
REPURPOSING CODE METRICS FOR USE

WITHIN MODERN DAY PROGRAMMING

LUKE RICKARD

A dissertation submitted in partial fulfilment of the requirements of Dublin Institute of Technology for

the degree of M.Sc. in Computing (Advanced Software Development)

July 2016

	 ii	

I certify that this dissertation which I now submit for examination for the award of

MSc in Computing (Advance Software Development), is entirely my own work and

has not been taken from the work of others save and to the extent that such work has

been cited and acknowledged within the test of my work.

This dissertation was prepared according to the regulations for postgraduate study of

the Dublin Institute of Technology and has not been submitted in whole or part for an

award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements

of the Institute’s guidelines for ethics in research.

Signed: _________________________________

Date: 4 July 2016

	 iii	

ABSTRACT

Code metrics have existed since the early day of programming. Prior to the

development of modern day compilers, metrics were used to identify defects early in

the development process. Over time the theories were reworked to keep abreast of the

changing programming landscape the most notable of which was moving from

procedural programming to the introduction of the widely used object-oriented

paradigm. Manual assessment of code has always been an area of contention among

programmers and the introduction of ‘best practices’ in automated fashion shifted code

metrics into yet another area than its original intention.

This dissertation aims to re-examine code metrics by identifying possible relationships

that may exist between various metrics, analysing code to identify key characteristics

that impact code metrics and then tie that back into their possible impact on modern

day ‘best practices’ including topics like ‘code readability’. Results show that certain

code metrics, combined with other coding factors can be combined to highlight code

considered to be of a high ‘readability’ quality.

Key Words: code metrics, software testing, unit testing, code coverage, cyclomatic

complexity

	 iv	

ACKNOWLEDGEMENTS

First and foremost I owe a massive debt of gratitude to my supervisor Damian Gordon.

His enthusiasm, support and guidance helped me immensely over the course of this

dissertation.

I would also like to add a special thanks to my sister Kelley for all her proof reading

over the past few weeks.

Special thanks also to my parents for their constant support and encouragement over

the years.

	 v	

Table	of	Contents	

1.	Introduction	...	1	

1.1	Project	Background	..	1	
1.2	Project	Description	..	2	
1.3	Project	Aims	and	Objectives	..	4	
1.4	Project	Evaluation	..	4	
1.5	Thesis	Roadmap	..	5	

2.	Exploring	Metrics	..	7	

2.1	Introduction	..	7	
2.2	Metrics	within	Software	Development	..	7	
2.3	Definitions	...	8	
2.3.1	Object-Oriented	Programming	...	9	
2.3.2	Representing	Real-World	Items	..	9	
2.3.3	Instances	of	a	Class	..	9	
2.3.4	Public	versus	Private	Methods	...	10	
2.3.5	Unit	Tests	...	11	
2.3.6	Code	Coverage	...	11	

2.4	Code	Metrics	..	11	
2.4.1	McCabe’s	Cyclomatic	Complexity	..	12	
2.4.2	Halstead	E’s	..	14	
2.4.3	Building	Upon	McCabe’s	Cyclomatic	Complexity	...	14	
2.4.4	Critiquing	Halstead	and	McCabe	...	15	

2.5	Metrics	for	Object-Oriented	Code	...	19	
2.5.1	Chidamber	and	Kemerer	Metric	Suite	..	19	
2.5.2	Building	Upon	Chidamber	Object-Oriented	Metrics	...	24	

2.6	Applying	Object-Oriented	Best	Practices	to	Code	Metrics	30	
2.7	The	Law	of	Demeter	..	32	
2.8	Conclusions	..	35	

3.	Applied	Metrics	..	37	

3.1	Introduction	...	37	
3.2	Alternative	Approaches	to	Code	Metrics	...	37	
3.2.1	Service	Oriented	Design	..	37	
3.2.2	Metrics	using	Program	Slicing	..	39	
3.2.3	Tools	for	Metrics	..	43	
3.2.4	Code	Comments	..	45	

	 vi	

3.2.5	Validation	of	Code	Metrics	...	45	
3.3	Code	Metrics	&	Commercial	Applications	...	46	
3.3.1	Tackling	Project	Costs	..	46	
3.3.2	Evaluation	of	Code	Metrics	within	Hewlett-Packard	...	48	
3.3.3	Alternative	Takes	on	Applying	Code	Metrics	...	49	
3.3.4	Classification	of	Metrics	based	on	Defect	Categories	...	51	
3.3.5	Aggregation	of	Code	Metrics	...	55	
3.3.6	Evaluation	of	Metrics	through	Java	Developers	...	57	
3.3.7	Using	Code	Metrics	to	Automate	Reviews	...	57	
3.3.7	Applying	Cyclomatic	Complexity	to	Y2K	..	58	
3.3.8	Standardisation	of	Metrics	...	58	

3.4	Clean	Code	..	59	
3.4.1	Meaningful	Names	...	60	
3.4.2	Functions	...	61	
3.4.3	The	Stepdown	Rule	...	61	
3.4.4	Commenting	Code	..	62	

3.5	Key	Findings	..	62	
3.6	Conclusion	..	63	

4.	Data	Exploration	..	65	

4.1	Introduction	...	65	
4.2	Roslyn	Overview	..	65	
4.3.	Metrics	Tools	..	67	
4.3.1	NDepend	..	68	
4.3.2	Visual	Studio	Code	Analysis	..	68	
4.3.3	ReSharper	..	69	
4.3.4	Tableau	...	69	

4.4	Roslyn	Metrics	...	69	
4.5	High	Scoring	Metrics	...	71	
4.5.1	CSharpCodeAnalysis	Project	...	72	
4.5.2	Cyclomatic	Complexity	and	Class	Coupling	..	73	
4.5.3	Depth	of	Inheritance	and	Class	Coupling	...	74	
4.5.4	Lines	of	Code	and	Class	Coupling	..	74	
4.5.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	...	75	
4.5.6	Cyclomatic	Complexity	and	Lines	of	Code	..	76	
4.5.7	Depth	of	Inheritance	and	Lines	of	Code	...	77	
4.5.8	Examination	of	code	...	78	

	 vii	

4.6	Low	Scoring	Metrics	..	79	
4.6.1	MicrosoftCodeAnalysisCSharpScripting	Project	..	80	
4.6.2	Cyclomatic	Complexity	and	Class	Coupling	..	80	
4.6.3	Depth	of	Inheritance	and	Class	Coupling	...	81	
4.6.4	Lines	of	Code	and	Class	Coupling	..	82	
4.6.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	...	82	
4.6.6	Cyclomatic	Complexity	and	Lines	of	Code	..	83	
4.6.7	Depth	of	Inheritance	and	Lines	of	Code	...	84	
4.6.8	Examination	of	code	...	84	

4.7	Average	Scoring	Project	...	86	
4.7.1	RosylnTestPdbUntilities	Project	...	86	
4.7.2	Cyclomatic	Complexity	and	Class	Coupling	..	87	
4.7.3	Depth	of	Inheritance	and	Class	Coupling	...	87	
4.7.4	Lines	of	Code	and	Class	Coupling	..	88	
4.7.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	...	89	
4.7.6	Cyclomatic	Complexity	and	Lines	of	Code	..	90	
4.7.7	Depth	of	Inheritance	and	Lines	of	Code	...	90	
4.7.8	Examination	of	code	...	91	

4.8	Key	Findings	..	91	
4.8.1	Cyclomatic	Complexity	and	Class	Coupling	..	93	
4.8.2	Depth	of	Inheritance	and	Class	Coupling	...	93	
4.8.3	Lines	of	Code	and	Class	Coupling	..	93	
4.8.4	Cyclomatic	Complexity	and	Depth	of	Inheritance	...	93	
4.8.5	Cyclomatic	Complexity	and	Lines	of	Code	..	93	
4.8.6	Depth	of	Inheritance	and	Lines	of	Code	...	94	
4.8.7	Noteworthy	Points	..	94	

4.9	Conclusions	..	94	

5.	Impact	of	Code	Readability	on	Metrics	...	96	

5.1	Introduction	...	96	
5.2	Developing	the	Extraction	Software	..	96	
5.2.1	MethodsPerClass	..	99	

5.3	Data	Preparation	..	104	
5.3.1	FixingData	..	106	
5.3.2	Formatting	Type	Name	...	109	
5.3.3	Filtering	of	Partial	Classes	...	110	
5.3.4	Merging	the	Data	...	111	

	viii	

5.4	Exploring	the	Merged	Data	Set	..	111	
5.4.1	Merged	Data:	Class	Coupling	and	Number	of	Public	Methods	111	
5.4.2	Merged	Data:	Class	Coupling	and	Number	of	Private	Methods	112	
5.4.3	Merged	Data:	Cyclomatic	Complexity	and	Number	of	Public	Methods	113	
5.4.4	Merged	Data:	Cyclomatic	Complexity	and	Number	of	Private	Methods	114	
5.4.5	Merged	Data:	Depth	of	Inheritance	and	Number	of	Public	Methods	114	
5.4.6	Merged	Data:	Depth	of	Inheritance	and	Number	of	Private	Methods	115	
5.4.7	Merged	Data:	Lines	of	Code	and	Number	of	Public	Methods	116	
5.4.8	Merged	Data:	Lines	of	Code	and	Number	of	Private	Methods	116	

5.5	Key	Findings	..	117	
5.6	Conclusions	..	118	

6.	Evaluation	..	119	

6.1	Introduction	...	119	
6.2	Tools	...	120	
6.2.1	NUnit	...	120	
6.2.2	Code	Coverage	..	120	

6.3	Unit	Testing	Evaluation	...	121	
6.4	Evaluating	Merged	Data	...	126	
6.4.1	Binder	Class	...	128	
6.4.2	CodeGenerator	Class	..	129	
6.4.3	CSharpCompilation	Class	...	130	

6.5	Summary	of	Key	Quantitative	Findings	..	131	
6.6	Qualitative	Evaluation	of	Code	Readability	..	132	
6.6.1	Interviewee	Profiles	...	132	
6.6.2	Software	Terminology	..	134	
6.6.3	Code	Readability	..	135	

6.7	Summary	of	Key	Qualitative	Findings	...	137	
6.8	Conclusions	..	138	

7.	Conclusions	and	Future	Work	...	140	
7.1	Introduction	...	140	
7.2	Conclusions	..	140	
7.2.1	Existing	Literature	..	140	
7.2.2	Data	Exploration	..	141	
7.2.3	Impact	of	Code	Readability	on	Metrics	..	143	
7.2.4	Evaluation	..	145	

	 ix	

7.3	Future	Work	..	146	
7.3.1	Introducing	New	Metrics	...	146	
7.3.2	Alternative	Open	Source	Solutions	..	147	
7.3.3	Programming	Paradigms	...	147	
7.3.4	Community	Evaluation	...	147	
7.3.5	Development	Methodology	..	148	
7.3.6	Design	Patterns	..	148	
7.3.7	Extracting	Data	Using	Platform	Libraries	..	148	
7.3.8	Open	Source	Testing	..	149	

	

	

	

	

	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 x	

Table	of	Figures	

	
Figure	2.1:	Modelling	a	car	in	the	object-oriented	programming	paradigm	9	

Figure	2.2:	Object-Oriented	Code	Modelling	of	a	Car	and	Code	Creating	a	new	instance	of	

Car	called	toyota	..	10	

Figure	2.3:	Control	Graph	...	13	

Figure	2.4:	Cyclomatic	Complexity	of	Common	Control	Structures	..	14	

Figure	2.5:	Myer	highlighting	the	need	to	take	Else	branches	into	account	17	

Figure	2.6:	Mapping	of	Metrics	to	OOD	Elements	..	23	

Figure	2.7:	A	Correlation	Matrix	of	Normalized	Measures	..	30	

Figure	3.1:	Categories	of	Cohesion	...	38	

Figure	3.2:	C	Function	that	computes	the	sum,	average	and	product	numbers	from	1	to	n

	...	41	

Figure	3.3:	C	function	in	Figure	3.2	in	a	program	dependence	graph	...	41	

Figure	3.4:	Data	slices	for	C	function	as	defined	in	Figure	3.2	...	42	

Figure	3.5:	CQMM	activities	...	51	

Figure	3.6:	The	process	of	extracting	static	code,	churn	and	network	metrics	53	

Figure	3.7:	Churn	Metrics	...	53	

Figure	3.8:	Code	Metrics	...	54	

Figure	3.9:	Network	Metrics	...	55	

Figure	3.10:	The	Squal	Model	...	56	

Figure	3.11:	Definition	of	integer	d	..	60	

Figure	3.12:	Suggested	names	for	integer	d	...	60	

Figure	3.13:	Example	of	code	using	poor	naming	convention	...	61	

Figure	3.14:	Example	of	code	with	refactored	variable	names	...	61	

Figure	4.1:	Visual	Studio	IDE	highlights	Bus	in	red	as	it	has	detected	an	error	66	

Figure	4.2:	Roslyn	open	source	solution	on	github.com	...	67	

Figure	4.3:	The	process	of	generating	metric	data	from	Roslyn	...	69	

Figure	4.4:	Identifying	Projects	with	High	Scoring	Metrics	...	72	

Figure	4.5:	Identifying	Types	with	High	Scoring	Metrics	...	73	

Figure	4.6:	Cyclomatic	Complexity	and	Class	Coupling	...	73	

Figure	4.7:	Depth	of	Inheritance	and	Class	Coupling	...	74	

Figure	4.8:	Lines	of	Code	and	Class	Coupling	..	75	

Figure	4.9:	Cyclomatic	Complexity	and	Depth	of	Inheritance	..	76	

Figure	4.10:	Cyclomatic	Complexity	and	Lines	of	Code	..	76	

Figure	4.11:	Depth	of	Inheritance	and	Lines	of	Code	...	77	

	 xi	

Figure	4.12:	CodeGenerator	Class	..	78	

Figure	4.13:	GreenNodeExtensions	Class	..	79	

Figure	4.14:	Identifying	Projects	with	Low	Scoring	Metrics	...	80	

Figure	4.15:	Cyclomatic	Complexity	and	Class	Coupling	..	81	

Figure	4.16:	Depth	of	Inheritance	and	Class	Coupling	..	81	

Figure	4.17:	Lines	of	Code	and	Class	Coupling	..	82	

Figure	4.18:	Cyclomatic	Complexity	and	Depth	of	Inheritance	...	83	

Figure	4.19:	Cyclomatic	Complexity	and	Lines	of	Code	..	83	

Figure	4.20:	Depth	of	Inheritance	and	Lines	of	Code	...	84	

Figure	4.21:	Figure	4.21:	CSharpPrimitiveFormatter	Class	..	85	

Figure	4.22:	CSharpTypeNameFormatter	Class	...	85	

Figure	4.23:	Cyclomatic	Complexity	and	Class	Coupling	..	87	

Figure	4.24:	Depth	of	Inheritance	and	Class	Coupling	..	88	

Figure	4.25:	Lines	of	Code	and	Class	Coupling	..	88	

Figure	4.26:	Cyclomatic	Complexity	and	Depth	of	Inheritance	...	89	

Figure	4.27:	Cyclomatic	Complexity	and	Lines	of	Code	..	90	

Figure	4.28:	Depth	of	Inheritance	and	Lines	of	Code	...	90	

Figure	4.29:	AsyncStepInfo	Class	..	91	

Figure	4.30:	High	Scoring	Metrics	..	92	

Figure	4.31:	Low	Scoring	Metrics	...	92	

Figure	4.32:	Average	Scoring	Metrics	...	92	

Figure	4.33:	Small	Multiples	showing	Cyclomatic	Complexity	and	Lines	of	Code	94	

Figure	5.1:	Overview	of	Roslyn	Structure	...	97	

Figure	5.2:	MethodsPerClass	Class	Diagram	..	98	

Figure	5.3:	Definition	of	MethodsPerClass	...	99	

Figure	5.4:	Definition	of	DataSet	class	used	within	MethodsPerClass	100	

Figure	5.5:	Definition	of	SetUp	method	...	100	

Figure	5.6:	Definition	of	the	foreach	statement	used	to	iterate	through	all	the	Roslyn	

binaries	...	100	

Figure	5.7:	Definitions	of	three	methods	used	within	MethodsPerClass	101	

Figure	5.8:	Definition	of	ExtractTypes	methods	...	102	

Figure	5.9:	Definition	of	FormatName	...	102	

Figure	5.10:	Definition	of	FilterForPartialTypes	...	103	

Figure	5.11:	Definition	of	AddTypesToWorkSheet	..	103	

Figure	5.12:	Save	new	workbook	to	local	hard	disk	..	103	

Figure	5.13:	Data	Preparation	using	CRISP-DM	..	104	

	 xii	

Figure	5.14:	FixingData	Class	Diagram	..	105	

Figure	5.15:	Definition	of	FixingData	class	..	106	

Figure	5.16:	Definition	of	SetUp	method	..	106	

Figure	5.17:	Reading	in	data	from	workbook	on	local	hard	disk	...	107	

Figure	5.18:	Definition	of	GetDataFromWorksheet	...	107	

Figure	5.19:	Definition	of	FormatTypeName	..	107	

Figure	5.20:	Definition	of	FilterForPartialTypes	...	108	

Figure	5.21:	Definition	of	AddTypesToWorksheet	..	108	

Figure	5.22:	Definition	of	SaveWorkbook	..	108	

Figure	5.23:	Definition	of	FormatName	..	109	

Figure	5.24:	Definition	of	FormatTypeName	..	109	

Figure	5.25:	Definition	of	FilterForPartialTypes	...	110	

Figure	5.26:	Definition	of	FilterForPartialTypes	...	111	

Figure	5.27:	Class	Coupling	and	Number	of	Public	Methods	...	112	

Figure	5.28:	Class	Coupling	and	Number	of	Private	Methods	...	113	

Figure	5.29:	Cyclomatic	Complexity	and	Number	of	Public	Methods	113	

Figure	5.30:	Cyclomatic	Complexity	and	Number	of	Private	Methods	114	

Figure	5.31:	Depth	of	Inheritance	and	the	Number	of	Public	Methods	115	

Figure	5.32:	Depth	of	Inheritance	and	the	Number	of	Private	Methods	115	

Figure	5.33:	Lines	of	Code	and	Number	of	Public	Methods	...	116	

Figure	5.34:	Lines	of	Code	and	Number	of	Private	Methods	...	117	

Figure	5.35:	Overview	of	findings	from	scatter	plots	...	117	

Figure	6.1:	Definition	of	GeneratePrimes	Class	...	122	

Figure	6.2:	Definition	of	GeneratePrimes	Class	Unit	Tests	...	122	

Figure	6.3:	Definition	of	Refactored	GeneratePrimeNumbers	Method	123	

Figure	6.4:	Definition	of	Private	Methods	used	by	GeneratePrimeNumbers	124	

Figure	6.5:	Definition	of	Unit	Tests	for	both	GeneratePrimes	and	PrimeGenerator	125	

Figure	6.6:	Code	Coverage	results	for	both	GeneratePrimes	and	PrimeGenerator	125	

Figure	6.7:	Code	Metrics	results	for	both	GeneratePrimes	and	PrimeGenerator	126	

Figure	6.8:	Number	of	Private	Methods	and	Lines	of	Code	(A)	..	127	

Figure	6.9:	Number	of	Private	Methods	and	Cyclomatic	Complexity	(B)	127	

Figure	6.10:	Binder	Code	Snippet	One	...	128	

Figure	6.11:	Binder	Code	Snippet	Two	..	128	

Figure	6.12:	Binder	Code	Snippet	Three	...	129	

Figure	6.13:	CodeGenerator	Code	Snippet	...	130	

Figure	6.14:	CSharpCompilation	Code	Snippet	..	130	

	xiii	

Figure	6.15:	Interviewee	profiles	overview	..	132	

Figure	6.16:	Number	of	years	interviewees	spent	working	in	Information	Technology	133	

Figure	6.17:	Job	titles	of	interviewees	...	133	

Figure	6.18:	Daily	interaction	with	code	of	interviewees	...	134	

Figure	6.19:	Testing	approaches	of	companies	that	interviewees	work	within	134	

Figure	6.20:	Common	software	related	terms	interviewees	were	familiar	with	135	

Figure	6.21:	Code	snippets	presented	to	interviewees	to	be	rate	for	readability	136	

Figure	6.22:	Code	snippets	presented	to	interviewees	to	be	rate	for	readability	136	

Figure	6.23:	Experts	view	of	complexity	of	BubbleSort.java	...	137	

Figure	7.1:	Small	Multiples	of	Cyclomatic	Complexity	...	142	

Figure	7.2:	Overview	of	correlations	between	code	metrics	and	public	and	private	

methods	..	144	

Figure	7.3:	Illustration	of	how	a	heat	map	looks	...	148	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 1	

1. Introduction	
	

1.1	Project	Background	

Fagan (1976) was one of the early adopters of using static code analysis to identify

errors early in the software development process. He argued that the cost involved in

fixing errors increased the later the error was discovered during the development

process. In 2002 van Emden and Moonen applied software inspection to detecting

code smells within object-oriented languages. He describes code smells as “patterns

that are generally associated with bad design and bad programming practices” for

example, “code duplication” and “long methods”. This was in contrast to existing code

inspection tools that looked at low-level aspects of code to identify problems with

“pointer arithmetic, memory (de)allocation, null references […] etc.”. Yüksel and

Sozer (2013) highlighted an issue with code inspections impacting developer

productivity by having too many uncategorised alerts including false positives. In his

research he proposed a technique to classify these types of alerts with a goal to

providing real value through code inspections.

Yüksel and Sozer (2013) highlighted the issue of static code analysis providing too

many alerts to developers including false positives. This resulted in developers

spending too much time investigating each alert to establish how significant it was.

The research proposed an approach to classifying the alerts using machine-learning

techniques. Steidl (2013) noted that a large part of source code is comments and

although crucial to understanding the code they are not taken into account when

evaluating the quality of the code. He argues that source code comments should be

included in the metrics used when analysing code quality (Steidl et al., 2013).

Balachandran (2013) stated that while peer code reviews was a cost-effective way of

conducting code reviews it consisted of a significant amount of human capital. He

argued that static analysis could be used to reduce manual code reviews. The paper

looked at using checks for code violations and “common defect patterns” in an effort

to reduce the amount of manual intervention involved.

De Silva, Kodagoda, & Perera (2012) compared three complexity metrics including

“McCabe’s Cyclomatic Complexity, Halstead’s software science and Shao and

	 2	

Wang’s cognitive functional size”. The paper concluded that Shao and Wang’s

cognitive functional style was most beneficial in real world applications. Sarwar,

Shahzad, & Ahmad (2013) looked at addressing the nesting problem with the

Cyclomatic Complexity metric, a long established metric used to determine the

complexity of code. Tosun, Caglayan, Miranskyy, Bener, & Ruffolo (2011) stated that

researchers found that “code, churn, and network metrics as significant indicators of

defects“. However, it also stated that not all may be informative for all defect

categories.

Casalnuovo, Devanbu, Oliveira, Filkov, & Ray (2015) used a large dataset provided by

GitHub to explore “connection between asserts and defective occurrence”. This

demonstrates how open source projects can provide the large datasets on which to

conduct tests in an effort to gain new insights into old issues.

Lei, Cheng, Bing, & Sato (2015) used code coverage as a “concrete measurement of

testability” and demonstrated the necessity of testing less visible code areas.

Overall it can be concluded that establishing which metrics to apply to a static analysis

to in an effort to identify issues early in the software development life cycle (SDLC)

has many challenges. While selecting one or two metrics may not be enough, applying

all known metrics, can result in too many alerts being generated, as highlighted by

Yüksel and Sozer (2013).

1.2	Project	Description	

The majority of software metrics were developed in the 20th century when compilers

simply compiled the code that was presented to them, but modern compilers optimise

and re-structure code to achieve a more effective machine level code, which in turn

changes the effectiveness of existing software metrics. This research seeks to bring

software metrics into the 21st century by using them in a hitherto unanticipated way by

attempting to determine their effectiveness as indicators of code quality and

readability.

	 3	

Although there has been a long history of defining code metrics that can be used to

detect issues through the use of static code analysis, early in the development process,

there is still much discussion as to which of these metrics are most valuable and there

is much room for discussion as to application in modern day software development.

There are many approaches that can be taken in applying code metrics, the most

obvious being their intended use from when first developed but as previously

mentioned much of this has been solved by modern day compilers. That said certain

parts are still valid, such as determining the complexity of piece of code. As De Silva

et al. (2012) found, asking programmers how complex a piece of code is can lead to

wide range of viewpoints.

van Emden & Moonen (2002) brought a new dimension to the area by introducing the

concept of detecting ‘code smells’ as part of static code analysis. This moved code

metrics away from being simply a binary search for code that is either good or bad and

looks to how the code is styled or if the code adopts best practice.

The main issues of focus for this research regarding code metrics are:

1. Researching the existing area of code metrics in depth in order to gain a

complete picture and identify key theories that have been developed.

2. The introduction of coding best practices into the area of code metrics.

3. Evaluating if the code metric theories can be used in commercial development

of software

4. Identifying relationships between the various code metrics

Points One and Three above will be researched using existing literature whereas Points

Two and Four will be the subject of formulating a new data set and examining the data

through the use of visuals in an effort to identify relationships and examine sample

code to detect common patterns that make point to causation of the metric scores. It is

in attempting to identify this causation that the link between code metrics and modern

best practices in programming will be analysed.

In order to test the hypothesis sample code will be required. To ensure the data is of

practical value a popular open source project will be selected and analysed. The

provides a higher value to the data set as it will be an open source solution that is in

	 4	

active use and therefore have all complexities and trade-offs that are commonly made

when developing code in the real world and not just exhibit textbook style and

practice. This will involve sourcing tools to extract the new metric data and then

creating data visualisations in an effort to identify any possible relationships that may

exist. In addition, code samples will be analysed at times in order to identify possible

characteristics in the code that result in the various code metric results. It is there

characteristics in the code that may also be able to help new insight into the impact

common best practice has on code metrics.

1.3	Project	Aims	and	Objectives	

The key research question can be stated as follows: Can metrics from the past century

be repurposed to for use in modern day programming?

The research question can be broken down into the following objectives:

• Conduct research in the more broad area of code metrics

• Identify key metrics that have provided value over the years

• Introduce new modern day best practices to the area

• Identify how these metrics can assist or impact modern day best practice

The key hypothesis formulation here is as follows:

• H0: Metrics defined for the 20th century coding issues are repurposed for 21st

century coding issues.

• H1: Metrics used to identify coding issues in the past can be repurposed to

identify good coding practices for modern day programming

	

1.4	Project	Evaluation	

The process of evaluation will use a Mixed Method Approach, first there will be a

quantitative evaluation, which will involve taking any findings and evaluating using a

combination of unit testing and code coverage metrics to assist in determining the

	 5	

validity of the findings. In addition, it will also involve assessing the code where the

finding was made in an effort to identify any possible causation. Secondly, there will

be a qualitative assessment done in the form of interviews by people from the

information technology industry. Ideally they would have a background in testing or

software development. In addition to assessing any finds that may arise as a result of

the research the interviews will also attempt to gain insight into the level of

understanding that currently exists within the software industry in relation to code

metrics.

1.5	Thesis	Roadmap	

Chapter Two will seek to lay a solid foundation by examining in depth some the most

important areas of code metrics. This will provide the building blocks from which the

subsequent chapters can build.

Following this Chapter Three will look to explore areas that have grown out of the key

concepts from Chapter Two. There will also be special attention paid to the various

attempts that were made to use code metrics with established commercial

organisations.

Chapter Four will seek to explore new metric data in an attempt to identify any new

insights. This involves identifying a popular open source project in order to analyse

data that is used in practice within the industry and extract metrics from that data using

commercially available tools. This exploration phase will rely on creating data

visualisations in order to identify these new insights. In addition, it will also examine

code snippets at random in an effort to identify any patterns or characteristics that

cause the metrics to be.

Chapter Five will consist of taking one or more key findings from Chapter Four and

exploring it in more depth. This may take the form of examining a relationship

between two or more metrics or a characteristic found through the random sampling of

code.

	 6	

Taking any findings from Chapter Five, Chapter Six will attempt to evaluate these.

There are various tools available that may assist in this process including unit testing

of code and code coverage i.e. the percentage of code exercised by a given suite of

tests. In addition, this section will also consist of a qualitative element of assessment.

Chapter Seven will present the conclusions of this research, and also suggest future

directions that this project might take.

	

	

	

	 	

	 7	

2. Exploring	Metrics	

2.1	Introduction	

Metrics in software engineering are defined by different researchers in a variety of

different ways, so much so that it is difficult to establish a consensus as to what exactly

metrics are. The term is used in many aspects of the overall Software Development

Lifecycle (SDLC) and can be described as having some sort of measurable component.

This chapter will begin with a general discussion on software metrics that will assist

with framing where code metrics, the main topic of this research, fits into the overall

picture. It will then look to define some of the terminology that is contained

throughout this paper so as to remove any possible ambiguity. From there the paper

will dive deep into the area of code metrics.

Starting with McCabe’s Cyclomatic Complexity, the paper will dig into the original

thought processes of the area in order to establish a solid understanding of the key

areas that code metrics have grown out of. Building on from McCabe and looking at

the various critiques offered on his approach and others the chapter will then shift

towards the object-oriented paradigm of software development with special attention

to be paid to Chidamber & Kemerer’s (1991) suite of software metrics. From there it

will move to van Emden’s (2002) work on bringing modern best practices of what are

known as ‘code smells’ to the area of code metrics and finish by looking at arguably

one of the most fundamental principles in object-oriented programming, known as The

Law of Demeter.

2.2	Metrics	within	Software	Development	

Metrics in relation to software is a very broad as it can relate to many different aspects

of software or the development of software. For example, the ratio between developers

and testers could be a metric or the number of bugs found per 100,000 lines of code

could also be a metric. There are many books and papers that discuss metrics in the

form of project management that are often referred to as software metrics, for example,

the budget for a software project i.e. what percentage has been spent on average each

	 8	

day versus what percentage of the software is completed. For this reason it is

extremely important to define what is being referred to as a metric within this research.

It will focus on what are known as code metrics. These are metrics taken directly from

code already written by developers. It is in effect software, either in the form of

commercially available tools or as a result of in-house development that is used to

analyse code as it is written. As will be shown throughout this chapter, it can be used

to extract varying types of data, for example, identify areas of the code as having a

high-level of complexity and therefore be considered as having a higher risk of being

defective. In addition, it is important to realise that these checks are generic i.e. the

same checks can be performed on all areas of the code without any specific software

being developed for a particular feature or subcomponent.

The earlier decades of programming involved a large amount of procedural code

whereas the 1990s saw an explosion of object-oriented languages with C++, Java and

Microsoft’s C# growing in popularity. Although this research does not focus on any

one particular language, Microsoft’s C# will provide the basis for data exploration and

experimentation in later chapters.

Prior to looking at code metrics, some definitions will be provided to some of the key

concepts and themes found throughout the paper.

2.3	Definitions	

This section will introduce some definitions of the various concepts found throughout

the paper.

	 9	

2.3.1	Object-Oriented	Programming	

	
Figure	2.1:	Modelling	a	car	in	the	object-oriented	programming	paradigm

	

2.3.2	Representing	Real-World	Items	

The most conceptual way to comprehend object-oriented programming is to consider

Figure 2.1 above showing a car. Object-Oriented programming provides programmers

with a means to take a real world object like the car above and represent it as within a

programme. To do this, the car above would be a class. The class would literally be

called Car (with an uppercase C). Within the Car class, there are mainly two things:

properties and methods. The properties are like items of the car such as FuelType,

TireSize, MaxSpeed, and NumberOfGears etc. whereas methods allow

behaviours of the class to be performed. For example, the Car class could have

methods called DriveForward or ChangeGear (Meyer, 1988).

2.3.3	Instances	of	a	Class	

Once the Car class has been defined, this allows another part of the code outside of

this particular class create instances of the Car class. The Car class is no use

programming-wise until an instance of the class is created. Most programming

languages provide the new keyword to do this. In the case of the Car class, the new

	 10	

instance called Toyota could be created. Now the programmer can use the properties to

get information about the Toyota car that has been created while also using the

methods DriveForward and ChangeGear in order to get the Toyota car to do

useful things. When talking about methods, the word ‘invoke’ will be used. Figure 2.2

shows car as represented in object-oriented programming and the piece of code using

the new keyword to create an instance of the car called toyota. The new instance has

access to the methods including DriveForward (Jacobson, 1992).

	
Figure	2.2:	Object-Oriented	Code	Modelling	of	a	Car	and	Code	Creating	a	new	instance	of	Car	called	

toyota

Behind the scenes programming languages send messages to methods that invoke them

but the details of this are beyond the scope of this paper and are not required in

understanding the basic concepts being presented here. The Car class above, as an

example, is very simplified but provides the overall concept of how classes can be

used within programming language to model items in the real world, like cars or boats

or people etc.

2.3.4	Public	versus	Private	Methods	

The Car class above had two methods, DriveForward and ChangeGear, both of

which allow other parts of a program to invoke them, once an instance of the Car

class has been created. A class can have two types of these methods, public and

private. The methods in the Car class were both public as code outside of the class

could invoke them. Private methods on the other hand are not accessible outside of the

class. They are restricted in access and are therefore only available to code within the

	 11	

class. There are many reasons why a programmer would choose to make a method

within a class private, but for now it is suffice to say that is something controlled by

the programmer and can be used to set access levels to different pieces of class

functionality (Meyer, 1988).

2.3.5	Unit	Tests	

A key aspect of developing software is testing the software. Software testing is an

entire area in itself with many different practices from manually testing entire products

to automated tests that run each time a new piece of code added to product. One of the

many concepts that arise is that of unit testing. Unit testing allows the tester to write

tests that exercise every avenue of a piece of code. The test would normally break

down a large application and select a segment as small as a class and perform tests on

every aspect of that class. A unit test should normally only test one thing. For example,

a unit test can test that an if-statement, a piece of code that checks if a value or

combination of values returns true of false, performs correctly for all inputs. One if-

statement could have multiple tests depending how what needs to be taken into

account to evaluate the if-statement (Osherove, 2015).

2.3.6	Code	Coverage	

As previously mentioned, unit tests evaluate all avenues of a piece of code to ensure

the code is executing as expected. A key aspect of writing unit tests is determining

when all of these avenues have been covered. Tools are available that allow a tester to

calculate what is known as code coverage. Code coverage tools provide the percentage

value of the code that has been covered by a given suite of tests (Osherove, 2015).

2.4	Code	Metrics	

From the earliest days of code development the issue of defects and defective code has

been a challenge for software engineers and organisations dependent on large-scale

software platforms. Beginning with Fagan (1976) arguing that the cost of fixing such

defects increased the later they were discovered in the development process has led to

a lot of theorising as to how best tackle the issue. One area of focus was to develop a

	 12	

generic way to statically analyse in an effort to identify areas with a high risk of being

defective. One of the earliest works in this area came from McCabe (1976) and has

become the benchmark against which many other theories are either compared against

or branches from.

2.4.1	McCabe’s	Cyclomatic	Complexity	

Thomas McCabe (1976) posed a question regarding the development of software:

“How to modularize a software system so the resulting modules are both testable and

maintainable?” McCabe argued that given the considerable portion of software

development that is devoted to testing and maintenance of a system that a

mathematical technique was required in order to quantify which modules of a system

would be “difficult to test or maintain”. In an attempt to answer this question, McCabe

(1976) defined a complexity measure, using graph theory that measures and controls

the number of paths through a program. Providing examples in FORTRAN programs

McCabe showed that complexity is independent of physical size and “complexity

depends only on the decision structure of a program” (T. McCabe, 1976).

The first issue that arises with this approach is the problem that “Any program with a

backward branch potentially has an infinite number of paths.” Although using the

total number of paths through a program is possible, it has been found to be

impractical and therefore McCabe’s Cyclomatic Complexity measure is defined in

terms of basic paths – “that when taken in combination will generate every possible

path” (T. McCabe, 1976).

In order to explain the Cyclomatic Complexity measurement, McCabe presents some

mathematical preliminaries.

Definition 1: The cyclomatic number V(G) of a graph G with n vertices, e edges, and p

connected components is

V G = e− n+ p

Theorem 1: In a strongly connected graph G, the cyclomatic number is equal to the

maximum number of linearly independent circuits.

	 13	

Using this theorem, McCabe then associated a given program with a directed graph

that has unique entry and exit nodes. “Each node in the graph corresponds to a block

of code in the program where flow is sequential and the arcs correspond to branches

taken in the program” (T. McCabe, 1976).

The graph shown in Figure 2.3 is a control graph where it is assumed that each node

can be reached by the entry node and that each node can reach the exit node, with “a”

being the entry node and “f” being the exit node (T. McCabe, 1976).

	
Figure	2.3:	Control	Graph

As exit node ‘f’ has been branched back to the entry node ‘a’ the graph is now strongly

connected i.e. “there is path joining any pair of distinct vertices” and therefore fulfils

theorem 1.

McCabe (1976) defined the Cyclomatic Complexity of some common control

structures:

	 14	

	
Figure	2.4:	Cyclomatic	Complexity	of	Common	Control	Structures

In addition, McCabe (1976) also identified some properties of the Cyclomatic

Complexity

1. V G ≥ 1

2. V G is the maximum number of linearly independent paths in G; it is the size of the basis set.

3. Inserting of deleting functional statement to G does not affect V(G).

4. G has only one path if and only if 𝑉 G = 1.

5. Inserting a new edge in G increases V (G) by unity.

6. V G depends only on the decision structure of G.

2.4.2	Halstead	E’s	

According to Halstead (1972) the effort required to generate a program “can be

derived from simple counts of distinct operators and operands and the total

frequencies of operators and operands”. Given these, Halstead computes the number

of mental comparisons required to generate a program (Curtis, Sheppard, Milliman,

Borst, & Love, 1979).

2.4.3	Building	Upon	McCabe’s	Cyclomatic	Complexity	

Cutis et al. (1979) used three software complexity measures, namely McCabe’s

Cyclomatic Complexity, Halstead’s E and “the length as measured by the number of

statements” in an attempt to estimate the future maintenance cost of a software

program. He argued that with the cost of maintaining the program to be three times

greater than the cost of the initial development, such a measurement could prove

invaluable to the software managers (Curtis et al., 1979).

	 15	

First, they look to Halstead’s 1972 theory stating that, “algorithms have measureable

characteristics analogous to physical laws”. Halstead defined the amount of effort

required to generate a program as “simple counts of distinct operators and operands

and the total frequencies of operators and operands”. Using these four quantities

Halstead calculates “the number of mental comparisons required to generate a

program” (Curtis et al., 1979).

They then take McCabe’s definition of complexity of counting the number of “basic

control path segments which, when combined, will generate every possible path

through the program”. While noting that no exact mathematical relationship exist

between McCabe’s and Halstead’s metrics they do point out that as the number of

control paths increases in a program there would be an anticipated increase in the

number of operators and therefore a significant correlation between the two would not

be surprising (Curtis et al., 1979).

They go on to examine the differences between psychological complexity, the

characteristics that make a program difficult to understand to human readers and

computational complexity, correctness of the program that both Halstead and McCabe

analysis are attempting to define. In an effort to understand to what extent both of

these metrics “assess the psychological complexity of understanding and modifying

software”, they found that “assessing the psychological complexity of software

appears to require more than a simple count of operators, operands and basic control

paths” (Curtis et al., 1979).

2.4.4	Critiquing	Halstead	and	McCabe	

Shen, Conte and Dunsmore (1983) offered a critique of Halstead’s theory of software

science and looked at some of the metrics published in the intervening years since

Halstead’s first publication circa 1977. Noting that as software metrics are growing

with ever increasing importance and simple measures such as lines of code are an

inadequate measure of complexity, they stated that there was a multitude of factors that

affect programmers productivity including the “type of program being developed, size

of the program, implementation language, interface complexity among modules in the

	 16	

program, experience of the programmers involved programming techniques

employed” as well as the environment itself. Even taking all these factors into account

they found it did not lead to a “useful” estimator of programming effort required.

They instead argued in favour of a “model of the programming process based upon a

manageable number of major factors that affect programming” as they believed this

would lead to more useful metrics for software managers to work with.

Their analysis had some criticisms of the software science, such that some of the early

code samples used to validate software science was quiet small and there were many

ambiguities around deciding which operators and operands should be included in the

count citing the example of the GO TO label as being “a unique operator for each

unique label”. Overall they did concede that software science E “is at least as good an

effort measure as most others being used” (Shen, Conte, & Dunsmore, 1983).

McCabe’s Cyclomatic Complexity defines a “mathematical technique that will provide

a quantitative basis for modularisation and allow us to identify software modules that

will be difficult to test or maintain”. On rejecting ‘lines of code’ as there was no

obvious relationship between length and module complexity, McCabe defined the

measure of complexity by examining the number of control paths through a module

(Shepperd, 1988).

McCabe used graph theory to overcome the issue of a having an infinite number of

paths through code that contains a backward branch. By representing each executable

statement as a node with the edges representing the control flow, any piece of

procedural software could be depicted as a directed graph. Given this representation of

the code and provided this directed graph is strongly connected i.e. every vertex is

reachable from every other vertex, it can be used to determine the number of basic

paths contained in the program, which, when combined together, “can generate all

possible paths through the graph or program” (Shepperd, 1988).

Sheppard (1988) offered a critique of McCabe’s Cyclomatic Complexity as a software

metric. He cites Myer’s criticism that the metric “fails to distinguish between

selections with and without ELSE branches”. This is shown in Figure 2.5 below,

	 17	

where Myer’s metric takes the ELSE into account unlike the McCabe’s Cyclomatic

Complexity (Shepperd, 1988).

	
Figure	2.5:	Myer	highlighting	the	need	to	take	Else	branches	into	account

Sheppard (1988) also notes the fact that McCabe’s thinking in defining the complexity

revolved around FORTRAN as opposed to more recent languages of the time, namely

Ada. This in turn makes the mapping from code to graph more ambiguous. In addition,

Sheppard also highlights the controversy around the metric being “insensitive to

complexity contributed from linear sequences of statements”.

The fact that v = 1 will remain true for “a linear sequence of any length” was another

area of controversy and had other researchers offer alternatives to McCabe’s proposal.

These included Hansen’s 2-tuple of Cyclomatic Complexity although Baker and

Zweben also took issue with this approach (Shepperd, 1988).

Another criticism of McCabe’s Cyclomatic Complexity was that it increased when

applying what are considered good programming practices. As noted by Sheppard

(1988) only two out of twenty six of Kernighan and Plauger’s rules of good

programming style resulted in a decrease in the complexity. All decisions carry the

same weight for McCabe’s Cyclomatic Complexity regardless of why nesting was

applied in a particular fashion. Many researchers would argue that modularity of a

program is better viewed through ‘coupling’ and ‘cohesion’, something that is not

captured by McCabe’s metric (Shepperd, 1988).

While noting that the difference between software engineering and other established

branches of engineering was the lack of an accepted set of metrics with software

	 18	

engineering, Gill and Kemerer (1991) argued that the absence of which would lead to

software development remaining in a “stagnant craft-type” mode that made it difficult

to pass knowledge to the next generation of engineers. By having well-established

metrics, engineers could quantify projects and evaluate tools and processes more

effectively.

They highlighted the maintenance of software systems as one of the key areas in need

of a metric and evaluating the complexity of code that needs to be modified. He cites

McCabe’s description of the primary purpose of the metric as to “identify software

modules that will be difficult to test or maintain”. Their paper does not seek to

evaluate whether McCabe’s Cyclomatic Complexity fully captures all the complexity

of a system but rather answer Sheppard’s question regarding McCabe’s complexity

measure; can McCabe’s Cyclomatic Complexity serve as a “useful engineering

approximation” (Gill & Kemerer, 1991).

They argue that while the assumptions which exist linking code complexity to high

maintenance cost have been criticized as relatively weak, studies have shown that a

large amount of resources have gone into engineers attempting to understand code

when making changes during maintenance. Their paper goes on to look at the

relationship between McCabe’s Cyclomatic Complexity and the maintenance of

software systems. Included in their findings, Gill and Kemerer (1991), found that

metrics proposed by Myers and Hansen as well as McCabe’s Cyclomatic Complexity

were all highly correlated. As consistent with Sheppard’s findings, the data suggested

there was unlikely to be “any practically significant different results using” Myers or

Hansen’s metrics over McCabe’s. In addition, it was also found that the length

measure was also highly correlated to the complexity measure. Taking this

information, Gill (1991), defined a complexity density metric defined “as the ratio of

Cyclomatic Complexity […] metric to thousand lines of executable code”. Although

citing the use of a small sample, Gill (1991), did note the results of his experiments as

“sufficiently interesting“ to warrant further study and if they continued to hold that the

use of the complexity density was a quantitative way to determine software

maintainability.

	 19	

Sarwar et al. (2012) argued that due to McCabe’s Cyclomatic Complexity being

introduced using the linear programming language Fortran and as this langauge

contains no functions or classes and hence these concepts were ommitted, this measure

of complexity is not suffice for code developed using the Object-Oriented Paradigm or

Service-Oriented Architecture. They attempted to calculate the complexity of the

Windows Communication Foundation (WCF), a framework that implements Service

Oriented Architecture and presented a complex algorithm that he argued could be used

in estimating the production and maintenance cost of a project using this framework

(Sarwar, Ahmad, & Shahzad, 2012).

2.5	Metrics	for	Object-Oriented	Code	

2.5.1	Chidamber	and	Kemerer	Metric	Suite	
Chidamber and Kemerer (1991) presented a suite of software metrics within the

object-oriented paradigm. They were based on the insight and experience of existing

software engineers working with object-oriented code and evaluated against widely

accepted software metric evaluation criteria. It was argued that in order for the object-

oriented paradigm to move from what was a ‘craft’ to a more conventional

engineering, metrics and measures were a requirement. In addition to this, outlined

areas in which such metrics could be used to aid management including: cost and

schedule estimating, recruitment forecasting and future maintenance requirements.

They began by highlighting some of the criticisms of current software metrics, both

procedural language metrics and object-oriented language metrics. While the former of

these is more often criticised for “being without solid theoretical base” and “failing to

display what might be termed normal predictable behaviour”, the latter’s criticisms

are more focused on not supporting key object-oriented concepts such as classes,

inheritance, encapsulation and message passing. They presents six metrics that are

specific to object design as it is considered a “unique aspect” of object-oriented

programming (Chidamber & Kemerer, 1991).

	 20	

Chidamber and Kemerer (1991) refers to Booch’s (1986) definition of object-oriented

design as “the process of identifying objects and their attributes, identifying

operations suffered by and required of each object and establishing interfaces between

objects” and breaks down the design of classes into three steps, namely, defining

objects, identifying object attributes and establishing the communication between

objects. They cite Wand (1990) in defining two things as being coupled if one of them

“acts upon” the other while taking Bunge’s (1977) definition of the similarity of two

objects, “the intersection of the sets of properties of two objects” as the basis for

defining the cohesiveness of methods as the “degree of similarity” between methods.

Having a high degree of similarity between methods means they have a higher degree

of cohesiveness and therefore a higher degree of encapsulation. He goes on to use

Bunge’s (1977) definition of complexity, “numerosity of its composition” i.e.

something complex has a large number of properties, as a base for defining complexity

to be “the cardinality of its set of properties”.

They go on to look at the scope of properties within a class noting that Wand (1987)

defines a class on “the basis of the notion of scope”. From this Chidamber (1991)

defines two concepts relating to the inheritance hierarchy within the first being depth

of inheritance, the height of a class within the inheritance tree, and secondly number of

children of a class, the number of descendants of that class. He argues that these

concepts are useful in determining the scope of a class such that while the depth of

inheritance can establish by what degree a class is influenced by “the properties of its

ancestors” the number of children “indicates the potential impact on descendants”

(Chidamber & Kemerer, 1991).

Finally, they look at measures of communication within object-oriented programming

noting that objects only form of communication is through message passing and

therefore defines a response set for an object as “the set of all messages that can be

invoked in response to a message to the object”. In addition he highlights that this set

may include methods outside of the object as methods from one object may invoke

methods from another object in response to an incoming message.

	 21	

Based on four years of projects developed by software engineers Chidamber and

Kemerer (1991) go on to define six metrics that while specific to object-oriented

design are not language specific.

Weighted Methods Per Class (WMC)

Weighted Methods Per Class (WMC) is defined as:

WMC = 𝑐𝑖
!

!!!

If all static complexities are considered to be unity, WMC = n, the number of methods.

WMC refers directly to the complexity of a class and Chidamber (1991) argues that the

number of methods and the complexity of the methods of a class are an indicator as to

how much time and effort will be involved in maintaining the class. He goes on to

state the larger the class, the greater the potential impact on the child classes inheriting

from that class. Finally, he makes the point that classes with large numbers of methods

do not lend themselves for reuse (Chidamber & Kemerer, 1991).

Depth Of Inheritance Tree (DIT)

Depth of Inheritance of a class is the DIT metric for that class. Chidamber (1991)

argues that the deeper a class is within a hierarchy, the greater number of methods it

will inherit and therefore the more complex the class becomes (Chidamber & Kemerer,

1991).

Number Of Children (NOC)

Number Of Children (NOC) is defined as:

NOC = number of immediate sub-classes subordinated to a class in the class hierarchy.

This metric looks to determine how many subclasses will inherit the behaviour of the

parent class. Chidamber (1991) argues that it is more favourable to have depth over

breadth in a class hierarchy as it promotes reuse through inheritance stating it is not

	 22	

considered “good practice” to have “standard number of subclasses“ and that higher

up classes should have more child classes than classes lower in the hierarchy. He goes

on to point out that classes with a large number of children may require more testing

(Chidamber & Kemerer, 1991).

Coupling between Objects (CBO)

Coupling between Objects (CBO) is defined as:

CBO = Number of non-inheritance related couples

This takes the concept of two objects being considered coupled if they “act upon”

each other i.e. one invokes methods of the other. Chidamber (1991) argues that this

form of coupling hampers the reuse of the class and inter-object coupling should be

kept to a minimum as the class will be sensitive to changes making maintenance more

difficult (Chidamber & Kemerer, 1991).

Response For a Class (RFC)

Response For a Class (RFC) is defined as:

RFC = | RS | where RS is the response set for the class.

In this metric, the response set is the “set of methods available to the object” while the

cardinality “is a measure of the attributes of an object“. In addition, Chidamber

(1991) also notes that as it includes methods from outside the object, “it is also a

measure of communication between the objects”. He argues that the larger the number

of methods that are invoked in response to a message, the more complex that class

becomes and therefore the more testing it will require. In addition, he goes on to point

out that the larger the number of methods available outside of a class, the greater the

knowledge required to test the class (Chidamber & Kemerer, 1991).

Lack of Cohesion in Methods (LCOM)

Lack of Cohesion in Methods (LCOM) is defined as:

Consider a Class C1 with methods M1, M2, … Mn

	 23	

Let (Ii) = set of instance variables used by method Mi.

There are n such sets (I1)…. (In)

LCOM = the number of disjoint sets formed by the intersection of the n sets.

This follows the concept of looking for the degree of similarity of methods by

examining the common instance variables. If there are no common instance variables

then the degree of similarity is zero. It should be noted that this does separate out

where “each of the methods operates on unique sets of instance variables and the case

where only one method operates on a unique set of variables”. The fewer number of

disjoint sets implies greater similarity of methods (Chidamber & Kemerer, 1991).

Chidamber (1991) argues that this metric is important as a lack of cohesion between

classes indicates that the class is trying to do too much and should therefore be split

into multiple classes. Having low cohesion in classes indicates a degree of complexity

within that class (Chidamber & Kemerer, 1991).

	
Figure	2.6:	Mapping	of	Metrics	to	OOD	Elements

Chidamber (1991) cites Weyuker’s (1988) list of properties used when evaluating

software metrics, which he then applies to the previous six metrics, outlined above.

The properties are

• Property 1: Non-coarseness

• Property 2: Non-uniqueness (notion of equivalence)

• Property 3: Permutation is significant

• Property 4: Implementation not function is important

	 24	

• Property 5: Monotonicity

• Property 6: Non-equivalence of interaction

• Property 7: Interaction increases complexity

Chidamber (1991) found that all six failed to meet property three and property seven.

In addition to this, the RFC metric failed to satisfy property six and the DIT metric

failed to satisfy property five but only in the case of “combining two objects in

different parts of the tree” (Chidamber & Kemerer, 1991).

Chidamber (1991) provides some reasoning as to why not all of the metrics satisfy all

of the properties. In the case of all six failing to property three he suggests that the

permutations within an object are not necessarily significant while arguing that in the

case of property seven, interaction increases complexity, is not applicable to object-

oriented design.

2.5.2	Building	Upon	Chidamber	Object-Oriented	Metrics	

Li and Henry (1993) argue that software metrics provide a “quantitative means”

within the software development process citing a quote by DeMarco that ”you cannot

control what you cannot measure”. In addition they argue that these same are

dependent on statistical validation. Their paper, mainly concerned with the Object-

Oriented programming paradigm, looks at existing software metrics, while also

proposing new ones. Finally, they validate these metrics on data collected from

existing commercial software systems.

They identify two categories of software metrics, the first being software product

metrics, that focuses on source code and design documentation, while the second,

software process metrics, focuses on the man hours involved in a project, noting that

his paper is only concerned with the former.

Prior to looking at metrics specific to the Object-Oriented programming paradigm, Li

and Henry (1993), reviews certain metrics used with procedural programming namely

Halstead’s software science metrics and Bail’s size metrics that are lexical measures

i.e. they count specific lexical tokens in a program. They also note McCabe’s

	 25	

Cyclomatic Complexity, based on deriving a directed graph from the programs control

flow, and a group of metrics that measure the inter-connectivity of system components.

On comparing procedural paradigm metrics to that of objected-oriented metrics they

note the that “object oriented metrics are not as numerous as those in the procedural

paradigm” They go on to look at the different characteristics exhibited between the

procedural paradigm and the object-oriented one, highlighting concepts that only exist

within object-oriented programming and not procedural programming, namely

inheritance, classes and message passing and highlighting the fact that metrics

previously mentioned do not cover such characteristics (Li & Henry, 1993).

They looked at three groups of object-oriented metrics. Group one consisted of the

metrics proposed by Chidamber and Kemerer (1991), the second group looked at the

metrics proposed within the paper while the last group looked at size metrics in the

object-oriented paradigm (Li & Henry, 1993).

Chidamber and Kemerer (1991) who proposed six object-oriented design metrics,

namely: Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling

Between Objects (CBO), Response For a Class (RFC), Lack of Cohesion of Methods

(LCOM), and Weighted Method per Class (WMC). Only Coupling Between Objects

CBO was not used from this list (Li & Henry, 1993).

Depth of Inheritance Tree (DIT)

The DIT measures the position of a class in the inheritance hierarchy. The aim here is

to gauge how many properties can be accessed from the class in question with classes

lower in the hierarchy of inheritance the more properties the class may inherit from the

super-classes above it. As pointed out by Li (1993) this higher the DIT metric, the

harder it is to maintain the class.

The root class’ DIT is zero:

DIT = inheritance level number; ranging from 0 to N; where N is positive integer (Li

& Henry, 1993)

	 26	

Number of Children (NOC)

The NOC measures the number of direct children a class has. It is the reverse concept

of the DIT already mentioned. The more children a class has the more a change to that

class can impact the system.

The calculation of the NOC is as follows:

NOC = number of direct sub-classes; ranging from 0 to N; where N is a positive

integer (Li & Henry, 1993)

Response For a Class (RFC)

The RFC metric measures the cardinality of the response set of a class. Li (1993)

suggests that a class with a higher the RFC metric the harder it is to maintain “since

calling a large a large number of methods in response to a message makes tracing an

error more difficult”. The RFC is calculated as follows:

RFC = number of local methods + number of methods called by local methods;

ranging from 0 to N; where N is a positive integer.

Lack of Cohesion of Methods (LCOM)

LCOM measures the lack of cohesion of a class. Stevens et al. best define cohesion, as

a “measure of the degree to which the elements of a module belong together”,

therefore, a module considered as being highly cohesive means “all elements are

related to the performance of a single function” (Stevens, Myers, & Constantine,

1974).

“The calculation of LCOM is the number of disjoint sets of local methods. Disjoint sets

are a collection of sets that do not intersect with each other. Any two methods in one

disjoint set access at least one common local instance variable:

LCOM = number of disjoint sets of local methods; no two sets intersect; any two

methods in the same set share at least one local instance variable; ranging from 0 to

N; where N is a positive integer” (Li & Henry, 1993).

	 27	

Weighted Method per Class (WMC)

WMC measures the static complexity of all the methods. This is calculated by

summing together McCabe’s Cyclomatic Complexity as applied to each method in the

class.

WMC = summation of the McCabe’s Cyclomatic Complexity of all local methods;

ranging from 0 to N; where N is a positive integer.

Li and Henry (1993) define two objects as coupled if they “act upon each other”. The

research identifies three types of coupling between objects: coupling through

inheritance, coupling through message passing and coupling through data abstraction.

We will now look at each of these in more detail (Li & Henry, 1993).

Coupling through inheritance

Li and Henry (1993) argue that although inheritance is used to promote software reuse

it can also violate encapsulation and information hiding. It adds complexity by

exposing attributes, encapsulated in the super class, in a less restricted sub-class (Li &

Henry, 1993).

Coupling through message passing

In the object-oriented paradigm, messages are sent from one object to another as a

form of communication. Message Passing Coupling (MPC) is a measurement of the

complexity of message passing between the classes.

MPC = number of send-statements defined in a class.

This helps to establish how dependent local methods are upon methods in other

classes. It does not indicate the number of messages received by the class (Li & Henry,

1993).

Coupling through Abstract Data Types (ADT)

ADT is where a data type is defined by its behaviour from the point view of the user of

that data type. Li and Henry (1993) argues “a variable declared within a class X may

have a type of ADT which is another class definition, thereby causing a particular type

	 28	

of coupling between the X and the other class, since X can access the properties of the

ADT class”. This metric is called as Data Abstraction Coupling and is defined as:

DAC = number of ADTs defined is a class.

In other words, the more ADTs a class has, the more complex coupling is taking place

within that class (Li & Henry, 1993).

Lastly, Li and Henry (1993) looked at size metrics used within the Object-Oriented

paradigm namely Number of Methods (NOM and two additional size metrics.

Number of Methods (NOM)

As local methods define a class interface, Li (1993) argues that the Number of

Methods (NOM) is the best interface metric to use. It is simply defined as

NOM = number of local methods

In other words, the more methods exposed by a class, the more complex that class

becomes (Li & Henry, 1993).

SIZE1

Li (1993) takes the Lines of Code (LOC) metric, calling it SIZE1 and calculates it

simply by counting all the semicolons in a program. It is defined as

SIZE1 = number of semicolons in a class.

SIZE2

The second size metric used by Li (1993), SIZE2, is the number of properties inclusive

of attributes and methods that are defined in a call. It is defined as

SIZE2 = number of attributes + number of local methods.

In total Li (1993) defines ten metrics for use within the object-oriented paradigm. They

are abbreviated as follows

	 29	

DIT = Depth of Inheritance Tree

NOC = Number of Children

MPC = Message Passing Coupling

RFC = Response For Class

LCOM = Lack of Cohesion Of Methods

DAC = Data Abstraction Coupling

WMC = Weighted Method Complexity

NOM = Number of Methods

SIZE1 = Number of Semicolons per Class

SIZE2 = Number of Methods plus number of Attributes

In addition, they define the maintenance effort for the study as

Change = number of lines changed per class in its maintenance history (Li & Henry,

1993).

While noting that prior knowledge of the relationship between software maintainability

and software metrics is sparse within the object-oriented paradigm, they set one of the

goals of their research as to identify a relationship between the two (Li & Henry,

1993).

Li and Henry (1993) found that there was a “strong relationship between the metrics

and the maintenance effort“ within the object-oriented paradigm. In addition, it was

found that the maintenance effort could be predicted from the combinations of the

metrics collected from the code (Li & Henry, 1993).

Systa, Ping and Muller (2000) argues that identifying metrics within object-oriented

programming requires a different approach to that of imperative programming

languanges in that key metrics that need to be identified are related to design and

overall code quality. These include the coupling, cohesion and complexity between

classes as well the complexity of the inheritance hierarchy. They point out that by

identifying high or low complexity areas of a system or tightly coupled areas, can

assist in decision making when adding new features or performing maintenance work.

	 30	

They used the suite of object-oriented metrics as defined by Chidamber and Kemerer

which were then broken into three categories: inheritance, communication and

complexity metrics. These were then applied to FUJABA systems, a system designed

to do round trip engineering using the Unified Modeling Lanange (UML), Story

Driven Modeling (SDM), Design Patterns and Java. The results are shown in Figure

2.7 below where they are defined as a coefficient of greater than 0.4 as being

correlated.

	
Figure	2.7:	A	Correlation	Matrix	of	Normalized	Measures

2.6	Applying	Object-Oriented	Best	Practices	to	Code	Metrics	

van Emden and Moonen (2002) proposed taking the technique of software inspections,

used to improve software quality, and using it to detect bad programming design

patterns within the code, known as code smells. Software inspection is the process of

carefully examing code in some fashion i.e. traversing the code to generically, in an

effort to identify aspects of it that may highlight postive or negative issues early in the

software development lifecycle. One of the major arguments in favour of code

inspections is that the cost of identifying and fixing issues in code descreases the

earlier in the cycle it is discovered.

Originally, code inspections focused on low-level bug chasing, attempting to identify

null references or out of bounds excpetions, whereas van Emden and Moonen (2002)

sought to instead use this process to detect ‘code smells’ a methapor introduced by

Martin Fowler in his book Refactoring: Improving the Design of Existing Code. Code

smells provide a rule of tumb or a guiding principle when refactoring code and can be

	 31	

used to decide when and what to refactor. Examples of code smells are duplicated

code, long methods or classes, too much funtionality in a class or violating

encapsulation.

By introducing this process when developing code, it can ensure that coding standards

are being applied to all areas when developing on a large-scale software system.

Coding standards are a way for a company to ensure that all code being generated is of

the same standard regardless of who and where it is written. van Emden and Moonen

(2002) argues experience has shown that publishing a set of coding standards alone is

not enough as there are various reasons why some engineers will simple ignore them

or feel somehow restricted by them and therefore not apply them to code being

developed.

The identification of code smells is not an exact science and requires a mix of factors

to be taken into account when defining them for a particular project inclduing past

experience of issues that have arisen, the domain being developed and the subjective

opinions of engineers working on the code. Therefore an important aspect of applying

the detection of code smells in a project is that the configurable (van Emden &

Moonen, 2002).

van Emden and Moonen (2002) distinguishes the two different types of code smells

into “primitive smell aspects and derived smell aspects” for example a method

containing a switch statement would be considered a primitive aspect whereas a a class

not using any of the methods provided by its superclass would be a derived aspect.

This allowed her to apply a four step approach to analysing the code; Find all entities

of interest, inspect them for primitive smell aspects, store information about entities

and primitive smell aspects in a repository and finally, derive smell aspects from the

repository.

van Emden and Moonen (2002) applied a defined set of code smells to the CharToon

system that consisted of 46,000 lines of code (less comments and blank lines) and 147

classes. They were able to succcessfully highlight the code smells the majority of

which came from the use of typecasts. They highlight the fact that most automatic

code inspection tools, namley C analyser LINT and the Java version of which is

	 32	

JLINT, focus on identifying defects in the code in an effort to build higher quality code

whereas the approach here is to ensure that good design practices are adhered to. He

points to an interesting area of future work that involves taking what Beck and Fowler

describe as “maintenance smells”. These are smells that arise while code is being

maintained and include concepts such as divergent change, different parts of a class are

changed for different scenarios, shotgun surgery, changing many classes for one

related change and parallel inheritance hierarchies, being forced to subclasses in one

place in order to add a subclass elsewhere. Detecting smells such as these cannot be

done by simply looking the current source code alone but would require analysing the

change sets as code patches are pushed for maintenace or new features added (van

Emden & Moonen, 2002).

2.7	The	Law	of	Demeter	

Perhaps one of the most significant metrics or measure that can be applied within an

object-oriented program was introduced by Lieberherr, Holland and Riel (1988) and is

a simple language independent rule that made applying the concept of modularity and

encapsulation within an object-oriented programming more intuitive for programmers.

It is known as the Law of Demeter. It argues that the benefit of applying the Law of

Demeter included minimising code duplication, number of parameters in methods and

number of methods per class. In addition, it would reduce coupling between methods,

improve information hiding and narrower interfaces would lead to more maintainable

code.

Based on and named after the Demeter system, which provided high-level class based

object oriented systems that allowed for a larger number of utilities such as parsers,

printers and type checkers to other class-based object-oriented systems, Lieberherr,

Holland and Riel (1988) argued that the Law of Demeter promoted “maintainability

and comprehensibility”. It was designed with a view to growing software over time as

opposed to ‘big bang’ updates and in order to achieve this the code would have to be

written in a well-formed manner.

	 33	

They define the Law of Demeter, as: “For all classes C, and for all methods M

attached to C, all objects to which M sends a message must be instances of classes

associated with the following classes:

1. The argument classes of M (including C).

2. The instance variable classes of C.

Objects created by M, or by functions or methods which M calls, and objects in global

variables are considered as arguments of M” (K. Lieberherr, Holland, & Riel, 1988).

The Law of Demeter has two primary purposes; making modifications to program

simpler and reducing the complexity of the code by restricting the “number of types”

the programmer is aware of when writing within a method.

The motivation behind the Law of Demeter is to make the software “as modular as

possible” and by abiding by it, methods will only be aware of the “immediate

structure” of the class to which it belongs. This in turn means that any changes to the

class will only require examining the methods within that class as to what impact the

change will have. It reduces “nested message sending’s” and prohibits the nesting of

“generic accessor function calls” i.e. calls that return objects that existed before the

function is called (K. Lieberherr et al., 1988).

Lieberherr’s (1988) aim was to condense many well-known principles into a “single

statement”, one that could be checked at compile time. They include coupling,

information hiding, information restriction, localising information, narrow interfaces

and structural induction.

Coupling

Generally it is considered good practice, within object-oriented software design, to

have minimal coupling between classes. By abiding by the Law of Demeter, which

limits the methods that can be called from within a given method and therefore,

reduces the amount of coupling that can occur between various classes within a

program (K. Lieberherr et al., 1988).

	 34	

Information hiding

The Law of Demeter promotes information hiding by preventing methods from

retrieving a “subpart of an object” and enforcing them to traverse intermediate

methods in small steps to perform the same result. Even though programmers of

object-oriented languages can prevent the use of certain methods by making them

private, a feature that complements the law, Lieberherr et al. (1988) goes further than

and argues that these methods should still be used in a restricted way regardless of

them being public (K. Lieberherr et al., 1988).

Information restriction

Based on Parnas (1986) work on the modular structure of complex systems, Lieberherr

et al. (1988) restricts the use generic method calls and argues that information

restriction complements information hiding. As was the case with information hiding,

methods can be public, but their use is restricted.

Localising information

The Law of Demeter ensures that on examining a method, a programmer is only

required to be aware of the types that are closely related to the class within which the

method exists. This allows them to be independent of the rest of the system, leading to

less complexity within the system (K. Lieberherr et al., 1988).

Narrow interfaces

The Law of Demeter promotes the use of narrow interfaces between interacting

entities. Lieberherr et al. (1988) argues that a method should only have access to as

much information as it requires in order for it do its job.

Structural induction

The Law of Demeter is based upon the fundamental thesis of Denotational Semantics

i.e. “The meaning of a phrase is a function of the meanings of its immediate

constituents”. Lieberherr et al. (1988) highlight a trade-off to applying the Law of

Demeter that although it decreases the complexity of the methods, it increases the

number of methods. This may lead to an issue where there are “too many operations in

a type” i.e. too many methods in a class. In order to solve this issue, he argues that

	 35	

functional abstractions should not be provided via a method but instead a module,

therefore hiding all of the underlying low-level methods.

They outline an approach when creating instances of classes where a factory class is

employed that contains the code that creates the new class and in turn is used to

provide instances of the class when required. This in effect prevents multiple places in

the code where a class is created and therefore needs to be updated when a change is

required (K. Lieberherr et al., 1988).

They outline two variations of the Law of Demeter, namely weak and strong, the

former defining instance variables as only those within the given class while the later

defines them as anything within the given class and any inherited from parent classes

(K. Lieberherr et al., 1988).

2.8	Conclusions	

This chapter began defining some of the concepts used throughout this research. It

looked at how real world items are represented within the object-oriented

programming paradigm through the use of classes.

From there, it studied in detail McCabe’s Cyclomatic Complexity, a technique that

allows a piece of to be measured with relation to its perceived complexity. Building

upon this, the chapter touched on other metrics such as Halstead’s E and then

examined various critiques of these theories.

Among the criticisms of McCabe’s Cyclomatic Complexity was Sheppard who cited

Myer’s finding that it failed to take account for ELSE branches. Sheppard also took

exception to the fact that it revolved around FORTRAN and not more modern

languages of the time.

Regardless of these criticisms, many of which are valid, McCabe’s complexity

measure has become a key cornerstone that many other theories have been built

around.

	 36	

The second half of the chapter began by looking at Chidamber and Kemerer metric

suite for the object-oriented paradigm and continued by examining in detail how this

suite was then built upon over time. The work of Chidamber and Kemerer was

ultimately found to be both timely and accurate. The suite of metrics as defined here

became a foundation on which many other theories have been built over time.

Following this, the research looked van Emden and Moonen who offered a new slant

on code metrics by introducing the concept of analyzing code for what are known as

‘code smells’ i.e. code that is considered to be bad practice, in an attempt to identify

this in automated fashion as new code is committed to a project.

Arguably one of the key offshoots from the traditional thinking in the area of code

metrics was van Emden and Moonen’s work that merged both code metrics and the

concept of ‘code smells’. This brought a new lens that code metrics could be viewed

through. No longer were metrics solely for the purpose of detecting coding errors but

were now being used to identify bad practice i.e. not something a modern day compiler

might reject but something that had, up until then, only be analyzed by the human eye.

The chapter concludes by looking at one of the most important pieces of research with

regard to applying the concept of modularity and encapsulation with object-oriented

programming that is known as The Law of Demeter. Purposely designed to be simple

in nature and language independent, it assists programmers in applying a key principal

when developing software. Building upon this, the next chapter will look at various

metrics that have grown out of these theories and importantly the various attempts of

applying the metrics within established commercial organisations. In addition, it also

seek to build upon van Emden and Moonen’s work by introducing the concept of

‘clean code’ put forward by Martin (2008) with a view to analyzing its impact on code

metrics.

	

	 37	

3. Applied	Metrics	

3.1	Introduction	

Following on from the previous chapter that looked at some of the fundamental

theories within code metrics, this chapter will be skewed towards how these and other

metrics faired when applied within established commercial organisations. In addition,

it will also look at some new, albeit less well-known metrics that have been put

forward over the years, some of which could be considered off-shoots from what was

in the previous chapter.

The chapter will close by looking to build upon van Emden (2002), where the concept

of introducing ‘code smells’ analysis into the area code metrics, and introduce some

key as aspects of work by Martin (2008) from his ‘clean code’ concepts. This includes

challenging some of the established thinking around comments in code and identifies

practices to follow in naming and constructing functions. In addition to this, it will also

look at what Martin (2008) calls the Stepdown Rule.

3.2	Alternative	Approaches	to	Code	Metrics	

This section will look at a range of alternative approaches to code metrics.

3.2.1	Service	Oriented	Design	

Perepletchikov, Ryan and Frampton (2007) presented a set of design-level metrics that

examined the various types of cohesion within service-oriented design. Taking the

definition of cohesion from Stevens et al. as a “measure of the degree to which the

elements of a module belong together” therefore a module to be considered as being

highly cohesive means “all elements are related to the performance of a single

function”. They expand on this citing the semantic categories of cohesion, namely:

Coincidental, Logical, Temporal, Procedural, Communicational, Sequential and

Functional. This ordinal scale ranges from the weakest to the strongest form, in this

case Coincidental to Functional. In the case of object-oriented design Eder et al. has

redefined cohesion as the “degree to which the methods and attributes of a class

	 38	

belong together” where the semantic ordinal scale for object-oriented classes is:

Separable, Multi-faced, Non-delegated, Concealed and Model.

While noting that the previous work did not map cohesive metrics to their semantic

category, they do just that and map quantitative metrics to the qualitative categories of

cohesion. They observe some differences between traditional software systems that

could be as a collection of interconnected objects and Service Oriented Architecture

that break the application into stateless services that are autonomous to others within

the system. This concept adds a new layer of abstraction, a service on top of classes

that serve to aggregate groups of methods.

They redefine the cohesion categories while proposing two additional ones, external

and implementation thus giving a completed list of: Coincidental, Logical,

Communicational, External, Sequential, Implementation and Conceptual. Each of

these is defined as follows:

Categories Description

Coincidental A service encapsulates unrelated functionality i.e. its interface

provides unrelated functionality that has no meaningful

relationship.

Logical A service provides common utility functionality e.g. data update

and/or retrieval.

Communicational Service operations use the same data abstractions.

External Service consumers use all service operations.

Sequential Service operations are sequentially connected.

Implementation All service interface operations are implemented by the same

implementation operations.

Conceptual There are meaningful semantic relationships between operations

of a service in terms of some identifiable domain level concept.
Figure	3.1:	Categories	of	Cohesion

Perepletchikov et al. (2007) identifies the following metrics: Service Interface Data

Cohesion (SIDC), Service Interface Usage Cohesion (SIUC), Service Sequential

	 39	

Usage Cohesion (SSUC), Strict Service Implementation Cohesion (SSIC), Loose

Service Implementation Cohesion (LSIC) and Total Interface Cohesion of a Service

(TICS).

3.2.2	Metrics	using	Program	Slicing	

Al Dallal (2009) looked at a similarity-based functional cohesion metric and argued

that cohesion is an important factor to be considered when evaluating software design.

From a software engineering point of view, cohesion is desirable as it provides

reusability and maintainability modules. In her paper, Al Dallal (2009) introduces a

metric based on the strongest level of cohesion, functional cohesion that refers to how

closely module parts are related based on outputs. The metric, similarity-based

functional cohesion (SBFC), measures the functional cohesion of a module for both

procedural and object-oriented languages, by looking at the “degree of similarity

between the data slices” of a module.

Al Dallal (2009) argues that cohesion is an indication of a high quality software

design. A highly cohesive module is one that cannot be easily split into separate

modules and he looks to measure basic cohesiveness of modules. Citing Yourdon and

Constantine’s proposed seven levels of cohesiveness each of which indicate how much

a module contributes towards performing a task. In ascending order, in accordance

with their desirability, they are: coincidental, logical, temporal, procedural,

communicational, sequential and functional. On the other hand, Emerson, using a

control flow graph as the basis for representing a module, proposed three levels: data

cohesion, control cohesion and superficial cohesion. When examining levels of

cohesion in a module, the module is seen as a set of procession components and a

module that has a single processing or highly related one is considered to be highly

cohesive. He contends that functional cohesion is the most desirable level as it

provides for reusability and maintainability.

Al Dallal (2009) looked at Weiser’s program slicing concept, where “the value of a

variable at some point in a program is called a program slice” and sought to take

Longworth’s suggestion of using sliced-based metrics to indicate cohesiveness. Ott

	 40	

and Thuss first introduced the idea of slice-based metrics where slices were the output

of each module as the output variables indicated the tasks the module.

Bieman and Ott introduced the concept of applying data slices to the measuring of

functional cohesion by measuring output variables of modules. In addition, Al Dallal

(2009) also noted metrics used to measure various types of cohesion including between

methods in a class, lack of cohesion between methods, normalised Hammering

distance (NHD), scaled Normalised Hammering distance, class cohesion (CC) and a

sensitive class cohesion metric (SCOM).

Al Dallal (2009) introduces a new metric called similarity-based functional cohesion

(SBFC) used to measure the function cohesiveness within procedural programs as well

as methods within object-oriented ones. The measurement technique employed by

SBFC is based upon Bieman and Ott’s data slicing concept of measuring cohesion.

Taking three metrics from Bieman and Ott, metrics that at times contradict each other

when measuring cohesiveness, the SBFC metric provides a single measure that

eliminates the ambiguity caused by having three individual metrics. He conducted an

empirical study that demonstrated high correlations between similarity-based

functional cohesion SBFC and the Bieman and Ott metrics. In addition, SBFC satisfied

all the properties as outlined by Briand et al. for module cohesiveness and is also

useful when refactoring weakly cohesive modules. In effect, the similarity-based

functional cohesion (SFBC) “measures similarity between pairs of data slices”.

 “Program slicing is the task of finding all the statements in a program that directly or

indirectly influence the value of a variable occurrence”. This can be either static or

dynamic, where static involves finding all statements that affect the value of a variable

and dynamic finds the slice based on a set of inputs. Al Dallal’s (2009) paper is mainly

concerned with intra-procedural slicing, the process of computing the slices of a given

procedure as opposed to inter-procedural slicing, computing the slices of a multi-

procedural program. From an intra-procedural point, there are three main algorithms,

data flow equations, information flow relations and program dependence graphs

(PDG) and Al Dallal argues that of these PDG’s is the more efficient. PDG represents

simple statements, that include assignment statement, read and write statements, and

control predicates as nodes. Conditional and compound statements are represented by

	 41	

more than one node. In addition, there are two types of edges within a PDG, a data

dependence edge and a control dependence edge where a data dependence edge

indicates that the connected nodes have a computation in one node that depends

directly on a value computed in the other node and a control dependence edge “implies

that the result of the predicate expression” of one node is a factor for deciding whether

to execute code at the other node (Al Dallal, 2009).

	
Figure	3.2:	C	Function	that	computes	the	sum,	average	and	product	numbers	from	1	to	n

	
Figure	3.3:	C	function	in	Figure	3.2	in	a	program	dependence	graph

Figure 3.2 above shows an example C function that computes the sum, average and

product of numbers from 1 to n, where n is an integer value >= 1 while Figure 3.3 is

the same C function represented as a program dependence graph (PDG) where solid

lines represent control dependence edge and dotted lines represent data dependence

	 42	

edges. Citing Briand and Ott four properties for cohesion metrics, namely, non-

negativity and normalisation, null value and maximum value, monotonicity and

cohesive modules, Al Dallal (2009) argues that a cohesion metric must satisfy all these

properties to be considered a cohesive indicator.

Al Dallal (2009) further cites Bieman and Ott as having introduced the concept of data

slicing and “applied it as an abstraction to measure the functional cohesion of the

module”. Using the C function example in Figure 3.2, the data slices found for C

function are shown in Figure 3.4 below

	
Figure	3.4:	Data	slices	for	C	function	as	defined	in	Figure	3.2

Al Dallal (2009) cites Bieman and Ott categorisation of data slices into two: glue

token, a data token that exists in more than one data slice and super-glue token, a data

token that exists in all slices of data and glue stickiness while stickiness of a glue token

was based on how many data slices it bound. In their work, Bieman and Ott used three

cohesion metrics, namely strong functional cohesion (SFC), ratio of super-glue tokens

to total number of data tokens in a module, weak functional cohesion (WFC), ratio of

glue tokens to total number of data tokens in a module and adhesiveness (A) of the

module, the ratio of total adhesiveness of glue tokens to the total possible adhesiveness

or each data token is used by each data slice.

Noting that each of the three metrics have a value of between zero and one, Al Dallal

(2009) highlights the difficulty with having three metrics when only attempting

measure one thing, namely that three figures do not provide immediate clarity and the

second being the difficulty when trying to compare two or more modules. For

example, the metrics may be SFC=0, WFC=1 and A=0.67 which does not make it

immediately obvious as to whether the module has low cohesion or high cohesion and

	 43	

secondly how does that compare to a module with cohesion measurements of

SFC=0.25, WFC=0.75 and A=0.58.

Al Dallal (2009) cites Bonjia and Kidanmariam metric, class cohesion that uses the

degree of similarity between methods as the basis for the measurement, that is the ratio

of the number of shared attributes versus the number of distinct attributes referenced

by both methods. From this the cohesion is defined as “ratio of the summation of the

similarities between all pairs of methods to the total number of possible pairs of

methods“.

Al Dallal (2009) notes that most cohesion metrics for object-oriented programs

examine the interactions between methods and instance variables. The similarity-based

functional cohesion (SBFC) relies on Bieman and Ott’s work where data slices of the

modules are used as abstractions for measuring functional cohesion. By taking each

pair of data slices individually as opposed to all at once, the SBFC metric is more

precise and sensitive to changes.

Al Dallal (2009) concludes that the simplicity of the similarity-based functional

cohesion (SBFC) metric will lead to a greater adoption among software engineers

therefore improving the quality and modularity of products in the long run. An

experimental study that compared SBFC to Bieman and Ott’s metrics supported the

hypothesis that SFBC was a cohesion indicator.

3.2.3	Tools	for	Metrics	

Novak, Krajnc and Zontar (2010) argued that static code analysis tools were becoming

more crucial in the software development lifecycle (SDLC) and created taxonomy of

commonly used tools. He classified the tools in categories: technology, availability of

rules and extensibility. The tools use techniques including syntactic pattern matching,

data flow analysis, model checking and verification theorems. They looked the

emergence of code reviews as a “successful fight against maintainability problems” as

they can increase reliability and security while noting the process of manually

reviewing code by senior engineers takes time. In contrast the use of automated tools

	 44	

are fast, can be run more often while containing the same level of knowledge as a

human reviewer (Novak, Krajnc, & Zontar, 2010).

They define static code analysis as the analysis of “software that is executed without

actually running programs”. Static code analysers generally build state models of the

code and then determine how the program reacts in each state. This compares to

dynamic analysis, where the program is executed, normally with test inputs. In

addition, they also state that both methods are prone to false positives.

They highlight some of the issues that static code analysers can detect including

common mistakes that compilers do not check for such as “memory overruns, cross

site scripting attacks, injections and various other boundary cases “. Static code

analysers operate in different ways, some on source code and intermediate code others

examine libraries created. The types of issues that static code analysers can identify

are:

• Syntactic problems

• Unreachable source code

• Undeclared variables

• Uninitialized variables

• Unused functions and methods

• Variables used prior to initialisation

• Unused values from functions

• Incorrect use of pointers

While there are many benefits of using static code analysers, they come up short in

certain aspects, including identification of poor code design or malicious code.

Novak et al. (2010) concludes that while there are many benefits to using static code

analysis tools including the early detection of issues within the software development

lifecycle, they should be used in conjunction of manual code analysis and other code

reviewing tools.

	 45	

3.2.4	Code	Comments	

Steidl et al. (2013) argued that although many software developers consider code

comments to be crucial in understanding the development most quality analysis

systems ignore system commenting on evaluating the system. The paper presented a

detailed approach to categorizing comments using machine learning techniques and by

providing metrics tailored to suit each category showed how the quality aspects of the

model could be assessed.

Steidl defined the problem as quality analysis systems either ignoring comments

completely or restricting the comment ratio as a metric i.e. not giving enough value to

it and provided a comment based classification that resulted in a semi-automated

approach for both quantitative and qualitative evaluation of the quality of the

comments.

 It found that comment classification provided better quantitative insights into system

documentation over the existing simple comment ratio metric.

3.2.5	Validation	of	Code	Metrics	

Schneidewind (1992) argued that software metrics themselves should be subject to the

same rigor as all other areas of engineering and therefore need to be validated in the

same way to ensure they measure what they say they measure prior to use. His paper

proposes a “validation methodology” that is not specific to any particular metric and is

mapped to six criteria: association, consistency, discriminative power, tracking,

predictability and repeatability that allow the user to gain an understanding of how

metric can be applied (Schneidewind, 1992).

Meneely, Smith and Williams (2013) argued that the burden of proof in validating new

software metrics resulted in a debate on what constitued a “valid” software metric. His

paper conducted a systematic literature review that extracted forty-seven unique

validation criteria and performed comparitive analysis on them. It was found that there

was wide “diversity of motivations and philosphies” that indicated that the process

was a complex one.

	 46	

Anderson (2004) cited the ISO 9126 Production Evaluation Standard to identify all the

attributes of high quality software: Functionality, Reliability, Usability, Efficiency,

Maintainability and Portability. He goes on to identify a range of metrics that can be

used to determine a risk factor as to the likelyhood of defects occuring or the difficulty

level of maintainance required for the system. The metrics identified are: McCabe’s

Cyclomatic Complexity metrics which measures lineraly independent paths through a

program module, Halstead Complexity measures that analysese operators and

operands, Henry and Kafura metrics that examine coupling between modules and Troy

and Zweben metrics which look at the complexity of structure and calls coming in and

out (Anderson, 2004).

3.3	Code	Metrics	&	Commercial	Applications	

In addition to the theorising of code metric many practitioners of software

development introduced code metrics to large-scale industrial projects.

3.3.1	Tackling	Project	Costs	 	

Coleman, Ash, Lowther, and Oman (1994) cite several examples of noteworthy people

estimating the cost of maintaining software over its initial development cost ranging

from Fred Brooks estimate that maintenance was “40% or more of the cost of

developing it” while Dean Morton, executive vice president and chief operating officer

at Hewlett-Packard estimated between 60 to 80% of research and development

personnel were involved in “maintenance activities” and went to say that 40 to 60 per

cent “of the cost of production” was maintenance related.

Taking these statistics as to the cost of maintenance in software related projects,

Coleman et al. (1994) went on to demonstrate how analysing software to generate data

on maintainability could be used to help when making business related decisions for

these projects, including buy versus build decisions and subcomponent quality

analysis. They looked at five previously defined methods for quantifying software

maintainability arguing that all five “compute reasonably accurate maintainability

scores” based on existing metrics

	 47	

• Hierarchical multidimensional assessment models

• Polynomial regression models

• An aggregate complexity measure

• Principal components analysis

• Factor analysis

The Hewlett-Packard (HP) management team selected hierarchical multidimensional

assessment models and Polynomial regression models, as they required quick and easy

indices for use by engineers. These were then applied to industrial system within HP.

Hierarchical multidimensional assessment models

Using Oman and Hagemeister’s hierarchy model, Coleman et al. (1994), divided up

maintainability into “three underlying dimensions or attributes”, namely control

structure, information structure and typography, naming and commenting. After

identifying each metric, an “index of maintainability for each dimension can be

defined as a function of those metrics”. The three dimensional scores can then be

summed up to give an overall maintainability index. In this case they “used existing

metrics to calculate a deviation from acceptable ranges and then use the inverse of

that deviation as an index of quality”.

They go on to explain that by using a method called weight and trigger-point-analysis

can be used to “quantify maintainability by calculating a “degree of fit” from a table

of acceptable metric ranges“. When the value falls outside of this range, it is an

indication that the maintainability is lower for that component. For example, if the

“acceptable range” for the average lines of code is between 5 and 75, then values

falling outside of this range would be considered as an indication that the code is of

lesser quality.

Polynomial regression models

Coleman et al. (1994) describes polynomial regression models as a “statistical method

for predicting values of one or more response (dependent) variables from a college of

predictor (independent) variables”. He explains that these models were intended for

	 48	

use by maintenance practitioners and as such were “calibrated to HP engineers’

subjective evaluation”. One noteworthy finding was the fact that of fifty regression

models constructed, while trying to identify simple models that were generic enough to

use on wide range of systems, “all tests clearly indicated that Halstead’s volume and

effort metrics were the best predictors of maintainability”. The most applicable

regression model was a “four-metric polynomial based on Halstead’s effort metric and

on metrics measuring extended Cyclomatic Complexity, lines of code and number of

comments”. It should be noted that regarding number of comments metric that small

modules with large blocks of comments skewed the results and therefore required the

model to be tweaked to measure comments as a percentage with an upper ceiling limit

imposed.

Coleman et al. (1994) applied the metrics outlined above to industrial systems within

Hewlett-Packard and the US Department of Defence and presented the results

unaltered. Overall, they concluded that “automated maintainability analysis” is

possible at various system levels and the metrics were applied to eleven software

systems and assisted in can assist in making decisions regarding including buy versus

build decisions and subcomponent quality analysis.

3.3.2	Evaluation	of	Code	Metrics	within	Hewlett-Packard	

Grady (1994) argued that the major uses of software metrics were project estimation

and progress monitoring, evaluation of work products, process improvement through

failure analysis and experimental validation of best practices. Basing his paper on

practical experience working on projects with Hewlett-Packard, he broke down each

area in detail but this paper is only concerned with the section; evaluation of work

products (Grady, 1994).

Cyclomatic Complexity

Grady (1994) outlines how Hewlett-Packard (HP) successfully used Cyclomatic

Complexity, a metric based on a programs decision count i.e. all the programs

conditional statements to build graphs that help locate problem areas within the code.

During one such study involving over 800,000 lines of code the engineers plotted a

relationship between program decision counts and code updates checked into the

	 49	

source control which found that seventy five per cent of the changes fell where the

decision count was highest. “The number of updates was proportional to the number

of decision statements”. By drawing a trend line and adding in the cost and schedule

effects of changing modules more than three times “they concluded that fourteen was

the maximum decision count to allow in a program”. He duly notes that McCabe

originally suggested ten based on testing difficulty. An additional interesting

observation by Grady (1994) is when he points out that the Cyclomatic Complexity is

a “measure of control complexity” and therefore is more valuable in control-oriented

applications as was the case here as opposed to data-oriented applications.

Design complexity

Grady (1994) looks at a metric used in data-oriented complexity called fanout squared.

He explains that the fanout of a module is number of calls from that module and that

fanout squared was used in three studies and had shown to correlate well to “the

probability of defects”. What is most interesting with this particular metric is that it

can be calculated prior to writing the code i.e. at the design phase. Grady (1994) cited

an example where a defect-prone module was identified as the source to fifty per cent

of the defects although it only contained eight per cent of the code. When the fanout

squared of this module was examined against all the thirteen modules in the system, it

had the largest number of them all. Overall, there was a strong correlation between the

fanout squared metric and the post-release defect count.

3.3.3	Alternative	Takes	on	Applying	Code	Metrics	

Constantine (1996) classifies metrics specific to software usability into three

categories: preference metrics, that are that assess aspects such user interface design

for ease of use, performance metrics, that quantifiable metrics which attempt to

determine error rates or execution time and predictive or design metrics that look to

evaluate the properties of the design such as screen layouts. His paper looked at user

interface design metric called Visual Coherence, based on the software engineering

concept of cohesion, the degree to which component parts are considered conceptually

or semantically interrelated. Visual Coherence is used to “measure how closely an

arrangement of visual components matches the semantic relationships among the

concepts represented by that component”. The use of Visual Coherence as a predictive

	 50	

metric was found to assist in predicting “user preferences, ease of use ratings of

interpretability, attractiveness, and quality of layout” (Constantine, 1996).

Kontogiannis (1997) argues that the cloning of code fragments in large-scale systems

results in “redundant code, higher maintenance costs, and less modular systems” and

proposes to use five metrics, including McCabe’s and Kafura complexity metrics, to

identify this code duplication including scenarios where instance variable names differ

and statements have been added. By using these standard software engineering

metrics, Kontogiannis (1997) attempted to identify the duplicated code by “examining

structural and data flow characteristics” and found that it could successfully retrieve

sixty per cent of duplicated code (Kontogiannis, 1997).

Plosch et al. (2010) argues that software quality is a key factor for any software

product and continuous monitoring is an “indispensable” task in the software

development lifecycle. By analysing the outputs of different static code analysers, they

developed a method systematically assessing and improving the quality of software

development projects. Their paper focused on code quality as opposed to overall

software quality and defines it as the “capability of source code to satisfy the state and

implied needs for the current software project”. While noting that continuous quality

monitoring is important as fixing issues sooner in the development cycle is less

expensive, They also cite Balzert who states the “early fixing of source code related

problems prevents propagation of these errors into subsequent phases” (Plosch et al.,

2010).

While pointing to previously documented “classical” software metrics like McCabe’s

Cyclomatic Complexity or Chidamber and Kemerer’s object-oriented metric suite,

Plosch et al.’s paper (2010) argues that being solely reliant on metric is not sufficient

and static code analysers are indispensable to ensure code is adhering to best practice

guidelines.

Although there is a range of tools available to perform static code analysis, none

supported “continuous code quality management”, hence Plosch et al. (2010)

developed a tool called ConQAT that integrates the results of various other static code

analysers into a dashboard overview. They looked at applying the Code Quality

	 51	

Monitoring Method (CQMM) that systematically improves code quality of a software

project and based on the Evaluation Method for Internal Software Quality (EMISQ).

While EMISQ worked on the basis of a “one-time assessment”, CQMM extends this

to continuously measuring by automation many of the steps involved.

	
Figure	3.5:	CQMM	activities

As shown in Figure 3.5, CQMM consists of eleven activities that are divided into three

major groups: Setup and Tailor, Measure and Enhance and Adjust and Control.

Plosch et al. (2010) conducted feasibility studies with selected projects with two

software projects written in Java with 30,000 and 10,000 lines of code respectively.

This concluded that although the application of the method worked the experiments

were too limited to gain any further general conclusions. The pilot projects did indicate

that CQMM could be integrated into development projects with different goals. At

time of publication, CQMM was due to be rolled out in 25 projects within the Indian

division of Siemens AG.

3.3.4	Classification	of	Metrics	based	on	Defect	Categories	

Tosun et al. (2011) conducted a case study on software metrics for different defect

categories. He argued that although past research had shown “code, shurn and network

metrcis” as indicators of defects, that not all metric sets are indicators within all defect

categories and only one of the metric types may be responsible for the majority of a

defect category. Previous work by Tosun et al. indicated that “defect category sensitive

prediction models” preform better than general models as “each category has different

characteristics in terms of metrics”.

	 52	

Building on previous work, Tosun et al. (2011) extended the model taking into account

churn, code and network metrics and found that churn metrics were best for predicting

all defects while code and network metrics correlation varied depending on category.

For example, network metrics had a higher correlation than code metrics for defects

reported during functional testing where the reverse was found when defects were

reported during system testing.

Tosun (2011) set out to investigate “the most representitive metric set for predicting

different defect categories” and outlined three reserch objectives:

• Analyse the relationship between metric sets and defect categories

• Predicit defects using the most representative metric set

• Build specialised prediction models for three defect categories

They analysed the history of a large-scale enterprise product in order to extract “static

code and churn metrics at software method/function level“. The product spanned a

histroy of over 20 years of updates of which they selected a part of this product

consisting of 500,000 lines of code.

	 53	

	
Figure	3.6:	The	process	of	extracting	static	code,	churn	and	network	metrics

Tosun (2011) extracted static code, churn and network metrics six months prior to

release date, the process of which is shown in Figure 3.6 above, and this provided a

base point. To extract network metrics, they built a call graph of the network by

extracting caller-callee relations.

	
Figure	3.7:	Churn	Metrics

	 54	

	
Figure	3.8:	Code	Metrics

	 55	

	
Figure	3.9:	Network	Metrics

Once the snapshot was taken any defect recorded against a module, labelled that

module as defective. Defects were also labelled by their categories: field defects,

system testing defects and functional testing defects (Tosun et al., 2011).

Tosun et al. (2011) began by conducting a statistical analysis to “understand the

relationship between metrics and defect categories”. From this it was evident that

“churn metrics have strong correlations with all defect categories“ and that code

metrics are more significant than system testing defects over network metrics. In

addition, network metrics have higher correlations with functional testing defects and

field defects.

3.3.5	Aggregation	of	Code	Metrics	

Mordal-Manet et al. (2011) built an empirical model for continuous and weighted

metric aggregation. Arguing that software metrics alone are not enough to determine

the quality of software and hence there is a trend towards aggregating various metrics

in an effort to make better determinations when analysing software for quality

purposes. Citing the example of combing Cyclomatic Complexity with test coverage

highlights the importance of covering complex methods over accessors, they present

the issues they encountered on designing a quality model called Squale, a model

	 56	

validated over a four year period with two large multinational companies: Air France-

KLM and PSA Peugeot-Citroen (Mordal-Manet et al., 2011).

While noting the fact that software metrics are becoming more of an objective

measurement of software quality, they argue that these metrics computed individually

and therefore do provide an overall quality assessment at a higher level. Although

aggregation models sich as the ISO 9126 have been created, Mordal-Manet et al.

(2011) notes several issues with it, including the fact it is difficult to compute, models

based on it provide overall assesment with simple averages weighthing which is seeing

as just smoothing out results and often results are translated into discrete scales i.e.

good, average or bad. They explain how the Squal Model uses formulas to aggregate

metrics in an effort to provide a quality indication for the overall project. This model

was designed in 2006 and put into production in Qualixo, Air France-KLM and PSA

Peugeot-Citroen.

The Squal Model is composed of four levels, divided into two groups.

	
Figure	3.10:	The	Squal	Model

The model is composed of metrics, high-level criteria and factors. As Mordal-Manet et

al. (2011) explains, “Each computed metric gives a mark in its own range while

criteria and factors give a mark between 0 and 3”. Then “transforming raw marks into

global marks in a given interval occurs in a new level between criteria and metrics

	 57	

called practices”. Practices are an important part of the model as as it transfroms low

level metrics into high-level marks reflecting software quality (Mordal-Manet et al.,

2011).

By including the practices section, the Squal Model overcomes the issues of the ISO

9126 model of providing an overall quality assesment without retaining the low-level

metrics on which the data was based. It bottom-up approach ensures that the high-level

quality results are continiously based on concrete, repeatable measures (Mordal-Manet

et al., 2011).

3.3.6	Evaluation	of	Metrics	through	Java	Developers	

De Silva et al. (2012) undertook an empirical study of three code complexity metrics;

McCabe’s Cyclomatic Complexity, Halstead’s software science and Shao and Wangs’

cognitive functional style, in order to determine which was most suitable in the real

world. On the matter of metric evaluation, they cite Weyuker’s nine properties and

Briand et al. five properties as the most commonly used. However, he argues that

determining a complexity metric using a theoretical properties is not reliable and thus

conducted an emperical study using thrity developers on ten open source java

programs.

De Silva et al. (2012) analysed the ten java programs and manually calculated the

metrics for each followed by having thirty programmers rank the programs based on

their own judgement as to the complexity of them. Overall, they determined that Shao

and Wangs’ cognitive functional style as the most suitable to be used in practice. In

additon, they concluded that effective lines of code and experts ranking had a high

correlation while Halstead’s two formulae, actual length and estimated length also had

a high correlation.

3.3.7	Using	Code	Metrics	to	Automate	Reviews	

Balachandran (2013) argued that using a Review Bot, a tool that integrated automatic

static analysis into the code review process. It was found that developers agreed to fix

93% of all automated comments generated by the review bot tool. This in-turn reduced

the amount of manual time required to review code. In addition, the Review Bot also

	 58	

made recommendations in the assignment of the reviews based on file change history

of source code.

3.3.7	Applying	Cyclomatic	Complexity	to	Y2K	

McCabe (1996) proposed an approach to the Year 2000 date issue, where the year field

was truncated to two fields and hence when moving from 1999 to 2000 would in fact

set the year to 00, using an extended version of the original Cyclomatic Complexity

measure to deal specifically with data (McCabe, 1996).

By specifying a set of data elements such as “a single element” or “all elements of a

particular data type, or all global elements”, this data-complexity metric is

“calculated by first removing all control constructs that do not interact with the

referenced data elements in the specified set and the computing the Cyclomatic

Complexity”. By specifying all the global data elements, such as date, gives “an

external coupling measure that determines encapsulation”. This could in turn be used

to quantify that the Year 2000 upgrade effort required (McCabe, 1996).

3.3.8	Standardisation	of	Metrics	

Ordonez and Haddad (2008) argues that although metrics are widely recognised they

are yet be standardised within the software industry. His paper looked at some the

existing software metrics in addition to documenting experiences from companies in

the industry including Hewlett-Packard (HP), Motorola, NASA and Boeing. They cite

an article by William T. Ward who described Hewlett-Packard’s (HP’s) “10 x software

quality improvement” initiative. Taking data from a “software metrics database and an

industry profit-loss model to develop a method to compute the actual cost of a software

defects” (Ordonez & Haddad, 2008).

The Software Quality Engineering Group estimates the turnaround time on fixing

defects to be approximately 20 hours. Taking this as a starting point and by applying it

to a product that had approximately 110 defects found and fixed during the testing

process leads to a Figure of around 2200 hours of engineering time or $165,000

(taking a rate of $75 per engineering hour) giving a cost of approximately $1500 per

defect. In addition, Ordonez and Haddad (2008) note that these costs are purely

	 59	

calculating profit and loss based on engineering time they do not take into account the

loss of sales to a company for a product being late to market or any contractual costs

that may be incurred as a result of project delays due to defective software.

Quoting Tom DeMarco “You can’t control what you can’t measure”, Ordonez and

Haddad (2008) point out that all other engineering disciplines use quantitative

measurements to gain better control over projects and quality within those projects.

Although they outline a variety of metrics used within the development of software

including cost and effort estimation, productivity measures, data collection, quality

assessment, reliability models, process metrics, project metrics and product metrics the

focus for this paper will be on project metrics. They argue that these project metrics

that include, lines of code, Cyclomatic Complexity and code coverage during test

execution, can lead to high quality products.

They also examined the use of metrics in detail at Hewlett-Packard (HP), Motorola,

NASA and Boeing. Of notable interest is NASA’s application of design and code

reliability metrics where NASA’s Software Assurance Technology Centre (SATC)

source code analyser to identify error prone modules “based on source code

complexity, size, and modularity”. From the various incarnations of complexity, SATC

used Cyclomatic Complexity, the number of independent paths, and “found that by

combining size and complexity makes the most effective evaluation”. They noted,

“large modules with high complexity tend to have the lowest reliability”. In addition,

they listed out the metrics used by the NASA for object-oriented quality analysis as:

Weighted Methods per Class (WMC), Response For a Class (RFC), Coupling Between

Objects (CBO), Depth In Tree (DIT) and Number Of Children (NOC). They overall

found that metrics used early in the development of software did prevent defects later

in the project and this in turn decreased overall development costs.

3.4	Clean	Code	

van Emden and Moonen (2002) introduced the concept of code smells to the area of

code metrics in an attempt to automate the process of identifying bad pratices

developed by Martin Fowler in his book Refactoring: Improving the Design of

	 60	

Existing Code. Building upon this, this paper will introduce a selection of modern

thinking in the context of software development as outlined in his book, Clean Code,

by Robert C. Martin (2008). It introduces several key concepts in an attempt to bring

together some of the most important aspects to be considered when developing

software. The phases most often used are “craft” and “clean” and are considered as key

concepts by Martin. The concepts presented here will include topics such as

meaningful names, writing functions and the commenting code.

3.4.1	Meaningful	Names	

Martin (2008) argues, “choosing good names takes times but saves more than it takes“.

If a developer is writing the name of the variable and leaves a comment beside it, then

that name does not reveal the true intent of that variable. An example is shown in the

code snippet below.

	
Figure	3.11:	Definition	of	integer	d

Defining an int with the name d tells the reader of this code nothing. It provides no

context for which the variable exists. If, as the comment suggests, stores the number of

elapsed time in days then there are many other names that would provide actual

meaning the variable (Martin, 2008).

	
Figure	3.12:	Suggested	names	for	integer	d

Martin (2008) argues that it is not the simplicity of the code that comes into play, it is

the implicitly i.e. the degree to which the context is not explicit in the code itself.

To reinforce this point, Martin provides an example.

	 61	

	
Figure	3.13:	Example	of	code	using	poor	naming	convention

The code provided above is actually a snippet from the board game, minesweeper.

Taking this into context and by simply renaming of variables, the functionality of the

above piece of code becomes much more obvious.

	
Figure	3.14:	Example	of	code	with	refactored	variable	names

With newly renamed variables, it quickly becomes clear what the code is doing and

how it fits into an overall context, all with changing how the code is written.

3.4.2	Functions	

Martin argues that functions should be small with no more than two to four lines of

code, do only one thing and only have one level of abstraction. This makes the

function easy to read for anyone looking to understand the code.

3.4.3	The	Stepdown	Rule	

By combining these short functions with the Stepdown Rule, Martin argues that code

should be written using top-down approach, which allows for reading the code from

top to bottom, “descending one level of abstraction at a time”.

	 62	

3.4.4	Commenting	Code	

Martin argues for a slightly more nuanced version of writing comments in code than

one would normally associate with the approach of the more comments in code the

better. “Nothing can be quite so helpful as a well-placed comment. Nothing can clutter

up a module more than frivolous dogmatic comments. Nothing can be quite so

damaging as an old crufty comment that propagates lies and misinformation.” (Martin,

2008)

Martin’s main points against writing comments in code is twofold; first, comments that

are not kept up to date when code is updated are misleading and lead the reader astray

and secondly they are normally used to compensate for a developer not being able to

write his/her code clearly enough.

3.5	Key	Findings	

Although it was defined in an era when coding was predominately of the procedural

paradigm, McCabe’s Cyclomatic Complexity has become a cornerstone on which

many other code metric theories are based.

Chidamber and Kemerer’s metric suite laid the foundation of metrics at a time when

the object-oriented paradigm was surging in popularity among programmers.

By introducing ‘code smells’ to code metrics van Emden and Moonen (2002) brought

a new viewpoint to how code metrics could be used in modern programming. No

longer was it simply a way of measuring for complexity or areas at high risk of being

defective but also brought the concept of enforcing coding principals early in the

development of software.

The Law of Demeter, a language independent rule, that allows for developers to ensure

that basic concepts of modularity and encapsulation are applied in the development of

object-oriented code.

	 63	

The section on clean code introduced the idea of viewing code metrics through a new

lens. It challenges well-established practices around code comments and argues for

strict naming conventions in order to allow second readers of code readily follow the

logic of the code.

3.6	Conclusion	

This chapter began by looking at some less well-known code metrics including

service-oriented design that attempted to define design-level metrics and program

slicing, a similarity-based functional cohesion metric. Although these metrics

introduced some new areas there was little or no evidence that additional research

grew from them nor any attempts made to apply them within industry.

Other notable points touched on were the growing number of tools within the area,

sometimes referred to as static code analysers, while Steidl et al. (2013) argued that

comments in code should be weighted i.e. code with high number of comments should

be considered of more value. The first section concluded with a look at how code

metrics can be validated and ultimately highlighted how diverse opinions are on this

matter.

The next section examined the application of code metrics within industry and looked

at various attempts to use them within established organisations. Companies from

Hewlett-Packard (HP) to Siemens and Air France-KLM were among those that

implemented metrics of sort in an attempt to identify area at high risk of being

defective. While there were indications of success it could be argued that it was patchy

and often the code metric analysers added layers of complexity.

The chapter concluded by introducing a subset Martin’s (2008) ‘clean code’ concepts.

This looked at principles that should adhered to when writing code and included

theories on making variable and method names meaningful, writing small and concise

functions, using the Stepdown Rule approach to laying out classes and arguing against

having large numbers of comments within the code. This last point regarding

comments was in direct contrast to what had been encountered earlier in the chapter

	 64	

where Steidl et al. (2013) argued that the larger the number of comments in the code,

the better, whereas Martin (2008) argues that comments can be misleading as many

times they are not updated when the code is changed and are normally used to

compensate for poorly written code.

The next chapter look to gain new insights into code metrics by creating a new dataset

and exploring it in detail. In order to accomplish this, a popular open source project

will need to be identified along with tools that can be used to extract the data. Once the

data is extracted, then data visualisation will be created in order to explore the data in

greater depth.

	

	

	

	

	

	 65	

4. Data	Exploration	

4.1	Introduction	

This chapter will discuss the selection of an open source project from which code

metrics can be generated and explored in detail. By opting for a popular open source

project that is used within industry and extracting raw data from the research will be

provided with metrics that are true reflection of the constant trade-offs that are made

when programming in the real world. The newly generated data set will include

various different metrics that will allow this research to explore for possible

relationships between them while at times taking code snippets for additional analysis

in search of common code patterns that may occur.

It begins with an overview of the open source project, followed by a detailed

description of the various tools required to extract the code metrics data and in turn

presents data visualisations. These visuals can in turn be used to identify possible

relationships between the various metrics. It will achieve this by first looking at

metrics for the solution at a high-level and then select projects with high, low and

average metrics to see if any relationships hold true in each category.

Each of these will in-turn follow the same process of analysis, by creating scatter-plots

that compare each of the metrics side-by-side in an effort to identify where

relationships exist and hold true regardless of the metrics for the given project. At

various points, code examples will be included in an effort to identify causation of

what the scatter plot correlations are indicating.

The chapter will conclude by looking at any findings that may provide further insight

into the relationships that exist between the various metrics.

4.2	Roslyn	Overview	

	 66	

With modern computers, the compiler used to compile human readable code into low-

level code that can be interpreted by a machine, is done at an incredibly fast rate and is

not given a lot of thought by developers. The details of how compilers work is beyond

the scope of this research but is suffice to say that human readable code, i.e. code that

programmers write, is not consumable by a machine and therefore specialist code is

written the converts this human readable code into machine readable code. This

process is known as compiling the code (Aho Alfred, Ravi, & Ullman Jeffrey, 1986).

Over time tools for writing code, known as integrated development environments

(IDE) have grown in popularity. They allow programmers to write code with built-in

features that warn them early in the process if the code is incorrect. For example, the

IDE shown in Figure 4.1 is indicating that there is an issue with the code. In this

example, the IDE cannot find an existing class Bus and therefore has highlighted it as

an issue before the programmer has even attempted to compile the code.

For these features to be built into IDE’s the IDE must be able to access the underlying

solution that is compiling the code. One of these solutions, used within the .NET

ecosystem, is called Roslyn.

	
Figure	4.1:	Visual	Studio	IDE	highlights	Bus	in	red	as	it	has	detected	an	error

Roslyn is one of many projects provided by the .NET Foundation, an independent

organisation that aims to open development around the .NET ecosystem. The open-

sourced code with over 13,000 commits and 154 contributors consists of over 100

projects and thousands of classes, making it the perfect candidate on which to analyse

code metrics.

	 67	

	
Figure	4.2:	Roslyn	open	source	solution	on	github.com

The Roslyn project opens up all the details of how the .NET compiler is implemented

and provides API’s that developers can harnessed in order to gain access to the

information contained with the compiler. This in turn allows IDE’s such as visual

studio to call these API’s as the programmer is writing the code and provide instance

feedback on various aspects of what is being written. As shown in Figure 4.1 above,

the visual studio IDE has highlighted the word Bus in red. It has detected an error

before the programmer has even compiled the code.

4.3.	Metrics	Tools	

This section will look at the various tools required to access, build and generate code

metrics for the Roslyn solution as well as those used to generate data visualisations in

an effort to do further exploratory work on the data.

In order to generate a new data set of metrics from the Roslyn open source solution,

various tools were evaluated in order to determine their suitability. By combining

different commercially available tools to extract the required data from the solution, it

reduced the need for new tools to be developed. In addition to the tools providing the

required capabilities to perform their function, it was also important that licenses were

available at no cost for a period of months.

This section will provide an overview of these tools and evaluate their suitability.

	 68	

4.3.1	NDepend	

NDepend is a static analysis tool for .NET code, which enables the user to generate

data relating to code metrics for a project. Developed by Patrick Smacchia circa 2004,

it covers many well-known code metrics including Cyclomatic Complexity, class

coupling and lines of code. Overall NDepend was not chosen although it could

generate code metrics, it in effect generated too much data with no obvious way for it

to be broken down, for example, exported to an Excel document for further analysis.

This is possibly related to the software being proprietary with a focus on it being an

all-encompassing analysis tool, which in turn makes it less favourable to be used as

part of this research. NDepend does not appear to have any student licenses available

and hence is only available for free for an initial 30-day evaluation period.

4.3.2	Visual	Studio	Code	Analysis	

Visual Studio is the integrated development environment for the .NET platform.

Developed by Microsoft circa 1997 with new releases on an average of every two

years, Visual Studio has several versions available, most of which require a

commercial license with the exception of the community edition, which is free. Visual

Studio as a product has a wide range of functionality, including the ability to write

code in various languages, including C#, F# and visual basic, provides compilers to

build code with enterprise editions providing functionality around load testing and

other advanced features. For the purpose of this research Visual Studio will be mainly

used to build existing open source projects with the aim of extracting code metrics for

further analysis.

In addition, Visual Studio comes with the ability to generate code metrics including

Cyclomatic Complexity, class coupling, lines of code and depth of inheritance that

enables the code metrics of the project to be analysed. In contrast to NDepend, Visual

Studio also provides functionality that allows all of the metric data generated to be

exported out into an Excel document and therefore allows for further analysis into the

data beyond what the initial tools provided for. This makes the Visual Studio code

metric data more suited for research, as the goal is to take the data generated by

existing tools and further develop this with additional analysis and insights.

	 69	

4.3.3	ReSharper	

Developed for commercial purposes by JetBrains, ReSharper is a plugin that adds

additional functionality for developers using Visual Studio. First launched circa 2000,

it was the basis for JetBrains to go on and develop many fully-fledged IDE for the

most popular programming languages including PHP, Java and Python. Its features

include the ability to find types and code snippets more easily, renaming of classes and

other types. The main functionality used for this research is in its ability to allow code

in a Visual Studio project to be refactored more easily with functionality such as

extracting new methods from existing code, examples of which will be detailed later. It

should be noted that JetBrains provide a yearlong student license on all of there

products.

4.3.4	Tableau	

Tableau is commercial software that specialises in data visualisations. Developed by

the Tableau software company based in Seattle, it allows Excel formatted data to be

imported providing basis for data exploration by enabling the end-user to create

various data visuals to further explore the data. By exporting metrics from Visual

Studio and viewing it from various angles in Tableau allows for a deeper analysis of

what was initially produced by Visual Studio. By combining existing functionality of

readily available tools and further exploring that same data with Tableau allows for

more in-depth data exploration of the data. It should be noted that Tableau also

provides student licenses.

4.4	Roslyn	Metrics		

This section will explore the data generated from the Roslyn project using the Visual

Studio metrics analysis tools.

	
Figure	4.3:	The	process	of	generating	metric	data	from	Roslyn

Building	 Extracting	 Exploring	

	 70	

The following steps were required in generating the data:

1. Building the Roslyn project

Open source projects normally provide build scripts that allow projects to be

built i.e. compiled into a lower-level machine code as not all large projects can

be built from within Visual Studio given the size of the project. This is

generally due to required dependencies being built in a particular order prior to

the main project itself being built. In the case of Roslyn, once the project was

initially built from the command line, it was then possible to rebuild a subset of

the components from within Visual Studio. The binaries generated by the

project were then outputted to a binaries folder. This made Roslyn quite

friendly to work with.

2. Extracting the raw metrics data

Visual Studio provides an analysis option for both the solution and on a per

project basis. For this particular solution the analysis failed to generate on

several attempts and therefore the data was collected on a per project basis. It

should be noted that although this took slightly longer to complete, it had no

impact on the resulting data and therefore time was not invested in identifying

the issue(s) that caused the problem with generating the data a solution level.

Once the metrics data was generated, it could be easily exported into an Excel

document. It should be noted that Visual Studio did not provide any

functionality to alter the data in any way or allow for a subset of the data to be

exported. It only allowed for all generated data to be exported. In addition, it

was not possible to export the data without using Excel (a product developed

by Microsoft as part of there office package) i.e. the Open Office equivalent

would not suffice.

3. Data exploration using data visuals

Once the data was saved to an Excel file, it could then be easily imported into

Tableau. From here visuals were created in an effort to explore the data in

depth starting with some high-level flipped bar charts and then scatter plots in

attempt to identify possible correlations between metrics.

	 71	

As a starting point to analyse the code, the metrics were taken at a project level, each

of which contained anywhere from a few hundred to a few thousand classes. This

section will take a look at various areas of the code and analyse each for four metrics,

namely: class coupling, Cyclomatic Complexity, depth of inheritance, and lines of

code. Each of these metrics were first examined at project level to give overall

comparisons and then selected projects with various criteria, for example showing

extremely high or low metrics, were selected for further analysis at the class level.

4.5	High	Scoring	Metrics	

The top ten projects for each of the four metrics, class coupling, Cyclomatic

Complexity, depth of inheritance and lines of code, are shown as flipped bar charts

below. A preliminary analysis of the metrics indicated the CSharpCodeAnalysis

project as having the highest for all four metrics.

	 72	

	
Figure	4.4:	Identifying	Projects	with	High	Scoring	Metrics

4.5.1	CSharpCodeAnalysis	Project	

Taking a closer look at this project reveals an array of the classes that contribute to this

particular project having the highest metrics in the overall code base. Shown below is

metrics calculated on a per type basis within the CSharpCodeAnalysis project. Unlike

the previous flipped bar charts shown, the metrics for projects all indicate that this

project had the highest metric count for all four measured, this collection of visuals

show the different types providing the highest metric counts and although the Binder

class is top in two of the four metrics, SyntaxFactory is second in two of them.

	 73	

	
Figure	4.5:	Identifying	Types	with	High	Scoring	Metrics

Taking this as a starting point, the metrics were then used to generate scatter plot

visuals pitting the four metrics against each other. Similar to the creation of the

flipped-bar charts Tableau allows for the selection of columns versus rows to generate

a scatter plot. In addition, a filter was applied to colour code the types that were

forming the trend line in the graph. As there were four metrics in play, six scatter plots,

complete with trend lines were created that attempt to provide further insight into the

data by analysing the various correlations between the metrics. Each of these visuals

will now be examined in turn.

4.5.2	Cyclomatic	Complexity	and	Class	Coupling	

	
Figure	4.6:	Cyclomatic	Complexity	and	Class	Coupling

	 74	

The first of the scatter plots created, show a relatively close relationship between

Cyclomatic Complexity and class coupling although it could be argued that the

relationship is somewhat stronger within the lower counts of the metrics. Logically this

would make sense as the more classes coupled together would likely lead to an

increase the amount of logic contained within that class and therefore an increase in

Cyclomatic Complexity.

4.5.3	Depth	of	Inheritance	and	Class	Coupling	

	
Figure	4.7:	Depth	of	Inheritance	and	Class	Coupling

Not much of a relationship was found during comparisons of depth of inheritance with

class coupling. This is not surprising as both class coupling and inheritance have a

similar goal in adding functionality to a class either by referencing another class in the

case of class coupling or by inheriting behaviour from the class above with inheritance

and therefore a class is likely to do only one these and not both.

4.5.4	Lines	of	Code	and	Class	Coupling	

	 75	

	
Figure	4.8:	Lines	of	Code	and	Class	Coupling

While lines of code and class coupling show some correlation it was strongest when

both metric scores are low. Although this is interesting from a data exploration point of

view it is unlikely that there is much causation associated here as logically a class

containing hundreds of lines of code would not necessarily be coupled to many other

classes and vice versa i.e. a class coupled to many other classes would not necessarily

have to have many lines of code.

4.5.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	

	 76	

	
Figure	4.9:	Cyclomatic	Complexity	and	Depth	of	Inheritance

Interestingly, Cyclomatic Complexity and depth of inheritance lack any sort of

correlation. It would appear that as more classes are built into an inheritance hierarchy,

the Cyclomatic Complexity dissipates.

4.5.6	Cyclomatic	Complexity	and	Lines	of	Code	

	
Figure	4.10:	Cyclomatic	Complexity	and	Lines	of	Code

	 77	

The correlation between Cyclomatic Complexity and lines of code was by far the

closest of all the compared metrics. The correlation holds on both the low end of the

metrics scores right up to a class that has over two thousand lines of code, having a

Cyclomatic Complexity score of above twelve hundred.

4.5.7	Depth	of	Inheritance	and	Lines	of	Code	

	
Figure	4.11:	Depth	of	Inheritance	and	Lines	of	Code

Lastly lines of code and depth of inheritance showed little to no correlation.

Overall this section provides an initial overview of the various metric data gathered

from the Roslyn project. While some metrics have shown extremely strong correlation,

for example Cyclomatic Complexity and lines of code, others, namely depth of

inheritance and lines of code have shown little to no correlation.

	 78	

4.5.8	Examination	of	code	

In an effort to dig a little further into the data in an attempt to identify any possible

causation for the above correlations, code samples from the project were examined for

the various classes that appeared in the visuals above.

CodeGenerator class

	
Figure	4.12:	CodeGenerator	Class

This first code example shows one of the private methods within the

CodeGenerator class. It makes for an interesting example of code that has the

potential to have high Cyclomatic Complexity as it has a structure of nested if-

statements with an else on the closing if. This is exactly the type of structure that can

cause a high Cyclomatic Complexity, as there are a lot of paths the code can take

during execution.

GreenNodeExtensions class

	 79	

	
Figure	4.13:	GreenNodeExtensions	Class

The GreenNodeExtensions class is an interesting example of a class that contains

relatively low number of lines of code but quite a high Cyclomatic Complexity. This

would indicate that the large number methods relative to class size is an impacting

factor on the calculating of the Cyclomatic Complexity. In addition, the inclusion of

the ternary operator, a short handed if-statement, in the method ToGreenList above

will also increase the complexity of the class and may not be immediately obvious on

first inspection.

While this section looked in detail at the project that generated the highest code

metrics of the Roslyn solution, the following section will look at the project that

generated the lowest metrics. Again, each of the metrics was compared using scatter

plots in an attempt to identify which of the correlations above held true.

4.6	Low	Scoring	Metrics	

As projects scoring lower metrics tend to have lower numbers of classes and in-turn

less code, a project with a relatively low score was selected for analysis (not the actual

lowest as it would be redundant exercise to examine a project containing very little

code). The flipped bar charts below were created to give an overview of all of the

lowest scoring projects in the Roslyn solution.

	 80	

	
Figure	4.14:	Identifying	Projects	with	Low	Scoring	Metrics

4.6.1	MicrosoftCodeAnalysisCSharpScripting	Project	

From the flipped bar charts above, the MicrosoftCodeAnalysisCSharpScripting project

was selected for a detailed analysis using the same format as CSharpCodeAnalysis

seen in the last section. By generating the same visuals, and comparing the metrics

against each other using scatter plots, it allows for direct comparisons to be made

between projects with high scoring metrics and projects with lower scoring metrics.

4.6.2	Cyclomatic	Complexity	and	Class	Coupling	

	 81	

	
Figure	4.15:	Cyclomatic	Complexity	and	Class	Coupling

While the previous comparison between Cyclomatic Complexity and class coupling

showed a relatively close correlation, it now appears to be non-existent when the

overall metric scores are considerably lower.

4.6.3	Depth	of	Inheritance	and	Class	Coupling	

	
Figure	4.16:	Depth	of	Inheritance	and	Class	Coupling

	 82	

Not unsurprisingly, for depth of inheritance and class coupling the trend of no

significant correlation appears to have continued as no real correlation has appeared

when the metrics are considerably lower.

4.6.4	Lines	of	Code	and	Class	Coupling	

	
Figure	4.17:	Lines	of	Code	and	Class	Coupling

In contrast to previous analysis where there appeared to be a slight correlation when

metrics were lower, this appears to have dissipated and therefore was unlikely to have

been of any significance.

4.6.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	

	 83	

	
Figure	4.18:	Cyclomatic	Complexity	and	Depth	of	Inheritance

The non-existence of any relationship between Cyclomatic Complexity and depth of

inheritance appears to continue regardless of how low or high the metrics are.

4.6.6	Cyclomatic	Complexity	and	Lines	of	Code	

	
Figure	4.19:	Cyclomatic	Complexity	and	Lines	of	Code

	 84	

Again the relationship between Cyclomatic Complexity and lines of code appears to be

the strongest regardless of how high the metric data indicates.

4.6.7	Depth	of	Inheritance	and	Lines	of	Code	

	
Figure	4.20:	Depth	of	Inheritance	and	Lines	of	Code

Continuing the trend from the previous comparison when metrics were a lot higher,

there is little to no relationship between depth of inheritance and lines of code.

4.6.8	Examination	of	code	

As with the previous section, code was analysed in an effort to shed further light on the

cause for the correlations above.

CSharpPrimitiveFormatter class

	 85	

	
Figure	4.21:	Figure	4.21:	CSharpPrimitiveFormatter	Class

Similar to the second code example shown in the last section, the

CSharpPrimitiveFormatter class is a small class with a high Cyclomatic

Complexity relative to class size.

CSharpTypeNameFormatter class

	
Figure	4.22:	CSharpTypeNameFormatter	Class

The method, GetPrimitiveTypeName within the

CSharpTypeNameFormatter class contains a switch statement. This type of logic

within a class is another example of how the Cyclomatic Complexity of class can

	 86	

dramatically increase with relatively few lines of code. It increases the number of paths

the class has to execute for all possible input values without the class appearing to

grow very much.

4.7	Average	Scoring	Project	

The two previous sections looked in depth at the various metrics when compared head

to head against each other. This resulted in certain metrics namely Cyclomatic

Complexity and lines of code showing strong correlations regardless of whether the

metrics are the highest or among the lowest in the overall Roslyn solution. Continuing

this data exploration this last section will take an average, mid-level project from the

Roslyn solution and again look for correlations through the use of scatter plot data

visuals.

Referring back to the initial flipped bar charts showing the projects with the highest

metrics, another project was chosen from the lower end of this section named

RosylnTestPdbUntilities.

4.7.1	RosylnTestPdbUntilities	Project	

This section follows the same format as the previous two in an effort to either further

establish metrics that have a strong correlation when compared against each other or to

discredit previously identified strong correlations.

	 87	

4.7.2	Cyclomatic	Complexity	and	Class	Coupling	

	
Figure	4.23:	Cyclomatic	Complexity	and	Class	Coupling

Interestingly when Cyclomatic Complexity and class coupling were compared with

high scoring metrics it showed a relatively close correlation whereas that correlation

appeared to have fallen away when the metrics were on the opposite end of the scale

with extremely low metrics. On examination of the generated scatter plot for a project

considered to be in the mid-range of the overall metrics score for the overall Roslyn

solution, it appears that this correlation has resurfaced.

4.7.3	Depth	of	Inheritance	and	Class	Coupling	

	 88	

	
Figure	4.24:	Depth	of	Inheritance	and	Class	Coupling

Previously there was little or no relationship between depth of inheritance and class

coupling with this project showing the closest of all three to any sort of relationship

between the two metrics.

4.7.4	Lines	of	Code	and	Class	Coupling	

	
Figure	4.25:	Lines	of	Code	and	Class	Coupling

	 89	

Having first noted a slight correlation in the high scoring metrics, one that appeared to

have fallen away when the metrics scores were significantly lower, seems to have

resurfaced when the metrics score moved back up to an average level.

4.7.5	Cyclomatic	Complexity	and	Depth	of	Inheritance	

	
Figure	4.26:	Cyclomatic	Complexity	and	Depth	of	Inheritance

As consistent with the two previous projects it is starting to become well established

that no relationship exists between Cyclomatic Complexity and depth of inheritance

regardless of the metric score of the overall project.

	 90	

4.7.6	Cyclomatic	Complexity	and	Lines	of	Code	

	
Figure	4.27:	Cyclomatic	Complexity	and	Lines	of	Code

As consistent with the previous two projects, Cyclomatic Complexity and lines of code

have the strongest correlation regardless of what the overall metrics scores are for the

given project.

4.7.7	Depth	of	Inheritance	and	Lines	of	Code	

	
Figure	4.28:	Depth	of	Inheritance	and	Lines	of	Code

	 91	

Consistent with the previous projects depth of inheritance and lines of code have

shown no sign of a relationship.

4.7.8	Examination	of	code	

As consistent with the previous sections, code examples were examined to identify any

possible causation for the above correlations.

AsyncStepInfo class

	
Figure	4.29:	AsyncStepInfo	Class

As consistent with the previous code examples, small methods, irrespective of access

modifier, appear to increase the Cyclomatic Complexity of the class overall.

4.8	Key	Findings	

The data exploration conducted above indicates that while some metric pairings

showed no correlation regardless of the overall metric score of that project other metric

pairings show quite strong correlations. In addition, some pairings were inconsistent

i.e. show correlations in some cases but this correlation then fell away depending on

the overall metric score for the project.

	 92	

	
Figure	4.30:	High	Scoring	Metrics

	
Figure	4.31:	Low	Scoring	Metrics

	
Figure	4.32:	Average	Scoring	Metrics

Figures 4.28 through to 4.30 are scatterplot matrices generated from the visuals seen in

the preceding sections of this chapter. These allow for an overview of the data in an

effort to identify trends. One immediate and standout trend noticeable by scanning

along the third row of each visual is the lack of correlation between Depth of

Inheritance and any other metric. In addition, the strong correlation between Line of

	 93	

Code and Cyclomatic Complexity is also notable. The next section will look at these

and other findings in detail.

4.8.1	Cyclomatic	Complexity	and	Class	Coupling	

Having initially shown a relatively close correlation when project metrics scores were

high, the same relationship appeared to fall away when the metrics score was at the

extreme lower end the scale only for it to regain slightly when project metrics

recovered to an average level.

4.8.2	Depth	of	Inheritance	and	Class	Coupling	

Overall depth of inheritance and class coupling showed little to no relationship. A very

slight correlation was visible in the average metric scoring project but not something

of any real significance.

4.8.3	Lines	of	Code	and	Class	Coupling	

Similar to Cyclomatic Complexity and class coupling, lines of code and class coupling

showed a slight correlation when the overall metrics score was high that completely

fell away when the metric score was at the extreme low end. This correlation

recovered slightly for the average scoring project possibly indicating that it occurs for

reasons unknown where metrics scores are higher end of the scale.

4.8.4	Cyclomatic	Complexity	and	Depth	of	Inheritance	

Cyclomatic Complexity and depth of inheritance were two of the most consistent non-

existing relationships. All three projects regardless of overall metrics score showed no

relationship between Cyclomatic Complexity and depth of inheritance.

4.8.5	Cyclomatic	Complexity	and	Lines	of	Code	

Showing the most consistency for an existing relationship was Cyclomatic Complexity

and lines of code. As can be seen in the small multiples visual below, there was a

consistent correlation between Cyclomatic Complexity and lines of code.

	 94	

	
Figure	4.33:	Small	Multiples	showing	Cyclomatic	Complexity	and	Lines	of	Code

4.8.6	Depth	of	Inheritance	and	Lines	of	Code	

Similar to depth of inheritance and Cyclomatic Complexity there is consistently no

sign of a relationship between depth of inheritance and lines of code. This was shown

in all three comparisons regardless of the overall metrics score for the project.

4.8.7	Noteworthy	Points	

It should be noted that the metric that appear to form little or no relationship with any

other metric it was compared against, was depth of inheritance. It consistently failed to

establish any correlation regardless of overall metric score on the project or metric it

was compared against.

In addition, the various code examples indicated a trend towards in increase in

Cyclomatic Complexity when the number of methods in the class increased, regardless

of access modifier i.e. public or private methods. Although one example contained a

ternary operator, a short-handed if-statement, this did not appear to be required in

order for the Cyclomatic Complexity to increase. The occurrence of a large number of

methods within a class appeared to lead to an increase in the overall Cyclomatic

Complexity of the class.

4.9	Conclusions	

After identifying the Roslyn open source solution as having all the attributes required,

including size, complexity in terms of its overall functional requirements and actively

	 95	

worked on as a project, to become the basis of the data set this chapter looked at the

various tools involved to extract the data and create the visuals for exploration.

Flipped bar charts were used to identify which projects within the solution had high,

average and low metrics. The same format was then used to analyse each one. This

enabled the research to identify any relationships that may have carried from one

project to another. From time to time code snippets were also selected at random to

help shed light on what coding characteristics were causing the various metrics.

While the exploration phase did highlight some findings in terms of the relationships

between various metrics, the main two are the consistent relationship between

Cyclomatic Complexity and lines of code and the complete lack of relationship

between depth of inheritance and any other metric it was paired against. In addition, it

was also noted that through random examination of the code, there appeared to be a

relationship between the Cyclomatic Complexity and the number of private methods

within a class.

It is this last point that will become the focus of the next chapter. In order to explore

this relationship more closely i.e. the relationship between Cyclomatic Complexity and

the number of private methods, the area will be expanded out to include both public

and private methods and all the metrics that were examined in this chapter. For this to

be achieved, a way of extracting a new data set containing information relating to the

number of both public and private methods needs to be defined. Following that, the

new data set will need to be merged with the data that was examined in this chapter.

	

	

	

	

	

	

	
	
	

	 96	

5. Impact	of	Code	Readability	on	Metrics	

5.1	Introduction	

While the previous chapter explored the metrics data generated from the Roslyn open

source solution, looking for possible correlations between the metrics, this chapter will

take one its key findings and further expand upon it in an effort to gain new insight.

The focus in this chapter will be on a possible relationship between an increase in the

Cyclomatic Complexity of a class and the number of private methods within that class.

In order to expand upon this further, the scope will be widened. The chapter will look

to examine all metrics seen in the previous chapter against the number of both public

and private methods within a class. In order to do this, additional data relating to the

number of methods per type will be required from the Roslyn solution. As this data is

not readily available with existing tools, additional software was developed to extract

this data and merge it with the existing data from the previous chapter. This then

enabled more visuals to be created in the form of scatter plots to further examine for

possible correlations.

This chapter will begin by walking through all software that was developed in order to

extract the new data while highlighting issues encountered in the process. It will then

look at the process of merging this data with the existing data generated in the previous

chapter. Due to differences in data format, an iterative process was employed until a

satisfactory data set was generated.

5.2	Developing	the	Extraction	Software	

As no tools were readily available to extract data related to methods contained with the

various types of the Roslyn solution, additional software was developed. This section

will explain, step-by-step, the details of how the software works.

	 97	

	
Figure	5.1:	Overview	of	Roslyn	Structure

Figure 5.1 shows an overview of how the Roslyn solution is structured and the

direction of dependencies at a high level. By harnessing the Assembly class provided

by the .NET platform the code loads each binary i.e. the compiled dynamic link library

(DLL) file and using a concept known as reflection can extract large amounts of data

about the binary. The focus of the code, as explained in detail below is to filter out

only the data required for this research i.e. the public and private methods of each,

format the data and save it out to an Excel spread sheet.

	 98	

	
Figure	5.2:	MethodsPerClass	Class	Diagram

The methods developed include:

• MethodsPerClass method whose job is to process each binary i.e.

compiled DLL from the Roslyn solution, and extract out the data about the

number of both public and private methods contained in each type.

• SetUp method whose job is to create the initial Excel worksheet that the data

will be saved into. This includes defining the column headings that the new

data will be saved under.

• GetTypesFromBinary method whose job is to find the binary on the local

hard disk and load it into memory.

• FilterFunc method whose job is to extract out only the types that are

required from the binary. By design Microsoft’s .NET Assembly class

returns large amounts of data and therefore filtering is often required.

• ExtractTypes method whose job is to map the required data back to the

DataSet class. This is the nested class shown in the class diagram of Figure 5.2

above.

	 99	

• FormatName method whose job is to remove unwanted characters from the

type names as they are returned from the Assembly class.

• AddTypesToWorksheet method whose job is to insert a new row into the

worksheet. Each insert consists of a type and the number of public and private

methods for that type. The full list of extracted data corresponds to the nest

DataSet class shown in Figure 5.2.

5.2.1	MethodsPerClass	

The class written to perform the data extraction was called MethodsPerClass. This

first figure shows the properties of the class.

	
Figure	5.3:	Definition	of	MethodsPerClass

The properties of the class contain the relevant details as to what the class requires in

terms of location of the binaries of the Roslyn solution, the name of the file the data

will be saved to while the list of binaries the code was to execute on was loaded into a

list named _binaries. One other notable inclusion here is a type called

XLWorkbook, a type imported from a package called ClosedXML. ClosedXML is an

open source library available from the nuget package store that allows operations to be

completed on Excel files, including the creation of the files, opening existing files and

updating files.

	100	

	
Figure	5.4:	Definition	of	DataSet	class	used	within	MethodsPerClass

The DataSet class provided a type for each piece of information collected from the

binaries listed above. The job of this nested type within the program will be explained

in more detail shortly but in essence this defines that for particular type various pieces

of information were collected including the Name, NumberOfPublicMethods,

NumberOfPrivateMethods etc. was collected.

	
Figure	5.5:	Definition	of	SetUp	method

The SetUp method defined here sets up the initial Excel worksheet, where the

collected data will be added, and also defines the names seen in the DataSet to each

of the columns within that Excel spread sheet.

	
Figure	5.6:	Definition	of	the	foreach	statement	used	to	iterate	through	all	the	Roslyn	binaries

	101	

The main execution of the code is to apply four steps to each of the binaries, as

follows: getting the types from the binaries, extracting the required information into

the DataSet type defined earlier i.e. more information than required is returned and

therefore only the required information is extracted out at this point. This will be

covered in more detail shortly, filtering out duplication caused by partial types and

finally applying the list of DataSets to the worksheet. The program completes by

saving the worksheet to a local directory. Each of these steps will now be examined in

more detail.

	
Figure	5.7:	Definitions	of	three	methods	used	within	MethodsPerClass

The code above shows three private methods, the bottom two of which are called by

the first method, GetTypesFromBinary. This method takes the string name of the

binary and calls the third of the three methods shown above, LoadAssembly. This

method in-turn uses the Assembly class provided by the .NET framework to load the

assembly from the directory previously defined in the properties shown earlier. Once

the assembly is loaded, control returns to the calling method,

GetTypesFromBinary.

Using the chaining of methods the next action preformed is GetTypes. This method,

provided by the Assembly type, is used to load the binary and returns all the types

found within that binary. It then continues to convert the binaries into a list to be

returned to the calling method, but before doing so applies a FilterFunc, the

second method defined above. The FilterFunc returns true or false to the Where

clause, depending on whether or not the name of the type begins with an angle bracket

or underscore.

	102	

The reasoning behind applying the FilterFunc will be explained shortly. It should

be noted that the Where clause to a method provided GetTypes returning an

IEnumerable an interface definition provided by the .NET framework but the details of

which are beyond the scope of this research.

	
Figure	5.8:	Definition	of	ExtractTypes	methods

The next step in the process is to extract only the information that is required for the

data being assembled i.e. the details of public and private methods contained in a class.

This is required as the GetTypes call shown earlier returns are large amount of data

by default when called on a binary.

For the purpose of this research only a small subset of this data is required. The

ExtractTypes method defined above employs the use of lambda expression, the

details of which are beyond the scope of this explanation, but it is sufficient to say that

the method is taking each required piece of information from each of the types in the

list sent to it by the calling method, creating a new instance of DataSet for each,

extracting the data it requires and returning the resulting list back to the calling

method.

	
Figure	5.9:	Definition	of	FormatName

In addition, this method also calls an additional method, FormatName. This removes

any back ticks that appear in the names. The details of this will be explained fully in

the next section.

	103	

	
Figure	5.10:	Definition	of	FilterForPartialTypes

At this point the code has loaded the binary and extracted the information from each

type and placed it in a list of DataSet types. The next step of the process is to filter

out partial types. As this particular piece went through several iterations the details will

be explained in the next section.

	
Figure	5.11:	Definition	of	AddTypesToWorkSheet

When all the data is collected and filtered the code then appends the data into a

manageable format of an Excel sheet. The AddTypesToWorksheet method

defined above simply loops through the list of DataSet types inserting each into a

cell on the Excel worksheet.

	
Figure	5.12:	Save	new	workbook	to	local	hard	disk

The last part of program execution is to save the workbook to the local hard disk.

	104	

5.3	Data	Preparation	

The previous section provided a brief overview of the code used to collect the method

information from the Roslyn solution. At three points in the overview, it was noted

that certain aspects of code would require further explanation in the context of how the

data was prepared. The areas were the application of a FilterFunc, filtering out partial

types and formatting of the type name, each of which will be explained in due course.

These areas are in effect dealing with anomalies that arose when attempting to merge

the data generated by the code above with the data previously generated using the

visual studio tools for calculation of metrics that were examined in the previous

chapter. These anomalies lead to both the changes highlighted in the preceding code

along with the creation additional code to clean the data provided by code metrics

analyser in visual studio. This section will now discuss this iterative process in detail.

	
Figure	5.13:	Data	Preparation	using	CRISP-DM

As no readily available software had the ability to generate a data set containing the

number of methods in each type, new code was written to extract the data from the

Roslyn solution. An overview of this code was provided in the previous section. On

comparing the generated data with the original metric data it was clear that anomalies

were present that meant the data could not be easily merged. This included the naming

of types and whether partial types should be considered separately or as part of their

complete class etc. A process of cleaning the data to allow both data sets to be merged

together was required.

	105	

The process undertaken to clean both sets of data followed the Cross Industry Standard

Process for Data Mining or CRISP-DM. This is shown in the diagram above. It

provides a standard process for data to be generated, data preparation, modelling and

evaluation. The two areas that required this iterative process were the formatting of the

name and handling of partial types, both of which will be explained in detail shortly.

Prior to looking at these issues in detail, a walk-through of the code written to clean

the code metric data, generated by visual studio will be undertaken.

	
Figure	5.14:	FixingData	Class	Diagram

The methods developed include:

• FixingData method whose job is to read the existing metric data set

containing all the information regarding Cyclomatic Complexity etc. and

reformat it in order for it to merge with the data set on public and private

methods within the types.

• GetDataFromWorksheet method whose job is to loop through all the

metric data contained in an Excel worksheet on the local hard disk and read

each line, and create a new type called MetricData for each. The

MetricData class is shown in Figure 5.14 above.

• FormatTypeName method whose job is to ensure the name is formatted

correctly. This is very important in ensuring the data merges successfully as the

merge will be done on the name of the type.

	106	

• FilterForPartialTypes method whose job is to ensure that all partial

classes are recorded as single class.

5.3.1	FixingData		

The code used to clean the code metrics data was written in a class called

FixingData. This section will take brief overview of the code that was written.

	
Figure	5.15:	Definition	of	FixingData	class

The first code snippet shown is the properties the FixingData class defines to be

used during the execution of the code. It defines the XLWorkbook that will be used to

load the data from the Excel file and also the location of the file on the local hard disk.

In addition, it defines a type called MetricData that will be used to hold the data

read in from the Excel file.

	
Figure	5.16:	Definition	of	SetUp	method

On the initial setup, just prior to code execution, a new instance of the workbook is

created and a new worksheet is added with the column definitions matching the

previously defined MetricData.

	107	

	
Figure	5.17:	Reading	in	data	from	workbook	on	local	hard	disk

The main execution of the code takes the format above. It first retrieves the data from

the existing workbook. Note that this is the data generated using visual studio’s code

analysis tool that was examined in detail in the previous chapter. Each of these steps

will now be examined in detail.

	
Figure	5.18:	Definition	of	GetDataFromWorksheet

The method GetDataFromWorksheet takes the original worksheet that has been

loaded from the disk and extracts the data into a list of type MetricData. Using

rowCount to keep track, it keeps looping through the data adding an entry to the

MetricData list each time.

	
Figure	5.19:	Definition	of	FormatTypeName

	108	

On retrieving the data from the original worksheet, the above method also calls out to

the method defined above, FormatTypeName. This is one of the two key functions

to this code and will be explained in more detail shortly.

	
Figure	5.20:	Definition	of	FilterForPartialTypes

Applying this specific filter to partial types is one of the two main functions of this

code snippet. For now it is sufficient to say that it is executed at this point in the code

and will be examined in more detail later.

	
Figure	5.21:	Definition	of	AddTypesToWorksheet

	
Figure	5.22:	Definition	of	SaveWorkbook

Once the data has been formatted in this way, it is populated back into an Excel sheet

and saved back on to the local hard disk.

	109	

5.3.2	Formatting	Type	Name	

As the name was the identifier on which the two sets of data were merged it was

imperative that both sets of type names matched exactly. That led to changes being

required on both sets of data. In order to best understand how this was achieved

consider the name format applied to each piece of code above.

	
Figure	5.23:	Definition	of	FormatName

This FormatName method shown above was required eliminate the occurrence of

back ticks in type names within the method details extraction code.

	
Figure	5.24:	Definition	of	FormatTypeName	

	
Once the back tick issue was eliminated from methods data side, an issue arose with

the structure of the naming convention within the metric data side. This meant that

type names with particular characteristics were outputted in the format of these name

types.

• MetadataDecoder<ModuleSymbol, TypeSymbol, MethodSymbol, FieldSymbol, Symbol>

• AbstractLookupSymbolsInfo<TSymbol>.UniqueSymbolOrArities

• CompilerDiagnosticAnalyzer.CompilationAnalyzer.CompilerDiagnostic

As the method data format the name types without the type name in angle brackets or

preceding it nested class types, it was required that each of these names be reformatted

to

	110	

• MetadataDecoder

• UniqueSymbolOrArities

• CompilerDiagnostic

This is essentially what the FormatTypeName method above is doing.

5.3.3	Filtering	of	Partial	Classes	

Before looking at the issues around partial class, the concept of a partial class itself

needs to be examined. Normally a class is presented on a single document i.e. a single

page. For various reasons, beyond the scope of this research, some languages provide

the ability for a class to be split over two or more documents with using the keyword

partial. As far as the compiler is concerned this is a single class and all parts to a class

must be contained in a single project within the visual studio solution. For this reason,

this research will also consider a partial class as multiple parts of the same class and

therefore treat it as one single class.

The issue that arises here is that merging these partial classes into one class must be

done as part of cleaning the data to allow for the two sets to be successfully merged

together. Both code snippets below provide the functionality, applied differently to

each, that allows for a consistent format of data to be generated. It is not enough to

simply merge the names, on doing so the data, whether metric data or methods data,

also needs to accumulated together to provide an overall total for each column.

	
Figure	5.25:	Definition	of	FilterForPartialTypes

	111	

	
Figure	5.26:	Definition	of	FilterForPartialTypes

5.3.4	Merging	the	Data	

Once both sets of data were generated, they were manually loaded into a single Excel

workbook on two separate tabs. From there the Excel sheet was loaded into Tableau

where further data exploration could be conducted. It is this data exploration that the

remainder of this chapter is concerned with.

5.4	Exploring	the	Merged	Data	Set	

Having extracted out the method details of each type and merged this data with the

code metrics, it allows for additional data exploration where the metrics presented in

Chapter Three can be compared against the number of private and public methods

within that class. For example, is there any relationship between the number of the

class coupling metrics of a group of classes and the number of public and private

methods contained within those classes? In order to explore this fully, scatter plots

were generated for the CSharpCodeAnalysis. Each metric, class coupling, Cyclomatic

Complexity, depth of inheritance and lines of code, were compared against the number

of public and private methods in various types.

5.4.1	Merged	Data:	Class	Coupling	and	Number	of	Public	Methods	

	112	

	
Figure	5.27:	Class	Coupling	and	Number	of	Public	Methods

On comparing class coupling to a number of public methods, the scatter plot indicates

that not much of a relationship appears to exist between the two. Logically this is not

unsurprising as class can be coupled together without necessarily leading to an

increase in the number of public methods of that class.

5.4.2	Merged	Data:	Class	Coupling	and	Number	of	Private	Methods	

	113	

	
Figure	5.28:	Class	Coupling	and	Number	of	Private	Methods

Similar to the comparison of public methods, there appears to be even less of a

relationship between class coupling and the number of private methods.

5.4.3	Merged	Data:	Cyclomatic	Complexity	and	Number	of	Public	Methods	

	
Figure	5.29:	Cyclomatic	Complexity	and	Number	of	Public	Methods

	114	

The Cyclomatic Complexity metric does not appear to have too much of a relationship

with the number of public methods. This is not unsurprising as a lot of complex code

logic could be placed in one public method that may increase the overall Cyclomatic

Complexity of the class without increasing the public method count of that class.

5.4.4	Merged	Data:	Cyclomatic	Complexity	and	Number	of	Private	Methods	

	
Figure	5.30:	Cyclomatic	Complexity	and	Number	of	Private	Methods

Perhaps one of the most interesting findings is this relationship between Cyclomatic

Complexity and the number of private methods in a class. This makes for an

interesting finding, as it would seem to suggest that as the number of private methods

increases in a class, the Cyclomatic Complexity of that class also increases.

5.4.5	Merged	Data:	Depth	of	Inheritance	and	Number	of	Public	Methods	

	115	

	
Figure	5.31:	Depth	of	Inheritance	and	the	Number	of	Public	Methods

There appears to be zero relationship between depth of inheritance and the number of

public methods.

5.4.6	Merged	Data:	Depth	of	Inheritance	and	Number	of	Private	Methods	

	
Figure	5.32:	Depth	of	Inheritance	and	the	Number	of	Private	Methods

	116	

Similar to public methods, depth of inheritance appears to have no relationship with

the number of private methods in the class. This is logically not surprising, as the

growing of inheritance tree with classes does not necessarily indicate an increase the

number of methods, regardless of access modifier, in that class.

5.4.7	Merged	Data:	Lines	of	Code	and	Number	of	Public	Methods	

	
Figure	5.33:	Lines	of	Code	and	Number	of	Public	Methods

Not unsurprisingly, the number of lines of code does not appear to have much of

relationship with the number of public methods in the class. Similar to Cyclomatic

Complexity this could be explained by the fact that a lot of complex code and hence an

increase in the number of lines of code can increase the metrics but not the public

method count as it can be all contained within that one method.

5.4.8	Merged	Data:	Lines	of	Code	and	Number	of	Private	Methods	

	117	

	
Figure	5.34:	Lines	of	Code	and	Number	of	Private	Methods

There appears be more of a relationship between lines of code and the number of

private methods. This is similar to the same comparison above with Cyclomatic

Complexity where a relationship appeared between the number of private methods and

the Cyclomatic Complexity of that class.

5.5	Key	Findings	

 Class Coupling Cyclomatic

Complexity

Depth of

Inheritance

Line of Codes

Public

Methods

N

N

N

N

Private

Methods

N

Y

N

Y
	

Figure	5.35:	Overview	of	findings	from	scatter	plots

The table above shows an overview summary of the findings with the newly generated

merged data set. It indicates a possible relationship between both Cyclomatic

Complexity and lines of code with the number of private methods. Unsurprisingly,

	118	

depth of inheritance and class coupling appear to offer no firm relationship while the

number of public methods does not appear to correlate to any of the metrics above.

5.6	Conclusions	

This chapter took a key finding from the Chapter Four and after expanding its scope

slightly, looked for possible relationships between the metrics of Chapter Four and

possible relationships with the number of both public and private method of a given

class.

In order to achieve this, new code was developed that extracted the data from the

solution. Then an iterative process was undertaken that allowed the new data to be

merged with the data examined in the previous chapter.

Out of the four metrics compared against public and private method counts within the

same class only two showed any significant relationship, that of Cyclomatic

Complexity and lines of code when paired against private methods. This is consistent

with the initial findings of the previous chapter.

In addition, this also impacts on the newly introduced concepts from Martin (2008)

and principles of ‘clean code’. By applying the code readability principle within the

Stepdown rule it now appears that this will in fact increase the Cyclomatic Complexity

of that same class. Given that the original concept behind the Cyclomatic Complexity

was to identify code that was overly complex this finding goes against this assumption

would suggest that code with a Cyclomatic Complexity can in fact be more human

readable. The caveat being that it is in the case of high Cyclomatic Complexity and a

high number of private methods.

The next chapter will take this key finding and investigate it further. It will take both a

quantitative and qualitative approach and will seek to determine if code that is

arguably more readable is in fact more complex as is the original basis of the

Cyclomatic Complexity calculation.

	119	

6. Evaluation	

6.1	Introduction	

Chapter Five added a new perspective on code metrics by generating new data that

regarding the number of public and private methods contained in each class. It found

that an increase in the number of private methods leads to an increase in the

Cyclomatic Complexity of the class. This resulted in the conclusion at the end of the

last chapter that applying the Stepdown rule as defined by Martin (2008) leads to an

increase in the Cyclomatic Complexity of the class. This puts both principles in stark

contrast to each other as the Stepdown rule is designed to make code more readable at

a human level. The original intention of the Cyclomatic Complexity is to identify code

that is complex and has a high risk of being defective.

This chapter will look to evaluate these findings and in order to do so, it will be

required to take a two-pronged approach, using a so-called Mixed Methods Approach.

The first section will be a quantitative assessment while the second will be in the form

a qualitative assessment. First, unit tests will be used on code samples to give as close

to 100% coverage as possible. Using the Stepdown rule discussed in Chapter Two, the

same code will then be refactored, and the code coverage metrics will be regenerated

to ensure that same set of unit tests provide the same code coverage regardless of

number of private methods contained in the class. This same code will also be

evaluated to determine if there has been an increase or decrease in any of the code

metrics of the class. This will provide an initial basis to determine if testing code,

refactored into the step-down style, causes that code to become more difficult to test.

The second part of this quantitative section will be to re-examine a selection of the

scatter plots seen in the previous chapter. In addition, classes will be selected from

differing areas of the scatter plots to see if those along the trend lines exhibit the type

of characteristics that are expected from a class that consists of both high Cyclomatic

Complexity and a high number of private methods.

	120	

In order to perform a qualitative assessment, interviews will be conducted with people

with a back ground in information technology. This will allow some insights into what

common knowledge exists with regard to code metrics and also attempt to determine if

applying the Stepdown rule does in fact make code more readable.

6.2	Tools	

In order to explain the evaluation via unit testing, first the concept of unit testing and

framework used to write unit tests will be discussed.

6.2.1	NUnit	

NUnit is an open source project that provides the ability to unit test C# code, the

process of taking small segments of code and testing that each line of the code

performs as expected. For example, the segment may be a class and within that class is

an IF-statement. The purpose of unit testing is to ensure that the IF-statement performs

correctly for all scenarios and therefore while one test would ensure the correct

behaviour when the IF-statement returns true, a second test would be employed to

ensure the correct behaviour when the IF-statement returns false. Essentially unit-

testing is a form of white-box testing that tests the code at a very low level i.e.

ensuring the correct functionality of an individual IF-statement over more general or

black-box testing that may test something more general such as the logging in

functionality of a website.

6.2.2	Code	Coverage	

As unit testing has become more popular the concept of being able to verify that all

code written within a project has become more important. For example, a project may

have ten classes and out of those ten classes, there are five methods in each. Given that

each class and each method can have different levels of complexity there is no rule that

can determine exactly how many unit tests are required to fully test those classes. It is

possible to write over one hundred tests for the ten classes but that gives no guarantee

that each and every scenario is covered.

	121	

For this reason, there are tools available called Code Coverage tools. When unit tests

are run, these tools analyse all of the executed code to check what parts of the code ran

and then calculate it as a percentage of the overall code under test. For example, the

code coverage tool was analysing an IF-statement followed by an else statement and

found that only the IF-statement was entered during the execution of the unit test, it

would return that, 50% of the code was covered by that set of unit tests. This research

will harness the code coverage functionality as built into Microsoft Visual Studio.

It will allow for verification that a set of unit tests have in fact covered a given piece of

code. This in-turn provides a way to verify that a refactored code snippet has not

increased or decreased in terms of testing complexity i.e. the same set of unit tests can

be used to test the code post-refactor.

6.3	Unit	Testing	Evaluation	

The code snippet below defines a class called GeneratePrimes that contains one

method, GeneratePrimeNumbers. The snippet is long but is an example of code

where all the logic is placed within one method with only some comments to help with

understanding how the method is achieving its goal. By examining the unit tests it is

clear that the GeneratePrimeNumbers method does meet the required

functionality of the method. Although the code snippet below is quiet long it is a great

example of a method that while meeting its goal does so in fashion that is unfriendly to

a reader that is not the original author. It is difficult to follow and with the exception of

a few comments, no attempt was made to add readability.

	122	

	
Figure	6.1:	Definition	of	GeneratePrimes	Class

The unit tests shown in the code snippet below provide the adequate code coverage for

the GeneratePrimes class. A good practice for unit tests is only to place one test

per class and although that is not followed in this example it still suffices, as the tests

are relatively simple, calling GeneratePrimeNumbers a total of four times and

asserting on the result a total of eight times.

	
Figure	6.2:	Definition	of	GeneratePrimes	Class	Unit	Tests

	123	

By applying the stepdown rule, the code in GeneratePrimes was refactored into a

new class called PrimeGenerator. Changing the name just allows for a distinction

to be made during this walk-through but suffice that both classes provide the method

GeneratePrimeNumbers.

At first glance the most notable feature of the PrimeGenerator class, the

refactored version of GeneratePrimes, is how small the one public method has

become. Without reading the rest of the class that has been extracted into multiple

private methods, the steps taken to achieve the results are much more clear. The

method works by checking that the value of maxValue is below two. If that proves

false, then it executes the other three methods, UncrossIntergersUpTo,

CrossOutMultiples and PutUncrossedIntergersIntoResult.

	
Figure	6.3:	Definition	of	Refactored	GeneratePrimeNumbers	Method

It should be noted that the functionality of these code snippets, while interesting are

not the main focus. The readability of the code is the main focus point. Can someone,

having seen the class for the first time, quickly determine what the code is doing?

Taking a quick overview of the new private methods in the class, it can be seen that

each method only performs one operation, for example it contains one for-loop or one

math function. As shown in the example below

PutUncrossedIntergersIntoResult was required to calculate the number of

uncrossed integers, the functionality of which was further extracted into a new method

directly below it called NumberOfUncrossedIntegers.

The remaining parts of PrimeGenerator are shown in the code snippets below.

	124	

 	

	
Figure	6.4:	Definition	of	Private	Methods	used	by	GeneratePrimeNumbers

Now there are two versions of the GeneratePrimeNumbers method, the original

GeneratePrimes that put all functionality into one public method, and the

PrimeGenerator class, that broke the main public method into simple steps, with

each part contained in a private method.

At this point, it needs to be determined if this refactoring has impacted the testability

of the class in any way. To achieve this, the same set of unit tests seen earlier were

applied to both the original implementation and newly refactored class. The code

snippet below shows two unit tests, the first of which was shown earlier and the

second one that is an exact copy of the first but tests the newly refactored class

PrimeGenerator.

	125	

	
Figure	6.5:	Definition	of	Unit	Tests	for	both	GeneratePrimes	and	PrimeGenerator

After running each set of tests against each class, the code coverage tool was used to

determine if both the classes were in fact covered to the same extent regardless of the

fact that the newly refactored class had multiple private methods added to it in an

effort to apply the stepdown rule, making the class more readable.

	
Figure	6.6:	Code	Coverage	results	for	both	GeneratePrimes	and	PrimeGenerator

As shown above the code coverage for each class was still 100%. This indicates that

the same set of tests provided the identical amount of testing coverage regardless of the

number of private methods added in order to improve the overall readability of the

class.

	126	

In addition to this, the code metrics were also generated for the code in order to

determine if the refactoring of the code did indeed have an impact on the overall

metrics.

	
Figure	6.7:	Code	Metrics	results	for	both	GeneratePrimes	and	PrimeGenerator

As shown in the figure above both depth of inheritance and class coupling remained

the same, as did lines of code. The notable difference though is the increase in the

Cyclomatic Complexity for the newly refactored and arguably more readable

PrimeGenerator class. The Cyclomatic Complexity of the PrimeGenerator class is

eighteen where it was eleven on the less readable GeneratePrimes class.

6.4	Evaluating	Merged	Data	

The previous chapter presented scatter plots generated from the merged data sets of the

original metrics from Chapter Four merged with the newly generated data of Chapter

Five. This in turn allowed for new scatter plots to be created where the number of both

public and private methods was pitted against the metric data of Chapter Four. This

found that there was a correlation between the number of private methods and both

Cyclomatic Complexity and lines of code. This section will dig deeper into this finding

and look at code snippets in an attempt to evaluate this finding.

	127	

	
Figure	6.8:	Number	of	Private	Methods	and	

Lines	of	Code	(A)

	
Figure	6.9:	Number	of	Private	Methods	and	

Cyclomatic	Complexity	(B)

As shown in the two scatter plots above there appears to be a correlation between

number of private methods and both Cyclomatic Complexity and lines of code.

In order to evaluate this further three specific classes were taken from the scatter plots

above and examined in detail. These are the Binder, CSharpCompilation and

CodeGenerator classes. It is very important to note that these classes were chosen

on the basis of where they lie on the scatter plot. Both scatter plots indicate that the

Binder class falls right on trend line whereas CSharpCompilation has higher

lines of code and Cyclomatic Complexity hence lands on the bottom right of the scatter

plot. Lastly and in direct contrast to CSharpCompilation, CodeGenerator lies

on the top left of both scatter plots. This indicates that while it has a high number of

private methods, it does not have high metrics regarding lines of code and Cyclomatic

Complexity.

This provides three classes that lie on different points of the spectrum. It is important

to note that of the three classes, the findings of this research to date indicate that

Binder should be the most readable of the three classes. This is due to the Binder

class lying right on the trend line of private methods to both lines of code and

Cyclomatic Complexity whereas the other classes lie to opposing extremes outside of

the trend lines.

	128	

	6.4.1	Binder	Class	

The figures are code snippets taken from the Binder class within the Roslyn solution.

	
Figure	6.10:	Binder	Code	Snippet	One

	
Figure	6.11:	Binder	Code	Snippet	Two

	129	

	
Figure	6.12:	Binder	Code	Snippet	Three

As expected the Binder class comprises of many small private methods that on

average consist of a one-line methods. As previously argued this makes the class more

readable.

6.4.2	CodeGenerator	Class	

The code snippet below is taken from the code generator class. As the code generator

class is at the top left of the scatter plot it indicates that it should consistent of many

private methods but is not balanced back out with the appropriate number of lines of

code and Cyclomatic Complexity that make it readable.

This assumption is confirmed by examining the code snippet below that defines a

method called LazyReturnTemp. It shows that unlike the small methods seen in the

Binder class previously this method is much longer and therefore arguably less

readable.

	130	

	
Figure	6.13:	CodeGenerator	Code	Snippet

6.4.3	CSharpCompilation	Class	

As the CSharpCompilation class lies on the bottom right of the scatter plot it

indicates that the class has a high number of lines of code and Cyclomatic Complexity.

However, it does not consist of a high number of private methods. This leads to the

conclusion that the class may be arguably less readable.

On examining the class in the code snippet below it is evident that it is composed of

large portions of complex code.

	
Figure	6.14:	CSharpCompilation	Code	Snippet

	131	

Overall it can be concluded from this section there is in fact evidence that when the

number of private methods within a class is cross referenced with either lines of code

and/either Cyclomatic Complexity that it can provide an indication as to the readability

of that class.

6.5	Summary	of	Key	Quantitative	Findings	

Section 6.3 above harnessed unit testing, code coverage tools and metrics calculations

in an effort to evaluate the impact of refactoring code to a more readable format. There

were two very notable findings. The first was the fact that the unit tests used with

100% code coverage provided the same level of coverage post the refactoring of the

code. That means, code can be refactored into a more readable format without altering

the unit tests that cover that code snippet. This also indicates that the code has not

become more difficult to test, as the unit tests are identical. Secondly, although the unit

tests indicated there was no increase in the level of testing difficulty, the Cyclomatic

Complexity of the code increased. Therefore, while Cyclomatic Complexity is

showing an increase due to a readability refactor, the code coverage and unit tests are

suggesting there has been no increase in complexity.

Section 6.4 dug a little deeper into the results of the metrics versus public and private

methods of Chapter Five. It found that classes that fell along the trend line of the

scatter plot comparing either lines of code or Cyclomatic Complexity to number of

private methods in a type, appeared more likely to exhibit characteristics that are

consistent with more readable code. That is, code that consists of small private

methods that focus on doing one thing as opposed to methods that run to five-plus

lines of code with large amounts of complexity. This was demonstrated by selecting

three classes, one from the top left of the scatter plot, one from the bottom right of the

scatter plot and that fell right into the trend line of the scatter plot. Only the class along

the trend line consisted of the characteristics consistent with readable code.

	132	

6.6	Qualitative	Evaluation	of	Code	Readability	

In an effort to determine the qualitative element of code readability, surveys were

conducted on a one-to-one basis with five participants with a background in the

technology sector. This section will outline the profiles of the interviewees and the

results garnered from the five participants.

6.6.1	Interviewee	Profiles	

Interviewee #1 Interviewee #1 is male who has 5+ years’ experience in the IT sector and

works as a team leader. Day to day duties do not involve coding but is

involved with people that develop software

Interviewee #2 Interviewee #2 is male who has 1+ years’ experience in the IT sector and

works as a QA Engineer. He familiar with Unit Testing and Manual Testing

Interviewee #3 Interviewee #3 is female who has 2+ years’ experience in the IT sector and

works as a manual QA Engineer. She is familiar with Manual Testing

Interviewee #4 Interviewee #4 is female who has 4+ years’ experience in the IT sector and

works as a software engineer. She is familiar with Unit Testing and Manual

Testing

Interviewee #5 Interviewee #5 is male who has 2+ years’ experience in the IT sector and

works as a software engineer. He is familiar with Unit Testing and Manual

Testing

Figure	6.15:	Interviewee	profiles	overview

Each interview began with questions around the person’s background. Figure 6.14

below shows that while three out of the five people had worked in the broad category

of information technology sector for a period of less than three years, only two had

more than three years.

	133	

	
Figure	6.16:	Number	of	years	interviewees	spent	working	in	Information	Technology

Next, each interviewee was asked specifically which discipline area they fell into. This

information is represented in the table below. Given a list of five job categories each

was asked which matched them best. Four of the five people worked as either a

software engineer or a quality assurance engineer.

	
Figure	6.17:	Job	titles	of	interviewees	

	
Following that, each interviewee was asked to rate their daily interaction with code

from never, meaning that they never see or interact with code as part of their work to

always as in a full time software developer. The results of this are represented in the

table below.

	134	

	
Figure	6.18:	Daily	interaction	with	code	of	interviewees

Finally, each interviewee was asked about how the code within the their workplace

was tested. For this question, interviewees could select more than one option and were

also asked to indicate if it was not applicable for those who work in companies that do

not test software with a formal process. The results are presented in the table below.

	
Figure	6.19:	Testing	approaches	of	companies	that	interviewees	work	within

The results here are interesting for two reasons, the first being that unit testing is

clearly quite prevalent over all other forms of testing including manual testing and

secondly that no one interviewed performed automated testing that was not unit

testing.

This provides enough information to determine that each of the five have enough

knowledge of software development to provide relevant data to this research.

6.6.2	Software	Terminology	

The next part of the interview focused on determining what terminology each person

was familiar with. This provides this research with insight into what people working in

	135	

the industry are familiar with as opposed to the terminology used by computer

scientists conducting research in the area.

The first question each interviewee was asked was if they ever used code metrics in the

development of software. The result was an emphatic “No”. This would indicate that

regardless of how commonly code metrics are used in within industry, they are not

necessarily referred to as code metrics.

In an effort to dig deeper, each interviewee was asked if they were familiar with a list

of software engineering terms. The interviewees were asked to input this information

into a survey. It should be noted that not all of the terms were code metric specific.

The results are presented below.

	
Figure	6.20:	Common	software	related	terms	interviewees	were	familiar	with

The two most notable results, when all the interviewee data is merged together, is how

terms such as object-oriented programming and unit-testing are familiar to all five

whereas Cyclomatic Complexity and code metrics were not familiar to anyone.

6.6.3	Code	Readability	

The last part of the interview centred on code readability and was conducted by

showing each interviewee four code snippets. The code snippets were two code

samples written in two different ways. The first paid no attention to the ‘readability’ of

the code while the second applied the Stepdown rule as defined by Martin (2008). It is

important to note that the interviewee was only asked to rate the code on a scale from

poor to Excellent for ‘readability’ and no explanation was provided as to why the code

was written differently. The code snippets were also presented in random order so the

	136	

interviewee was not necessarily asked to rate the less readable code before the more

readable code so as to prevent any bias. The code snippets used are taken from Martin

(2008).

	
	

Figure	6.21:	Code	snippets	presented	to	interviewees	to	be	rate	for	readability

From the code snippets in Figure 6.20, rated by the five interviewees from poor to

Excellent, snippet one was rated poor by one interviewee while the remaining four

rated it either below average or average. By comparison snippet two was not rated

poor by any interviewee and scored either average or above average by the

interviewees.

 	
	

Figure	6.22:	Code	snippets	presented	to	interviewees	to	be	rate	for	readability

	137	

The code snippets in Figure 6.21 were rated in the same manner as the previous. While

snippet two rate below average by three of the four interviewees, two interviewees

rated it only average. In comparison, snippet one was rated below average by one

interviewee, average by three of the interviewees and above average by one

interviewee.

Although the results above do not indicate that a code snippet written with code

readability in mind automatically lead to being rated from poor to Excellent there is an

underlying suggestion that this code is in fact more readable. This is keeping with De

Silva et al. (2012) where opinions on code was taken from thirty programmers and

compared against metrics, including McCabe’s Cyclomatic Complexity, which found a

wide range of opinions. For example, the collected “experts’ rankings” for

BubbleSort.java is shown below.

	
Figure	6.23:	Experts	view	of	complexity	of	BubbleSort.java

Although over 50% of the developers found BubbleSort.java to have a complexity

measure in the range of 6 to 7, it is notable that over 12% found it to be in the range of

1 to 2 while a further 9% places it over 9 (De Silva et al., 2012). This highlights how

diverse opinions can be when reading code and hence how difficult it is to evaluate a

piece of code as readable.

6.7	Summary	of	Key	Qualitative	Findings	

	138	

The qualitative assessment took the approach of interviewing people within the

information technology industry. Prior to assessing code readability using code

snippets the interviews looked to gain some insight into what terminology people

within the industry were familiar with, with specifically around the area of code

metrics.

It found that no interviewee had previously used code metrics within industry or at

least if they had done, they were not referring to them as code metrics. Terms such as

‘code metrics’ or ‘Cyclomatic Complexity’ did not feature at all. In addition, it was

found that the most common way of testing code within the companies the participants

were associated with was unit testing and manual testing.

Finally, the participants were asked to examine four code snippets. The code snippets

were either written with a readability factor applied or not. This found that while there

was no surge in overall rating of the code, there was a very slight improvement on the

readability rating of code that was crafted with readability in mind. That concurred

with De Silva et al. (2012) where assessments on the complexity of java programs had

consensus of around 50%, there were still wide swings in terms of what is perceived

by one person as complex versus another’s opinion.

6.8	Conclusions	

This chapter looked to evaluate some of the findings from Chapter Five. In doing so it

looked at the findings from both a quantitative and qualitative point of view.

The unit testing section of the quantitative aspect of the evaluation had two key

findings. First that code refactored using the Stepdown rule could be tested using the

same set of unit tests as the non-refactored code and hence means the refactored class

is not more complex to test. Secondly, it found that the Cyclomatic Complexity of the

class did in fact increase for the refactored class.

The second part of the quantitative assessment reviewed the previously seen scatter

plots. On close examining of code snippets taken from classes lying in different area of

	139	

the scatter plot it was determined that a class found along the trend line i.e. had a

balance of Cyclomatic Complexity or lines of code versus the number of private

methods, had characteristics consistent with a readable structure. Classes that lay out to

either extreme did not appear to these same characteristics.

On the qualitative side of the assessment the main findings were that none of the

interviewees were familiar with code metrics or at least referred to them as code

metrics. While there was a slight increase in the rating of code readability that

followed the Stepdown rule, it was no overwhelming. This goes back to De Silva et al.

(2012) who also had large swings in opinions when asking developers to rate code for

complexity.

	

	

	

	

	

	

	

	

	

	

	

	140	

7. Conclusions	and	Future	Work	

7.1	Introduction	

This chapter will take a look back over some of the key findings from of this research.

It will begin by looking at the Chapters Two and Three to identify notable points found

during the literature review. It will then proceed to Chapters Four and look to review

how the data exploration threw up new insights when examining the relationships

between various metrics and looking at sample code for causation effects. It will then

continue to Chapter Five where a key finding of Chapter Four was examined in great

depth. It will then take another look at the key findings when evaluating Chapter Six.

The chapter will conclude by looking at some new areas that this research can be taken

by outlining some possible future directions.

7.2	Conclusions	

This section presents the key conclusions derived from each of the main chapters of

this dissertation.

7.2.1	Existing	Literature		

McCabe’s Cyclomatic Complexity became a cornerstone on which many subsequent

theories were built, either from a critical standpoint or using it as a basis to expand

upon. Although it was first published 40 years ago and was based on the FORTRAN

programming language, it still remains relevant post the paradigm shift to object-

oriented programming.

Chidamber & Kemerer’s suite of metrics for object-oriented programming is arguably

the most important paper written in this area. Covering all of the important aspects of

that need to be considered when developing code in the object-oriented paradigm. This

suite formed the basis for many applications built within industry as well as being a

foundation for further work in the area.

	141	

For many decades code metrics revolved around the area of identifying code that is at

high risk of being defective. By introducing the concept of detecting ‘code smells’

within object-oriented programming, van Emden (2002) brought a new lens through

which code metrics can be viewed. It opened up code metrics to being adopted for use

in an area that was previous reserved for manual code reviews where programmers

looked to weed out bad practice with predefined principles. This was now something

that could be automated, and used to highlight areas of that code that although not at

high risk of being defective, but considered to have some potential flaws due to poor

practices.

Purposely defined to be as a simple language independent rule to make the applying of

the concepts of modularity and encapsulation more intuitive for developers, the Law of

Demeter has become an industry standard. It ensures that developers can reduce the

coupling of classes without even having to consider the area of metrics let alone

develop systems that detect or identify it.

Building on van Emden (2002) this paper introduced Marin’s (2008) ‘clean code’

concept to the area of code metrics in an effort to assess what impact would result from

applying these concepts to the area of code metrics.

Chapter Three had a key focus on how metrics have been applied within industry and

found that companies including Hewlett-Packard (HP) and Air France-KLM had

varying degrees of success when using code metrics within house, in an effort to

identify code that was at high risk of being defective. While it cannot be claimed that

there were no improvements when implementing code metrics, there did appear to be a

considerable amount of complexity involved to implement something that was only

returning minor gains.

7.2.2	Data	Exploration	

The data exploration phase of this research took the form of generating a new dataset

of metrics from a well-established open source project named Roslyn. This allowed for

fresh insights to be sought through examination of the data in the form of

visualisations. Flipped bar charts were used initially to identify areas of the project that

	142	

could be considered to have high, average and low metric scores. These areas were

then explored in greater depth to see if any relationships between the metrics could be

identified and then determine if these relationships held through from project to project

regardless of overall metric score.

Overall Cyclomatic Complexity and Class Coupling appear to show some correlation

but were very much dependent on the overall score of the project. On experiments

when the project overall scored highly, the correlation here was stronger whereas at the

other extreme low end of the scale the correlation fell away.

Arguably the most consistent relationship that appeared in each phase of the date

exploration was that between Cyclomatic Complexity and lines of code. As shown in

the small multiples below, the relationship held strong regardless of the overall metrics

score of that project.

	
Figure	7.1:	Small	Multiples	of	Cyclomatic	Complexity	

Perhaps slightly surprisingly was the depth of inheritance metric that always failed to

find any correlation with any other metric. For each of the comparisons during the data

exploration phases the depth of inheritance metric failed, time after time, to show any

significant relationship with any of the other metrics.

A few of the code samples taken during the data exploration phases indicated a relation

between increases in Cyclomatic Complexity and the number of private methods in a

class. By definition, Cyclomatic Complexity is concerned with the complexity of a

given piece of code and therefore the impact on increases in the number of private

	143	

methods is an interesting discovery. It was this finding that became the focus of the

subsequent chapter.

7.2.3	Impact	of	Code	Readability	on	Metrics	

One of the findings of the previous chapter was related to private methods appearing to

have an impact on Cyclomatic Complexity, a metric that also tends to correlate well

with the lines of code metric. It was this finding that became the focus of Chapter Five.

It first sought to extract new data from the Roslyn project and merged it with the data

from Chapter Four. It then proceeded to analyse possible relationships between all of

the various metrics paired against the number of public and private methods.

Unlike the metrics from the data exploration chapter, where tools were provided to

extract the data from the Roslyn project, there are no readily available tools to extract

method data from Visual Studio projects. Hence some code was written to compile this

data with a view to merging it into the already gathered metric data. Using the .NET

library class called Assembly the binaries of the Roslyn project were parsed and the

data related to public and private methods within each type was extracted. This data

was then formatted and saved to an Excel workbook.

Although the code successfully extracted the data, a process of preparing it to be

merged into the existing data set was required in order to ensure that the merged data

set could produce the required result.

Two of the most significant parts to this were to define how partial classes were to be

handled and also to ensure the name of the types matched correctly. A partial class is

class that, although spilt into multiple files for more manageable human interaction, is

a single class when compiled. This was an issue that the code was required to contend

with. Instead of defining these in the data as multiple classes the code merged the files

plus the relevant information about each into single classes and hence single lines with

the Excel sheet. This in turn led to an issue regarding the naming of the types. As the

code had combined all of the classes into a single class and named it, this did not allow

for the names to merge with the already existing data set of metrics. This required a

	144	

second piece of code to be written that reformatted each type name to match. For

example, names such as these

• MetadataDecoder<ModuleSymbol, TypeSymbol, MethodSymbol,

FieldSymbol, Symbol>

• AbstractLookupSymbolsInfo<TSymbol>.UniqueSymbolOrArities

• CompilerDiagnosticAnalyzer.CompilationAnalyzer.CompilerDiagnostic

were reformatted to

• MetadataDecoder

• UniqueSymbolOrArities

• CompilerDiagnostic

This subsequently allowed for the type names to be merged successfully.

From this merged data set, more scatter plots were generated to identify possible

relationships between class methods, whether public or private and the various metrics:

class coupling, depth of inheritance, lines of code and Cyclomatic Complexity. This

allowed for these metrics to be viewed from a different angle i.e. what relationship, if

any, exists between these various metrics and the number of public and private

methods of these same classes.

For the majority of the metrics there was little sign of a relationship between them and

public and private methods with the notable exception of private methods and both

Cyclomatic Complexity and lines of code. This was consistent with the findings of the

previous chapter. This is shown in the table below:

 Class Coupling Cyclomatic

Complexity

Depth of

Inheritance

Line of Codes

Public

Methods

N

N

N

N

Private

Methods

N

Y

N

Y
	

Figure	7.2:	Overview	of	correlations	between	code	metrics	and	public	and	private	methods

	145	

In addition, it was also noted that this finding impacted on aspect of the previously

introduced work of Martin (2008). By applying the Stepdown rule, as defined by

Martin (2008), it would seem that making the class more ‘readable’ would in fact

increase the number of private methods within the class and therefore cause an

increase in the Cyclomatic Complexity of that class.

It was this key finding that would become the focus of the subsequent chapter. By

employing both a quantitative and qualitative element to the evaluation to determine if

code that is refactored to be more ‘readable’ actually impacts the Cyclomatic

Complexity of that class.

7.2.4	Evaluation	

Evaluating whether or not the application of the Stepdown rule, as defined by Martin

(2008), increased the Cyclomatic Complexity of the same class, was the main focus of

this chapter. In order to fully assess this, both a quantitative and qualitative element

was required (a so-called Mixed Methods Approach). The qualitative element took the

form of harnessing unit testing and code coverage tools in order to assess any increase

in testing complexity by refactoring the class. It also re-examined scatter plots and

code samples from the previous chapter. The qualitative element consisted of

interviews with people working within information technology sector.

The first part of the quantitative assessment using unit testing and code coverage tools

had two findings. The first was the fact that the unit tests written for a piece of code

prior to it being refactored to be more ‘readable’, provided the same level of coverage

to the refactored code. This would indicate that code refactored using the Stepdown

rule is in fact no more complex to test. In addition, it also found that the refactored

code did in fact increase in the overall Cyclomatic Complexity metric.

The second part of this quantitative assessment looked to examine classes taken from

the various areas of the scatter plots created in Chapter Five. It took three classes and

determined that a class that lay on the trend line i.e. had a correlation between number

of private methods and Cyclomatic Complexity did in fact exhibit the characteristics of

	146	

a class that would be considered more ‘readable’ as per the Stepdown rule. That is, a

class that lay along the trend line consisted of small private methods that each provided

a single task as opposed to long and overly complex methods.

On the qualitative side of the assessment it was found that not many of the

interviewees were familiar with terms associated with code metrics. On assessing

whether code written using the Stepdown rule was in fact more ‘readable’ a slight

increase was noted but nothing that could be considered evidentiary. This was in

keeping with De Silva et al. (2012) who had wide ranging results when attempting to

have experienced programmers evaluate code for complexity.

7.3	Future	Work	

This section will identify areas new directions that this research can be built upon.

These include introducing new metrics that can be paired against the number of public

and private methods in a class, quantitative evaluation using a different open source

project or the introduction of a new programming paradigm such as functional

programming.

7.3.1	Introducing	New	Metrics	

As seen in Chapter Two and Three there are many more metrics that could be

incorporated into this research. Not all metrics have readily available tools that extract

data for close examination but as was discovered in Chapter Five many development

platforms including .NET come with libraries that allow for this data to be extracted

with a small amount of coding.

By harnessing these libraries to explore some of the less well-known metrics, new

insights could be gained into overall area of code metrics. Potential new metrics could

include:

• Coupling and Cohesion

• DSQI (design structure quality index)

	147	

• Instruction path length

• Maintainability index

• Weighted Micro Function Points

• CISQ automated quality characteristics measures

7.3.2	Alternative	Open	Source	Solutions	

With the advent of Github.com there is no shortage of open source projects available

online. Many of the studies discussed in Chapter Three involved theories being applied

within commercial companies. No longer is it required that commercial companies be

involved. Open source solutions enable a huge amount of data to be extracted and

examined within this area. Therefore by taking one small example as was done in

Chapter Five and applying it to multiple solutions could lead to real evidence as to

whether code metrics can provide value to a project.

7.3.3	Programming	Paradigms	

Object-oriented programming has been in favour since the 1990’s. This has led to a lot

of work around metrics also favouring object-oriented programming. With the high

availability of new tools, including integrated development environments etc., enables

more research to be conducted in the areas of functional programming, or aspect-

oriented programming, or logic programming.

7.3.4	Community	Evaluation	

As well as code, GitHub also provides a community of interested participants who

could be used to evaluate the readability of code. They could be used to discuss in

more detail the characteristics of good code, and how they use metrics and which ones

they prefer. By focusing on large-scale data gathering of this kind, new insights could

be gained into what is being used in practice as opposed to within individual

companies. It is also worth noting that most practices within commercial companies

are never published publicly. This data could provide a basis from which new research

could focus on metrics used in practice that could lead to new avenues or directions for

code metrics.

	148	

7.3.5	Development	Methodology	

It could be worth exploring if the way in which the code was developed impacts the

code readability and/or the metrics. If code is developed using Paired Programming

that will demonstrate a measurable difference in terms of the metrics than if the code is

developed using Scrum. Companies that employ commercial tools for the Scrum and

Agile process contain a lot of data that could provide new insight into the overall

impact of these practices. This could then be extended to see if these same differences

occur when using a traditional waterfall model.

7.3.6	Design	Patterns	

The increasing use of Design Patterns means that more standardised and well-known

solutions are being applied to programming problems, which may be improving the

overall quality of code. It might be worth investigating a software project that uses a

lot of design patterns to see if this impacts the metrics. This could be done in an

automated way that creates heat maps of where the patterns appear in the code and

then analyse metrics closely in that area. In addition, this data could then be compared

to a project using no patterns in an effort to gain further insight into the impact of

patterns on code metrics.

	
Figure	7.3:	Illustration	of	how	a	heat	map	looks	

	

7.3.7	Extracting	Data	Using	Platform	Libraries	

In Chapter Five a .NET library was used to extract data relating the number of public

and private methods of a class. It is worth nothing that this library contained vast

amounts of data relating to the binaries being examined. This data is not specifically

	149	

targeted at code metrics but there is no doubt that more data exists within these

libraries that may shed new insights in the overall area of code metrics. Research could

be undertaken that specially analysed all of the data that these libraries produce in an

effort to go beyond what is already known about code metrics.

7.3.8	Open	Source	Testing	

While sites like Github.com contain a vast amounts of open source software, Travis-

CI.org is a self-described home of testing. Programmers using Github.com can harness

Travis to automatically take their new code changes and run all the tests associated

with that solution. Many of these solutions and test results are open source and

therefore an opportunity exists to analyse common patterns of defects occurring and

cross-referencing this with the code metrics of that same area of code. For example, if

a particular class is identified as having consistently failing unit tests this could be

compared against the Cyclomatic Complexity of that class. This could shed some new

insights into which metrics provide the most value in identifying code that is at high

risk of being defective.

	150	

BIBLIOGRAPHY

Aho Alfred, V., Ravi, S., & Ullman Jeffrey, D. (1986). Compilers: principles,

techniques, and tools. Reading: Addison Wesley Publishing Company.

Al Dallal, J. (2009). Software similarity-based functional cohesion metric. Software,

IET, 3(1), 46-57. doi:10.1049/iet-sen:20080054

Anderson, J. L. (2004, 20-23 Sept. 2004). Using software tools and metrics to produce

better quality test software. Paper presented at the AUTOTESTCON 2004.

Proceedings.

Balachandran, V. (2013, 18-26 May 2013). Reducing human effort and improving

quality in peer code reviews using automatic static analysis and reviewer

recommendation. Paper presented at the Software Engineering (ICSE), 2013

35th International Conference on.

Casalnuovo, C., Devanbu, P., Oliveira, A., Filkov, V., & Ray, B. (2015, 16-24 May

2015). Assert Use in GitHub Projects. Paper presented at the Software

Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on.

Chidamber, S. R., & Kemerer, C. F. (1991). Towards a metrics suite for object

oriented design. SIGPLAN Not., 26(11), 197-211. doi:10.1145/118014.117970

Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994). Using metrics to evaluate

software system maintainability. Computer, 27(8), 44-49.

doi:10.1109/2.303623

Constantine, L. L. (1996, 24-27 Nov 1996). Visual coherence and usability: a

cohesion metric for assessing the quality of dialogue and screen designs. Paper

presented at the Computer-Human Interaction, 1996. Proceedings., Sixth

Australian Conference on.

Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A., & Love, T. (1979). Measuring

the Psychological Complexity of Software Maintenance Tasks with the

Halstead and McCabe Metrics. Software Engineering, IEEE Transactions on,

SE-5(2), 96-104. doi:10.1109/TSE.1979.234165

De Silva, D. I., Kodagoda, N., & Perera, H. (2012, 12-15 Dec. 2012). Applicability of

three complexity metrics. Paper presented at the Advances in ICT for Emerging

Regions (ICTer), 2012 International Conference on.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program

development. IBM Systems Journal, 15(3), 182-211. doi:10.1147/sj.153.0182

	151	

Gill, G. K., & Kemerer, C. F. (1991). Cyclomatic Complexity density and software

maintenance productivity. Software Engineering, IEEE Transactions on,

17(12), 1284-1288. doi:10.1109/32.106988

Grady, R. B. (1994). Successfully applying software metrics. Computer, 27(9), 18-25.

doi:10.1109/2.312034

Halstead, M. H. (1972). Natural laws controlling algorithm structure? SIGPLAN Not.,

7(2), 19-26. doi:10.1145/953363.953366

Jacobson, I. (1992). Object-oriented software engineering: ACM.

Kontogiannis, K. (1997, 6-8 Oct 1997). Evaluation experiments on the detection of

programming patterns using software metrics. Paper presented at the Reverse

Engineering, 1997. Proceedings of the Fourth Working Conference on.

Lei, M., Cheng, Z., Bing, Y., & Sato, H. (2015, 23-24 May 2015). An Empirical Study

on Effects of Code Visibility on Code Coverage of Software Testing. Paper

presented at the Automation of Software Test (AST), 2015 IEEE/ACM 10th

International Workshop on.

Li, W., & Henry, S. (1993). Object-oriented metrics that predict maintainability.

Journal of systems and software, 23(2), 111-122.

Lieberherr, K., Holland, I., & Riel, A. (1988). Object-oriented programming: an

objective sense of style. SIGPLAN Not., 23(11), 323-334.

doi:10.1145/62084.62113

Lieberherr, K. J., & Riel, A. J. (1988, 11-15 Apr 1988). Demeter: a case study of

software growth through parameterized classes. Paper presented at the

Software Engineering, 1988., Proceedings of the 10th International Conference

on.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship:

Prentice Hall PTR.

McCabe, T. (1976). A Complexity Measure. Software Engineering, IEEE

Transactions on, SE-2(4), 308-320. doi:10.1109/TSE.1976.233837

McCabe, T. (1996). Cyclomatic Complexity and the year 2000. Software, IEEE, 13(3),

115-117. doi:10.1109/52.493032

Meneely, A., Smith, B., & Williams, L. (2013). Validating software metrics: A

spectrum of philosophies. ACM Trans. Softw. Eng. Methodol., 21(4), 1-28.

doi:10.1145/2377656.2377661

	152	

Meyer, B. (1988). Object-oriented software construction (Vol. 2): Prentice hall New

York.

Mordal-Manet, K., Laval, J., Ducasse, S., Anquetil, N., Balmas, F., Bellingard, F., . . .

McCabe, T. J. (2011, 1-4 March 2011). An Empirical Model for Continuous

and Weighted Metric Aggregation. Paper presented at the Software

Maintenance and Reengineering (CSMR), 2011 15th European Conference on.

Novak, J., Krajnc, A., & Zontar, R. (2010, 24-28 May 2010). Taxonomy of static code

analysis tools. Paper presented at the MIPRO, 2010 Proceedings of the 33rd

International Convention.

Ordonez, M. J., & Haddad, H. M. (2008, 7-9 April 2008). The State of Metrics in

Software Industry. Paper presented at the Information Technology: New

Generations, 2008. ITNG 2008. Fifth International Conference on.

Osherove, R. (2015). The art of unit testing: MITP-Verlags GmbH & Co. KG.

Perepletchikov, M., Ryan, C., & Frampton, K. (2007, 11-12 Oct. 2007). Cohesion

Metrics for Predicting Maintainability of Service-Oriented Software. Paper

presented at the Quality Software, 2007. QSIC '07. Seventh International

Conference on.

Plosch, R., Gruber, H., Ko, x, rner, C., & Saft, M. (2010, Sept. 29 2010-Oct. 2 2010).

A Method for Continuous Code Quality Management Using Static Analysis.

Paper presented at the Quality of Information and Communications

Technology (QUATIC), 2010 Seventh International Conference on the.

Sarwar, M. M. S., Ahmad, I., & Shahzad, S. (2012, 17-19 Dec. 2012). Cyclomatic

Complexity for WCF: A Service Oriented Architecture. Paper presented at the

Frontiers of Information Technology (FIT), 2012 10th International Conference

on.

Schneidewind, N. F. (1992). Methodology for validating software metrics. Software

Engineering, IEEE Transactions on, 18(5), 410-422. doi:10.1109/32.135774

Shen, V. Y., Conte, S. D., & Dunsmore, H. E. (1983). Software Science Revisited: A

Critical Analysis of the Theory and Its Empirical Support. Software

Engineering, IEEE Transactions on, SE-9(2), 155-165.

doi:10.1109/TSE.1983.236460

Shepperd, M. (1988). A critique of Cyclomatic Complexity as a software metric.

Software Engineering Journal, 3(2), 30-36.

	153	

Steidl, D., Hummel, B., & Juergens, E. (2013, 20-21 May 2013). Quality analysis of

source code comments. Paper presented at the Program Comprehension

(ICPC), 2013 IEEE 21st International Conference on.

Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design. IBM Syst.

J., 13(2), 115-139. doi:10.1147/sj.132.0115

Suleman Sarwar, M. M., Shahzad, S., & Ahmad, I. (2013, 10-12 Sept. 2013).

Cyclomatic Complexity: The nesting problem. Paper presented at the Digital

Information Management (ICDIM), 2013 Eighth International Conference on.

Systa, T., Ping, Y., & Muller, H. (2000, Feb 2000). Analyzing Java software by

combining metrics and program visualization. Paper presented at the Software

Maintenance and Reengineering, 2000. Proceedings of the Fourth European.

Tosun, A., Caglayan, B., Miranskyy, A. V., Bener, A., & Ruffolo, N. (2011). Different

Strokes for Different Folks: A Case Study on Software Metrics for Different

Defect Categories. Paper presented at the Proceedings of the 2nd International

Workshop on Emerging Trends in Software Metrics, Waikiki, Honolulu, HI,

USA.

van Emden, E., & Moonen, L. (2002, 2002). Java quality assurance by detecting code

smells. Paper presented at the Reverse Engineering, 2002. Proceedings. Ninth

Working Conference on.

Yuksel, U., & Sozer, H. (2013, 22-28 Sept. 2013). Automated Classification of Static

Code Analysis Alerts: A Case Study. Paper presented at the Software

Maintenance (ICSM), 2013 29th IEEE International Conference on.

