.14:	FixingData	Class	Diagram 

The methods developed include: 

• FixingData method whose job is to read the existing metric data set 

containing all the information regarding Cyclomatic Complexity etc. and 

reformat it in order for it to merge with the data set on public and private 

methods within the types.  

• GetDataFromWorksheet method whose job is to loop through all the 

metric data contained in an Excel worksheet on the local hard disk and read 

each line, and create a new type called MetricData for each. The 

MetricData class is shown in Figure 5.14 above.  

• FormatTypeName method whose job is to ensure the name is formatted 

correctly. This is very important in ensuring the data merges successfully as the 

merge will be done on the name of the type. 
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• FilterForPartialTypes method whose job is to ensure that all partial 

classes are recorded as single class. 

 

5.3.1	FixingData		

The code used to clean the code metrics data was written in a class called 

FixingData. This section will take brief overview of the code that was written.  

  

	
Figure	5.15:	Definition	of	FixingData	class 

 

The first code snippet shown is the properties the FixingData class defines to be 

used during the execution of the code. It defines the XLWorkbook that will be used to 

load the data from the Excel file and also the location of the file on the local hard disk. 

In addition, it defines a type called MetricData that will be used to hold the data 

read in from the Excel file.   

 

	
Figure	5.16:	Definition	of	SetUp	method 

 

On the initial setup, just prior to code execution, a new instance of the workbook is 

created and a new worksheet is added with the column definitions matching the 

previously defined MetricData.  
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Figure	5.17:	Reading	in	data	from	workbook	on	local	hard	disk 

 

The main execution of the code takes the format above. It first retrieves the data from 

the existing workbook. Note that this is the data generated using visual studio’s code 

analysis tool that was examined in detail in the previous chapter. Each of these steps 

will now be examined in detail.  

 

	
Figure	5.18:	Definition	of	GetDataFromWorksheet 

 

The method GetDataFromWorksheet takes the original worksheet that has been 

loaded from the disk and extracts the data into a list of type MetricData. Using 

rowCount to keep track, it keeps looping through the data adding an entry to the 

MetricData list each time.  

 

	
Figure	5.19:	Definition	of	FormatTypeName 
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On retrieving the data from the original worksheet, the above method also calls out to 

the method defined above, FormatTypeName. This is one of the two key functions 

to this code and will be explained in more detail shortly. 

 

	
Figure	5.20:	Definition	of	FilterForPartialTypes 

 

Applying this specific filter to partial types is one of the two main functions of this 

code snippet. For now it is sufficient to say that it is executed at this point in the code 

and will be examined in more detail later.  

 

	
Figure	5.21:	Definition	of	AddTypesToWorksheet 

 

 

	
Figure	5.22:	Definition	of	SaveWorkbook 

 

Once the data has been formatted in this way, it is populated back into an Excel sheet 

and saved back on to the local hard disk. 
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5.3.2	Formatting	Type	Name	

As the name was the identifier on which the two sets of data were merged it was 

imperative that both sets of type names matched exactly. That led to changes being 

required on both sets of data. In order to best understand how this was achieved 

consider the name format applied to each piece of code above. 

 

	
Figure	5.23:	Definition	of	FormatName 

 

This FormatName method shown above was required eliminate the occurrence of 

back ticks in type names within the method details extraction code.  

 

	
Figure	5.24:	Definition	of	FormatTypeName	

	
Once the back tick issue was eliminated from methods data side, an issue arose with 

the structure of the naming convention within the metric data side. This meant that 

type names with particular characteristics were outputted in the format of these name 

types.  

 
• MetadataDecoder<ModuleSymbol, TypeSymbol, MethodSymbol, FieldSymbol, Symbol> 

 

• AbstractLookupSymbolsInfo<TSymbol>.UniqueSymbolOrArities 

 

• CompilerDiagnosticAnalyzer.CompilationAnalyzer.CompilerDiagnostic 

 

As the method data format the name types without the type name in angle brackets or 

preceding it nested class types, it was required that each of these names be reformatted 

to  
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• MetadataDecoder 

 

• UniqueSymbolOrArities 

 

• CompilerDiagnostic 

 

This is essentially what the FormatTypeName method above is doing.  

 

5.3.3	Filtering	of	Partial	Classes	

Before looking at the issues around partial class, the concept of a partial class itself 

needs to be examined. Normally a class is presented on a single document i.e. a single 

page. For various reasons, beyond the scope of this research, some languages provide 

the ability for a class to be split over two or more documents with using the keyword 

partial. As far as the compiler is concerned this is a single class and all parts to a class 

must be contained in a single project within the visual studio solution. For this reason, 

this research will also consider a partial class as multiple parts of the same class and 

therefore treat it as one single class.  

 

The issue that arises here is that merging these partial classes into one class must be 

done as part of cleaning the data to allow for the two sets to be successfully merged 

together. Both code snippets below provide the functionality, applied differently to 

each, that allows for a consistent format of data to be generated. It is not enough to 

simply merge the names, on doing so the data, whether metric data or methods data, 

also needs to accumulated together to provide an overall total for each column.  

 

	
Figure	5.25:	Definition	of	FilterForPartialTypes 
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Figure	5.26:	Definition	of	FilterForPartialTypes 

5.3.4	Merging	the	Data	

Once both sets of data were generated, they were manually loaded into a single Excel 

workbook on two separate tabs. From there the Excel sheet was loaded into Tableau 

where further data exploration could be conducted. It is this data exploration that the 

remainder of this chapter is concerned with. 

 

5.4	Exploring	the	Merged	Data	Set	

 
Having extracted out the method details of each type and merged this data with the 

code metrics, it allows for additional data exploration where the metrics presented in 

Chapter Three can be compared against the number of private and public methods 

within that class. For example, is there any relationship between the number of the 

class coupling metrics of a group of classes and the number of public and private 

methods contained within those classes? In order to explore this fully, scatter plots 

were generated for the CSharpCodeAnalysis. Each metric, class coupling, Cyclomatic 

Complexity, depth of inheritance and lines of code, were compared against the number 

of public and private methods in various types.  

 

5.4.1	Merged	Data:	Class	Coupling	and	Number	of	Public	Methods	
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Figure	5.27:	Class	Coupling	and	Number	of	Public	Methods 

 

On comparing class coupling to a number of public methods, the scatter plot indicates 

that not much of a relationship appears to exist between the two. Logically this is not 

unsurprising as class can be coupled together without necessarily leading to an 

increase in the number of public methods of that class. 

 

5.4.2	Merged	Data:	Class	Coupling	and	Number	of	Private	Methods	
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Figure	5.28:	Class	Coupling	and	Number	of	Private	Methods 

 

 

Similar to the comparison of public methods, there appears to be even less of a 

relationship between class coupling and the number of private methods. 

 

5.4.3	Merged	Data:	Cyclomatic	Complexity	and	Number	of	Public	Methods	

 

	
Figure	5.29:	Cyclomatic	Complexity	and	Number	of	Public	Methods 
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The Cyclomatic Complexity metric does not appear to have too much of a relationship 

with the number of public methods. This is not unsurprising as a lot of complex code 

logic could be placed in one public method that may increase the overall Cyclomatic 

Complexity of the class without increasing the public method count of that class. 

 

5.4.4	Merged	Data:	Cyclomatic	Complexity	and	Number	of	Private	Methods	

 

 

	
Figure	5.30:	Cyclomatic	Complexity	and	Number	of	Private	Methods 

 

Perhaps one of the most interesting findings is this relationship between Cyclomatic 

Complexity and the number of private methods in a class. This makes for an 

interesting finding, as it would seem to suggest that as the number of private methods 

increases in a class, the Cyclomatic Complexity of that class also increases. 

 

 

5.4.5	Merged	Data:	Depth	of	Inheritance	and	Number	of	Public	Methods	
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Figure	5.31:	Depth	of	Inheritance	and	the	Number	of	Public	Methods 

 

There appears to be zero relationship between depth of inheritance and the number of 

public methods.  

 

5.4.6	Merged	Data:	Depth	of	Inheritance	and	Number	of	Private	Methods	

 

 

	
Figure	5.32:	Depth	of	Inheritance	and	the	Number	of	Private	Methods 
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Similar to public methods, depth of inheritance appears to have no relationship with 

the number of private methods in the class. This is logically not surprising, as the 

growing of inheritance tree with classes does not necessarily indicate an increase the 

number of methods, regardless of access modifier, in that class. 

 

5.4.7	Merged	Data:	Lines	of	Code	and	Number	of	Public	Methods	

 

	
Figure	5.33:	Lines	of	Code	and	Number	of	Public	Methods 

 

Not unsurprisingly, the number of lines of code does not appear to have much of 

relationship with the number of public methods in the class. Similar to Cyclomatic 

Complexity this could be explained by the fact that a lot of complex code and hence an 

increase in the number of lines of code can increase the metrics but not the public 

method count as it can be all contained within that one method. 

 

5.4.8	Merged	Data:	Lines	of	Code	and	Number	of	Private	Methods	

 

 



	117	

	
Figure	5.34:	Lines	of	Code	and	Number	of	Private	Methods 

 

There appears be more of a relationship between lines of code and the number of 

private methods. This is similar to the same comparison above with Cyclomatic 

Complexity where a relationship appeared between the number of private methods and 

the Cyclomatic Complexity of that class.  

 

 

5.5	Key	Findings	

 

 Class Coupling Cyclomatic 

Complexity 

Depth of 

Inheritance 

Line of Codes 

Public 

Methods 

 

N 

 

N 

 

N 

 

N 

Private 

Methods 

 

N 

 

Y 

 

N 

 

Y 
	

Figure	5.35:	Overview	of	findings	from	scatter	plots 

 

The table above shows an overview summary of the findings with the newly generated 

merged data set. It indicates a possible relationship between both Cyclomatic 

Complexity and lines of code with the number of private methods. Unsurprisingly, 
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depth of inheritance and class coupling appear to offer no firm relationship while the 

number of public methods does not appear to correlate to any of the metrics above.  

 

5.6	Conclusions	

 
This chapter took a key finding from the Chapter Four and after expanding its scope 

slightly, looked for possible relationships between the metrics of Chapter Four and 

possible relationships with the number of both public and private method of a given 

class.  

 

In order to achieve this, new code was developed that extracted the data from the 

solution. Then an iterative process was undertaken that allowed the new data to be 

merged with the data examined in the previous chapter.  

 

Out of the four metrics compared against public and private method counts within the 

same class only two showed any significant relationship, that of Cyclomatic 

Complexity and lines of code when paired against private methods. This is consistent 

with the initial findings of the previous chapter.  

 

In addition, this also impacts on the newly introduced concepts from Martin (2008) 

and principles of ‘clean code’. By applying the code readability principle within the 

Stepdown rule it now appears that this will in fact increase the Cyclomatic Complexity 

of that same class. Given that the original concept behind the Cyclomatic Complexity 

was to identify code that was overly complex this finding goes against this assumption 

would suggest that code with a Cyclomatic Complexity can in fact be more human 

readable. The caveat being that it is in the case of high Cyclomatic Complexity and a 

high number of private methods. 

 

The next chapter will take this key finding and investigate it further. It will take both a 

quantitative and qualitative approach and will seek to determine if code that is 

arguably more readable is in fact more complex as is the original basis of the 

Cyclomatic Complexity calculation.   
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6. Evaluation	
 

6.1	Introduction	

 
Chapter Five added a new perspective on code metrics by generating new data that 

regarding the number of public and private methods contained in each class. It found 

that an increase in the number of private methods leads to an increase in the 

Cyclomatic Complexity of the class. This resulted in the conclusion at the end of the 

last chapter that applying the Stepdown rule as defined by Martin (2008) leads to an 

increase in the Cyclomatic Complexity of the class. This puts both principles in stark 

contrast to each other as the Stepdown rule is designed to make code more readable at 

a human level. The original intention of the Cyclomatic Complexity is to identify code 

that is complex and has a high risk of being defective.  

 

This chapter will look to evaluate these findings and in order to do so, it will be 

required to take a two-pronged approach, using a so-called Mixed Methods Approach.   

 

The first section will be a quantitative assessment while the second will be in the form 

a qualitative assessment. First, unit tests will be used on code samples to give as close 

to 100% coverage as possible. Using the Stepdown rule discussed in Chapter Two, the 

same code will then be refactored, and the code coverage metrics will be regenerated 

to ensure that same set of unit tests provide the same code coverage regardless of 

number of private methods contained in the class. This same code will also be 

evaluated to determine if there has been an increase or decrease in any of the code 

metrics of the class. This will provide an initial basis to determine if testing code, 

refactored into the step-down style, causes that code to become more difficult to test.  

 

The second part of this quantitative section will be to re-examine a selection of the 

scatter plots seen in the previous chapter. In addition, classes will be selected from 

differing areas of the scatter plots to see if those along the trend lines exhibit the type 

of characteristics that are expected from a class that consists of both high Cyclomatic 

Complexity and a high number of private methods.  
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In order to perform a qualitative assessment, interviews will be conducted with people 

with a back ground in information technology. This will allow some insights into what 

common knowledge exists with regard to code metrics and also attempt to determine if 

applying the Stepdown rule does in fact make code more readable.  

 

6.2	Tools	

 

In order to explain the evaluation via unit testing, first the concept of unit testing and 

framework used to write unit tests will be discussed.  

 

6.2.1	NUnit	

NUnit is an open source project that provides the ability to unit test C# code, the 

process of taking small segments of code and testing that each line of the code 

performs as expected. For example, the segment may be a class and within that class is 

an IF-statement. The purpose of unit testing is to ensure that the IF-statement performs 

correctly for all scenarios and therefore while one test would ensure the correct 

behaviour when the IF-statement returns true, a second test would be employed to 

ensure the correct behaviour when the IF-statement returns false. Essentially unit-

testing is a form of white-box testing that tests the code at a very low level i.e. 

ensuring the correct functionality of an individual IF-statement over more general or 

black-box testing that may test something more general such as the logging in 

functionality of a website.   

 

6.2.2	Code	Coverage	

As unit testing has become more popular the concept of being able to verify that all 

code written within a project has become more important. For example, a project may 

have ten classes and out of those ten classes, there are five methods in each. Given that 

each class and each method can have different levels of complexity there is no rule that 

can determine exactly how many unit tests are required to fully test those classes. It is 

possible to write over one hundred tests for the ten classes but that gives no guarantee 

that each and every scenario is covered.  
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For this reason, there are tools available called Code Coverage tools. When unit tests 

are run, these tools analyse all of the executed code to check what parts of the code ran 

and then calculate it as a percentage of the overall code under test. For example, the 

code coverage tool was analysing an IF-statement followed by an else statement and 

found that only the IF-statement was entered during the execution of the unit test, it 

would return that, 50% of the code was covered by that set of unit tests. This research 

will harness the code coverage functionality as built into Microsoft Visual Studio.  

 

It will allow for verification that a set of unit tests have in fact covered a given piece of 

code. This in-turn provides a way to verify that a refactored code snippet has not 

increased or decreased in terms of testing complexity i.e. the same set of unit tests can 

be used to test the code post-refactor.  

 

6.3	Unit	Testing	Evaluation	

 

The code snippet below defines a class called GeneratePrimes that contains one 

method, GeneratePrimeNumbers. The snippet is long but is an example of code 

where all the logic is placed within one method with only some comments to help with 

understanding how the method is achieving its goal. By examining the unit tests it is 

clear that the GeneratePrimeNumbers method does meet the required 

functionality of the method. Although the code snippet below is quiet long it is a great 

example of a method that while meeting its goal does so in fashion that is unfriendly to 

a reader that is not the original author. It is difficult to follow and with the exception of 

a few comments, no attempt was made to add readability.   
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Figure	6.1:	Definition	of	GeneratePrimes	Class 

 

The unit tests shown in the code snippet below provide the adequate code coverage for 

the GeneratePrimes class. A good practice for unit tests is only to place one test 

per class and although that is not followed in this example it still suffices, as the tests 

are relatively simple, calling GeneratePrimeNumbers a total of four times and 

asserting on the result a total of eight times.  

 

	
Figure	6.2:	Definition	of	GeneratePrimes	Class	Unit	Tests 
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By applying the stepdown rule, the code in GeneratePrimes was refactored into a 

new class called PrimeGenerator. Changing the name just allows for a distinction 

to be made during this walk-through but suffice that both classes provide the method 

GeneratePrimeNumbers.  

 

At first glance the most notable feature of the PrimeGenerator class, the 

refactored version of GeneratePrimes, is how small the one public method has 

become. Without reading the rest of the class that has been extracted into multiple 

private methods, the steps taken to achieve the results are much more clear. The 

method works by checking that the value of maxValue is below two. If that proves 

false, then it executes the other three methods, UncrossIntergersUpTo, 

CrossOutMultiples and PutUncrossedIntergersIntoResult.  

 

	
Figure	6.3:	Definition	of	Refactored	GeneratePrimeNumbers	Method 

 

It should be noted that the functionality of these code snippets, while interesting are 

not the main focus. The readability of the code is the main focus point. Can someone, 

having seen the class for the first time, quickly determine what the code is doing?  

 

Taking a quick overview of the new private methods in the class, it can be seen that 

each method only performs one operation, for example it contains one for-loop or one 

math function. As shown in the example below 

PutUncrossedIntergersIntoResult was required to calculate the number of 

uncrossed integers, the functionality of which was further extracted into a new method 

directly below it called NumberOfUncrossedIntegers.  

The remaining parts of PrimeGenerator are shown in the code snippets below.
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Figure	6.4:	Definition	of	Private	Methods	used	by	GeneratePrimeNumbers 

 

Now there are two versions of the GeneratePrimeNumbers method, the original 

GeneratePrimes that put all functionality into one public method, and the 

PrimeGenerator class, that broke the main public method into simple steps, with 

each part contained in a private method.  

 

At this point, it needs to be determined if this refactoring has impacted the testability 

of the class in any way. To achieve this, the same set of unit tests seen earlier were 

applied to both the original implementation and newly refactored class. The code 

snippet below shows two unit tests, the first of which was shown earlier and the 

second one that is an exact copy of the first but tests the newly refactored class 

PrimeGenerator.  
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Figure	6.5:	Definition	of	Unit	Tests	for	both	GeneratePrimes	and	PrimeGenerator 

 

After running each set of tests against each class, the code coverage tool was used to 

determine if both the classes were in fact covered to the same extent regardless of the 

fact that the newly refactored class had multiple private methods added to it in an 

effort to apply the stepdown rule, making the class more readable. 

 

	
Figure	6.6:	Code	Coverage	results	for	both	GeneratePrimes	and	PrimeGenerator 

 

As shown above the code coverage for each class was still 100%. This indicates that 

the same set of tests provided the identical amount of testing coverage regardless of the 

number of private methods added in order to improve the overall readability of the 

class.  
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In addition to this, the code metrics were also generated for the code in order to 

determine if the refactoring of the code did indeed have an impact on the overall 

metrics.  

 

	
Figure	6.7:	Code	Metrics	results	for	both	GeneratePrimes	and	PrimeGenerator 

 

As shown in the figure above both depth of inheritance and class coupling remained 

the same, as did lines of code. The notable difference though is the increase in the 

Cyclomatic Complexity for the newly refactored and arguably more readable 

PrimeGenerator class. The Cyclomatic Complexity of the PrimeGenerator class is 

eighteen where it was eleven on the less readable GeneratePrimes class.  

 

6.4	Evaluating	Merged	Data	

 

The previous chapter presented scatter plots generated from the merged data sets of the 

original metrics from Chapter Four merged with the newly generated data of Chapter 

Five. This in turn allowed for new scatter plots to be created where the number of both 

public and private methods was pitted against the metric data of Chapter Four. This 

found that there was a correlation between the number of private methods and both 

Cyclomatic Complexity and lines of code. This section will dig deeper into this finding 

and look at code snippets in an attempt to evaluate this finding.   
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Figure	6.8:	Number	of	Private	Methods	and	

Lines	of	Code	(A) 

	
Figure	6.9:	Number	of	Private	Methods	and	

Cyclomatic	Complexity	(B)

 

As shown in the two scatter plots above there appears to be a correlation between 

number of private methods and both Cyclomatic Complexity and lines of code.  

 

In order to evaluate this further three specific classes were taken from the scatter plots 

above and examined in detail. These are the Binder, CSharpCompilation and 

CodeGenerator classes. It is very important to note that these classes were chosen 

on the basis of where they lie on the scatter plot. Both scatter plots indicate that the 

Binder class falls right on trend line whereas CSharpCompilation has higher 

lines of code and Cyclomatic Complexity hence lands on the bottom right of the scatter 

plot. Lastly and in direct contrast to CSharpCompilation, CodeGenerator lies 

on the top left of both scatter plots. This indicates that while it has a high number of 

private methods, it does not have high metrics regarding lines of code and Cyclomatic 

Complexity. 

 

This provides three classes that lie on different points of the spectrum. It is important 

to note that of the three classes, the findings of this research to date indicate that 

Binder should be the most readable of the three classes. This is due to the Binder 

class lying right on the trend line of private methods to both lines of code and 

Cyclomatic Complexity whereas the other classes lie to opposing extremes outside of 

the trend lines.  
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	6.4.1	Binder	Class	

The figures are code snippets taken from the Binder class within the Roslyn solution.  

	
Figure	6.10:	Binder	Code	Snippet	One 

 

	
Figure	6.11:	Binder	Code	Snippet	Two 
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Figure	6.12:	Binder	Code	Snippet	Three 

As expected the Binder class comprises of many small private methods that on 

average consist of a one-line methods. As previously argued this makes the class more 

readable.  

 

6.4.2	CodeGenerator	Class	

The code snippet below is taken from the code generator class. As the code generator 

class is at the top left of the scatter plot it indicates that it should consistent of many 

private methods but is not balanced back out with the appropriate number of lines of 

code and Cyclomatic Complexity that make it readable.  

 

This assumption is confirmed by examining the code snippet below that defines a 

method called LazyReturnTemp. It shows that unlike the small methods seen in the 

Binder class previously this method is much longer and therefore arguably less 

readable.  
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Figure	6.13:	CodeGenerator	Code	Snippet 

 

6.4.3	CSharpCompilation	Class	

As the CSharpCompilation class lies on the bottom right of the scatter plot it 

indicates that the class has a high number of lines of code and Cyclomatic Complexity. 

However, it does not consist of a high number of private methods. This leads to the 

conclusion that the class may be arguably less readable.  

 

On examining the class in the code snippet below it is evident that it is composed of 

large portions of complex code.  

 

	
Figure	6.14:	CSharpCompilation	Code	Snippet 
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Overall it can be concluded from this section there is in fact evidence that when the 

number of private methods within a class is cross referenced with either lines of code 

and/either Cyclomatic Complexity that it can provide an indication as to the readability 

of that class.  

 

6.5	Summary	of	Key	Quantitative	Findings	

 

Section 6.3 above harnessed unit testing, code coverage tools and metrics calculations 

in an effort to evaluate the impact of refactoring code to a more readable format. There 

were two very notable findings. The first was the fact that the unit tests used with 

100% code coverage provided the same level of coverage post the refactoring of the 

code. That means, code can be refactored into a more readable format without altering 

the unit tests that cover that code snippet. This also indicates that the code has not 

become more difficult to test, as the unit tests are identical. Secondly, although the unit 

tests indicated there was no increase in the level of testing difficulty, the Cyclomatic 

Complexity of the code increased. Therefore, while Cyclomatic Complexity is 

showing an increase due to a readability refactor, the code coverage and unit tests are 

suggesting there has been no increase in complexity. 

 

Section 6.4 dug a little deeper into the results of the metrics versus public and private 

methods of Chapter Five. It found that classes that fell along the trend line of the 

scatter plot comparing either lines of code or Cyclomatic Complexity to number of 

private methods in a type, appeared more likely to exhibit characteristics that are 

consistent with more readable code. That is, code that consists of small private 

methods that focus on doing one thing as opposed to methods that run to five-plus 

lines of code with large amounts of complexity. This was demonstrated by selecting 

three classes, one from the top left of the scatter plot, one from the bottom right of the 

scatter plot and that fell right into the trend line of the scatter plot. Only the class along 

the trend line consisted of the characteristics consistent with readable code.  
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6.6	Qualitative	Evaluation	of	Code	Readability	

 

In an effort to determine the qualitative element of code readability, surveys were 

conducted on a one-to-one basis with five participants with a background in the 

technology sector. This section will outline the profiles of the interviewees and the 

results garnered from the five participants.  

 

6.6.1	Interviewee	Profiles	

 
Interviewee #1 Interviewee #1 is male who has 5+ years’ experience in the IT sector and 

works as a team leader. Day to day duties do not involve coding but is 

involved with people that develop software 

Interviewee #2 Interviewee #2 is male who has 1+ years’ experience in the IT sector and 

works as a QA Engineer. He familiar with Unit Testing and Manual Testing 

Interviewee #3 Interviewee #3 is female who has 2+ years’ experience in the IT sector and 

works as a manual QA Engineer. She is familiar with Manual Testing 

Interviewee #4 Interviewee #4 is female who has 4+ years’ experience in the IT sector and 

works as a software engineer. She is familiar with Unit Testing and Manual 

Testing 

Interviewee #5 Interviewee #5 is male who has 2+ years’ experience in the IT sector and 

works as a software engineer. He is familiar with Unit Testing and Manual 

Testing 

Figure	6.15:	Interviewee	profiles	overview 

 

Each interview began with questions around the person’s background. Figure 6.14 

below shows that while three out of the five people had worked in the broad category 

of information technology sector for a period of less than three years, only two had 

more than three years.  
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Figure	6.16:	Number	of	years	interviewees	spent	working	in	Information	Technology 

Next, each interviewee was asked specifically which discipline area they fell into. This 

information is represented in the table below. Given a list of five job categories each 

was asked which matched them best. Four of the five people worked as either a 

software engineer or a quality assurance engineer.  

 

	
Figure	6.17:	Job	titles	of	interviewees	

	
Following that, each interviewee was asked to rate their daily interaction with code 

from never, meaning that they never see or interact with code as part of their work to 

always as in a full time software developer. The results of this are represented in the 

table below. 
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Figure	6.18:	Daily	interaction	with	code	of	interviewees 

 

Finally, each interviewee was asked about how the code within the their workplace 

was tested. For this question, interviewees could select more than one option and were 

also asked to indicate if it was not applicable for those who work in companies that do 

not test software with a formal process. The results are presented in the table below.  

 

	
Figure	6.19:	Testing	approaches	of	companies	that	interviewees	work	within 

 

The results here are interesting for two reasons, the first being that unit testing is 

clearly quite prevalent over all other forms of testing including manual testing and 

secondly that no one interviewed performed automated testing that was not unit 

testing.  

 

This provides enough information to determine that each of the five have enough 

knowledge of software development to provide relevant data to this research. 

 

6.6.2	Software	Terminology	

The next part of the interview focused on determining what terminology each person 

was familiar with. This provides this research with insight into what people working in 
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the industry are familiar with as opposed to the terminology used by computer 

scientists conducting research in the area.  

 

The first question each interviewee was asked was if they ever used code metrics in the 

development of software. The result was an emphatic “No”. This would indicate that 

regardless of how commonly code metrics are used in within industry, they are not 

necessarily referred to as code metrics.  

 

In an effort to dig deeper, each interviewee was asked if they were familiar with a list 

of software engineering terms. The interviewees were asked to input this information 

into a survey. It should be noted that not all of the terms were code metric specific. 

The results are presented below. 

 

	
Figure	6.20:	Common	software	related	terms	interviewees	were	familiar	with 

 

The two most notable results, when all the interviewee data is merged together, is how 

terms such as object-oriented programming and unit-testing are familiar to all five 

whereas Cyclomatic Complexity and code metrics were not familiar to anyone. 

 

6.6.3	Code	Readability	

The last part of the interview centred on code readability and was conducted by 

showing each interviewee four code snippets. The code snippets were two code 

samples written in two different ways. The first paid no attention to the ‘readability’ of 

the code while the second applied the Stepdown rule as defined by Martin (2008). It is 

important to note that the interviewee was only asked to rate the code on a scale from 

poor to Excellent for ‘readability’ and no explanation was provided as to why the code 

was written differently. The code snippets were also presented in random order so the 
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interviewee was not necessarily asked to rate the less readable code before the more 

readable code so as to prevent any bias. The code snippets used are taken from Martin 

(2008). 

 

 

 
 

	
	

Figure	6.21:	Code	snippets	presented	to	interviewees	to	be	rate	for	readability

 

From the code snippets in Figure 6.20, rated by the five interviewees from poor to 

Excellent, snippet one was rated poor by one interviewee while the remaining four 

rated it either below average or average. By comparison snippet two was not rated 

poor by any interviewee and scored either average or above average by the 

interviewees.   

 

 

 	
	

Figure	6.22:	Code	snippets	presented	to	interviewees	to	be	rate	for	readability 
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The code snippets in Figure 6.21 were rated in the same manner as the previous. While 

snippet two rate below average by three of the four interviewees, two interviewees 

rated it only average. In comparison, snippet one was rated below average by one 

interviewee, average by three of the interviewees and above average by one 

interviewee.  

 

Although the results above do not indicate that a code snippet written with code 

readability in mind automatically lead to being rated from poor to Excellent there is an 

underlying suggestion that this code is in fact more readable. This is keeping with De 

Silva et al. (2012) where opinions on code was taken from thirty programmers and 

compared against metrics, including McCabe’s Cyclomatic Complexity, which found a 

wide range of opinions. For example, the collected “experts’ rankings” for 

BubbleSort.java is shown below.  

 

	
Figure	6.23:	Experts	view	of	complexity	of	BubbleSort.java 

 

Although over 50% of the developers found BubbleSort.java to have a complexity 

measure in the range of 6 to 7, it is notable that over 12% found it to be in the range of 

1 to 2 while a further 9% places it over 9 (De Silva et al., 2012). This highlights how 

diverse opinions can be when reading code and hence how difficult it is to evaluate a 

piece of code as readable.  

 

6.7	Summary	of	Key	Qualitative	Findings	
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The qualitative assessment took the approach of interviewing people within the 

information technology industry. Prior to assessing code readability using code 

snippets the interviews looked to gain some insight into what terminology people 

within the industry were familiar with, with specifically around the area of code 

metrics.  

 

It found that no interviewee had previously used code metrics within industry or at 

least if they had done, they were not referring to them as code metrics. Terms such as 

‘code metrics’ or ‘Cyclomatic Complexity’ did not feature at all. In addition, it was 

found that the most common way of testing code within the companies the participants 

were associated with was unit testing and manual testing.  

 

Finally, the participants were asked to examine four code snippets. The code snippets 

were either written with a readability factor applied or not. This found that while there 

was no surge in overall rating of the code, there was a very slight improvement on the 

readability rating of code that was crafted with readability in mind. That concurred 

with De Silva et al. (2012) where assessments on the complexity of java programs had 

consensus of around 50%, there were still wide swings in terms of what is perceived 

by one person as complex versus another’s opinion.  

 

6.8	Conclusions	

 
This chapter looked to evaluate some of the findings from Chapter Five. In doing so it 

looked at the findings from both a quantitative and qualitative point of view.  

 

The unit testing section of the quantitative aspect of the evaluation had two key 

findings. First that code refactored using the Stepdown rule could be tested using the 

same set of unit tests as the non-refactored code and hence means the refactored class 

is not more complex to test. Secondly, it found that the Cyclomatic Complexity of the 

class did in fact increase for the refactored class.  

 

The second part of the quantitative assessment reviewed the previously seen scatter 

plots. On close examining of code snippets taken from classes lying in different area of 



	139	

the scatter plot it was determined that a class found along the trend line i.e. had a 

balance of Cyclomatic Complexity or lines of code versus the number of private 

methods, had characteristics consistent with a readable structure. Classes that lay out to 

either extreme did not appear to these same characteristics. 

 

On the qualitative side of the assessment the main findings were that none of the 

interviewees were familiar with code metrics or at least referred to them as code 

metrics. While there was a slight increase in the rating of code readability that 

followed the Stepdown rule, it was no overwhelming. This goes back to De Silva et al. 

(2012) who also had large swings in opinions when asking developers to rate code for 

complexity.  
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7. Conclusions	and	Future	Work	

 

7.1	Introduction	

 

This chapter will take a look back over some of the key findings from of this research. 

It will begin by looking at the Chapters Two and Three to identify notable points found 

during the literature review. It will then proceed to Chapters Four and look to review 

how the data exploration threw up new insights when examining the relationships 

between various metrics and looking at sample code for causation effects. It will then 

continue to Chapter Five where a key finding of Chapter Four was examined in great 

depth. It will then take another look at the key findings when evaluating Chapter Six. 

The chapter will conclude by looking at some new areas that this research can be taken 

by outlining some possible future directions.  

 

7.2	Conclusions	

This section presents the key conclusions derived from each of the main chapters of 

this dissertation. 

 

7.2.1	Existing	Literature		

McCabe’s Cyclomatic Complexity became a cornerstone on which many subsequent 

theories were built, either from a critical standpoint or using it as a basis to expand 

upon. Although it was first published 40 years ago and was based on the FORTRAN 

programming language, it still remains relevant post the paradigm shift to object-

oriented programming.  

 

Chidamber & Kemerer’s suite of metrics for object-oriented programming is arguably 

the most important paper written in this area. Covering all of the important aspects of 

that need to be considered when developing code in the object-oriented paradigm. This 

suite formed the basis for many applications built within industry as well as being a 

foundation for further work in the area.  
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For many decades code metrics revolved around the area of identifying code that is at 

high risk of being defective. By introducing the concept of detecting ‘code smells’ 

within object-oriented programming, van Emden (2002) brought a new lens through 

which code metrics can be viewed. It opened up code metrics to being adopted for use 

in an area that was previous reserved for manual code reviews where programmers 

looked to weed out bad practice with predefined principles. This was now something 

that could be automated, and used to highlight areas of that code that although not at 

high risk of being defective, but considered to have some potential flaws due to poor 

practices. 

 

Purposely defined to be as a simple language independent rule to make the applying of 

the concepts of modularity and encapsulation more intuitive for developers, the Law of 

Demeter has become an industry standard. It ensures that developers can reduce the 

coupling of classes without even having to consider the area of metrics let alone 

develop systems that detect or identify it. 

 

Building on van Emden (2002) this paper introduced Marin’s (2008) ‘clean code’ 

concept to the area of code metrics in an effort to assess what impact would result from 

applying these concepts to the area of code metrics.  

 

Chapter Three had a key focus on how metrics have been applied within industry and 

found that companies including Hewlett-Packard (HP) and Air France-KLM had 

varying degrees of success when using code metrics within house, in an effort to 

identify code that was at high risk of being defective. While it cannot be claimed that 

there were no improvements when implementing code metrics, there did appear to be a 

considerable amount of complexity involved to implement something that was only 

returning minor gains. 

 

7.2.2	Data	Exploration	

The data exploration phase of this research took the form of generating a new dataset 

of metrics from a well-established open source project named Roslyn. This allowed for 

fresh insights to be sought through examination of the data in the form of 

visualisations. Flipped bar charts were used initially to identify areas of the project that 



	142	

could be considered to have high, average and low metric scores. These areas were 

then explored in greater depth to see if any relationships between the metrics could be 

identified and then determine if these relationships held through from project to project 

regardless of overall metric score.  

 

Overall Cyclomatic Complexity and Class Coupling appear to show some correlation 

but were very much dependent on the overall score of the project. On experiments 

when the project overall scored highly, the correlation here was stronger whereas at the 

other extreme low end of the scale the correlation fell away.  

 

Arguably the most consistent relationship that appeared in each phase of the date 

exploration was that between Cyclomatic Complexity and lines of code. As shown in 

the small multiples below, the relationship held strong regardless of the overall metrics 

score of that project. 

 

	
Figure	7.1:	Small	Multiples	of	Cyclomatic	Complexity	

  

Perhaps slightly surprisingly was the depth of inheritance metric that always failed to 

find any correlation with any other metric. For each of the comparisons during the data 

exploration phases the depth of inheritance metric failed, time after time, to show any 

significant relationship with any of the other metrics. 

 

A few of the code samples taken during the data exploration phases indicated a relation 

between increases in Cyclomatic Complexity and the number of private methods in a 

class. By definition, Cyclomatic Complexity is concerned with the complexity of a 

given piece of code and therefore the impact on increases in the number of private 
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methods is an interesting discovery. It was this finding that became the focus of the 

subsequent chapter.  

 

7.2.3	Impact	of	Code	Readability	on	Metrics	

One of the findings of the previous chapter was related to private methods appearing to 

have an impact on Cyclomatic Complexity, a metric that also tends to correlate well 

with the lines of code metric. It was this finding that became the focus of Chapter Five. 

It first sought to extract new data from the Roslyn project and merged it with the data 

from Chapter Four. It then proceeded to analyse possible relationships between all of 

the various metrics paired against the number of public and private methods.  

 

Unlike the metrics from the data exploration chapter, where tools were provided to 

extract the data from the Roslyn project, there are no readily available tools to extract 

method data from Visual Studio projects. Hence some code was written to compile this 

data with a view to merging it into the already gathered metric data. Using the .NET 

library class called Assembly the binaries of the Roslyn project were parsed and the 

data related to public and private methods within each type was extracted. This data 

was then formatted and saved to an Excel workbook.  

 

Although the code successfully extracted the data, a process of preparing it to be 

merged into the existing data set was required in order to ensure that the merged data 

set could produce the required result.  

 

Two of the most significant parts to this were to define how partial classes were to be 

handled and also to ensure the name of the types matched correctly. A partial class is 

class that, although spilt into multiple files for more manageable human interaction,  is 

a single class when compiled. This was an issue that the code was required to contend 

with. Instead of defining these in the data as multiple classes the code merged the files 

plus the relevant information about each into single classes and hence single lines with 

the Excel sheet. This in turn led to an issue regarding the naming of the types. As the 

code had combined all of the classes into a single class and named it, this did not allow 

for the names to merge with the already existing data set of metrics. This required a 
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second piece of code to be written that reformatted each type name to match. For 

example, names such as these  

• MetadataDecoder<ModuleSymbol, TypeSymbol, MethodSymbol, 

FieldSymbol, Symbol>   

• AbstractLookupSymbolsInfo<TSymbol>.UniqueSymbolOrArities 

• CompilerDiagnosticAnalyzer.CompilationAnalyzer.CompilerDiagnostic   

were reformatted to  

• MetadataDecoder 

• UniqueSymbolOrArities 

• CompilerDiagnostic   

 
This subsequently allowed for the type names to be merged successfully. 

 

From this merged data set, more scatter plots were generated to identify possible 

relationships between class methods, whether public or private and the various metrics: 

class coupling, depth of inheritance, lines of code and Cyclomatic Complexity. This 

allowed for these metrics to be viewed from a different angle i.e. what relationship, if 

any, exists between these various metrics and the number of public and private 

methods of these same classes. 

 

For the majority of the metrics there was little sign of a relationship between them and 

public and private methods with the notable exception of private methods and both 

Cyclomatic Complexity and lines of code. This was consistent with the findings of the 

previous chapter. This is shown in the table below: 

 

 Class Coupling Cyclomatic 

Complexity 

Depth of 

Inheritance 

Line of Codes 

Public 

Methods 

 

N 

 

N 

 

N 

 

N 

Private 

Methods 

 

N 

 

Y 

 

N 

 

Y 
	

Figure	7.2:	Overview	of	correlations	between	code	metrics	and	public	and	private	methods 
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In addition, it was also noted that this finding impacted on aspect of the previously 

introduced work of Martin (2008). By applying the Stepdown rule, as defined by 

Martin (2008), it would seem that making the class more ‘readable’ would in fact 

increase the number of private methods within the class and therefore cause an 

increase in the Cyclomatic Complexity of that class.  

 

It was this key finding that would become the focus of the subsequent chapter. By 

employing both a quantitative and qualitative element to the evaluation to determine if 

code that is refactored to be more ‘readable’ actually impacts the Cyclomatic 

Complexity of that class.  

 

7.2.4	Evaluation	

Evaluating whether or not the application of the Stepdown rule, as defined by Martin 

(2008), increased the Cyclomatic Complexity of the same class, was the main focus of 

this chapter. In order to fully assess this, both a quantitative and qualitative element 

was required (a so-called Mixed Methods Approach). The qualitative element took the 

form of harnessing unit testing and code coverage tools in order to assess any increase 

in testing complexity by refactoring the class. It also re-examined scatter plots and 

code samples from the previous chapter. The qualitative element consisted of 

interviews with people working within information technology sector.  

 

The first part of the quantitative assessment using unit testing and code coverage tools 

had two findings. The first was the fact that the unit tests written for a piece of code 

prior to it being refactored to be more ‘readable’, provided the same level of coverage 

to the refactored code. This would indicate that code refactored using the Stepdown 

rule is in fact no more complex to test. In addition, it also found that the refactored 

code did in fact increase in the overall Cyclomatic Complexity metric.  

 

The second part of this quantitative assessment looked to examine classes taken from 

the various areas of the scatter plots created in Chapter Five. It took three classes and 

determined that a class that lay on the trend line i.e. had a correlation between number 

of private methods and Cyclomatic Complexity did in fact exhibit the characteristics of 
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a class that would be considered more ‘readable’ as per the Stepdown rule. That is, a 

class that lay along the trend line consisted of small private methods that each provided 

a single task as opposed to long and overly complex methods.  

 

On the qualitative side of the assessment it was found that not many of the 

interviewees were familiar with terms associated with code metrics. On assessing 

whether code written using the Stepdown rule was in fact more ‘readable’ a slight 

increase was noted but nothing that could be considered evidentiary. This was in 

keeping with De Silva et al. (2012) who had wide ranging results when attempting to 

have experienced programmers evaluate code for complexity. 

 

7.3	Future	Work	

 

This section will identify areas new directions that this research can be built upon. 

These include introducing new metrics that can be paired against the number of public 

and private methods in a class, quantitative evaluation using a different open source 

project or the introduction of a new programming paradigm such as functional 

programming.  

 

7.3.1	Introducing	New	Metrics	

As seen in Chapter Two and Three there are many more metrics that could be 

incorporated into this research. Not all metrics have readily available tools that extract 

data for close examination but as was discovered in Chapter Five many development 

platforms including .NET come with libraries that allow for this data to be extracted 

with a small amount of coding.  

 

By harnessing these libraries to explore some of the less well-known metrics, new 

insights could be gained into overall area of code metrics. Potential new metrics could 

include: 

 

• Coupling and Cohesion 

• DSQI (design structure quality index) 
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• Instruction path length 

• Maintainability index 

• Weighted Micro Function Points 

• CISQ automated quality characteristics measures 

 

7.3.2	Alternative	Open	Source	Solutions	

With the advent of Github.com there is no shortage of open source projects available 

online. Many of the studies discussed in Chapter Three involved theories being applied 

within commercial companies. No longer is it required that commercial companies be 

involved. Open source solutions enable a huge amount of data to be extracted and 

examined within this area. Therefore by taking one small example as was done in 

Chapter Five and applying it to multiple solutions could lead to real evidence as to 

whether code metrics can provide value to a project.  

 

7.3.3	Programming	Paradigms	

Object-oriented programming has been in favour since the 1990’s. This has led to a lot 

of work around metrics also favouring object-oriented programming. With the high 

availability of new tools, including integrated development environments etc., enables 

more research to be conducted in the areas of functional programming, or aspect-

oriented programming, or logic programming. 

 

7.3.4	Community	Evaluation	

As well as code, GitHub also provides a community of interested participants who 

could be used to evaluate the readability of code. They could be used to discuss in 

more detail the characteristics of good code, and how they use metrics and which ones 

they prefer. By focusing on large-scale data gathering of this kind, new insights could 

be gained into what is being used in practice as opposed to within individual 

companies. It is also worth noting that most practices within commercial companies 

are never published publicly. This data could provide a basis from which new research 

could focus on metrics used in practice that could lead to new avenues or directions for 

code metrics.   
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7.3.5	Development	Methodology	

It could be worth exploring if the way in which the code was developed impacts the 

code readability and/or the metrics. If code is developed using Paired Programming 

that will demonstrate a measurable difference in terms of the metrics than if the code is 

developed using Scrum. Companies that employ commercial tools for the Scrum and 

Agile process contain a lot of data that could provide new insight into the overall 

impact of these practices. This could then be extended to see if these same differences 

occur when using a traditional waterfall model.  

 

7.3.6	Design	Patterns	

The increasing use of Design Patterns means that more standardised and well-known 

solutions are being applied to programming problems, which may be improving the 

overall quality of code. It might be worth investigating a software project that uses a 

lot of design patterns to see if this impacts the metrics. This could be done in an 

automated way that creates heat maps of where the patterns appear in the code and 

then analyse metrics closely in that area. In addition, this data could then be compared 

to a project using no patterns in an effort to gain further insight into the impact of 

patterns on code metrics.  

 

	
Figure	7.3:	Illustration	of	how	a	heat	map	looks	

	

7.3.7	Extracting	Data	Using	Platform	Libraries	

In Chapter Five a .NET library was used to extract data relating the number of public 

and private methods of a class. It is worth nothing that this library contained vast 

amounts of data relating to the binaries being examined. This data is not specifically 
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targeted at code metrics but there is no doubt that more data exists within these 

libraries that may shed new insights in the overall area of code metrics. Research could 

be undertaken that specially analysed all of the data that these libraries produce in an 

effort to go beyond what is already known about code metrics.   

 

7.3.8	Open	Source	Testing	

While sites like Github.com contain a vast amounts of open source software, Travis-

CI.org is a self-described home of testing. Programmers using Github.com can harness 

Travis to automatically take their new code changes and run all the tests associated 

with that solution. Many of these solutions and test results are open source and 

therefore an opportunity exists to analyse common patterns of defects occurring and 

cross-referencing this with the code metrics of that same area of code. For example, if 

a particular class is identified as having consistently failing unit tests this could be 

compared against the Cyclomatic Complexity of that class. This could shed some new 

insights into which metrics provide the most value in identifying code that is at high 

risk of being defective.  
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