
Ackowledgements

I would like to thank all staff from Dublin Institute of Technology for the training provided over

the last 2 years. In particular, I would like to thank my supervisor, Damian Gordon, for his

patience, support and motivation provided while doing my thesis.

My special thanks to Brendan Murray who provided guidance in technical side of the project.

I also thank all the colleagues and friends who have spent their quality time on filling the survey

and providing the feedback.

Finally, I would like to thank my family and friends who gave their encouragement and

support.

iii

Abstract

In this era of web 2.0, various types of web applications are in practice. Online Social Networking

system being one of the popular web 2.0 applications is highly used for social communications.

Instant Messaging system is the commonly used communication and collaboration tool in the

work environment. Employees of any organisation are shown to rely on Social Networks for

some business decisions and problem solving which creates an interest in integrating both the

systems. But for various reasons including security, Social Networking systems are not allowed

to be used in corporate network (in work environment). Even when allowed, users of multiple

Social Networking Systems have to monitor all of them in different interfaces. The project

provides a solution for this problem. It uses a popular enterprise Instant Messaging tool, IBM

Sametime, as a common platform for using the inherent Instant Messaging features and provides

a common interface for any Social Network. The resultant product presents the users with same

look and feel, of the Sametime platform, for all the Social Networks integrated.

iv

Contents

1 Introduction 1

1.1 Project Background . 1

1.2 What is the need to integrate Social Networking system and Instant Messaging

system? . 2

1.3 Project Aims and Objectives . 2

1.4 IBM Lotus Sametime . 3

1.5 Intellectual Challenge . 4

1.6 Thesis Roadmap . 5

2 Literature Review 6

2.1 Introduction . 6

2.2 Social Networking . 6

2.2.1 Introduction to Social Networking . 6

2.2.2 History of Online Social Networking systems 7

2.2.3 Sociometry (SNA) . 7

2.2.3.1 Why do these social Networks matter? 10

2.2.3.2 Attitude and Behaviour towards Social Networking Sites 11

2.2.3.3 Consequences of using Social Networks 12

2.2.3.4 Web 2.0 . 12

2.2.4 Popular Social Networking Softwares . 13

2.3 Instant Messaging . 13

2.3.1 Introduction to Instant Messaging: . 13

2.3.1.1 Origin and Evolution of Instant Messaging 13

2.3.2 IM at work . 14

2.3.3 IM and Security . 14

2.3.3.1 Using Firewalls . 15

2.3.3.2 Blocking and Proxying IM . 16

2.4 Social Networking and Organisational influence 17

2.4.1 Entrepreneur level influence . 17

2.4.2 Other Organisational benefits . 17

2.5 Conclusion . 17

3 Development Methodology 18

3.1 Introduction . 18

3.2 Comparison of development methodologies . 18

3.2.1 Waterfall Model . 18

3.2.1.1 What is Waterfall model? . 19

v

CONTENTS

3.2.1.2 Benefits . 19

3.2.1.3 Shortcomings . 19

3.2.1.4 Why the project can not employ it? 19

3.2.2 Agile methodologies . 20

3.2.2.1 Description . 20

3.2.2.2 Benefits . 20

3.2.2.3 Why the project can not employ it? 20

3.2.3 Rational Unified Process . 21

3.2.3.1 RUP Architecture: . 21

3.2.3.2 Reasons why RUP suits the project: 22

3.2.4 Methodology Adopted . 22

3.3 Conclusion . 23

4 Analysis 24

4.1 Introduction . 24

4.2 Requirements Analysis . 24

4.2.1 Survey Design . 24

4.2.2 Survey Questions . 24

4.2.3 Survey Outcomes . 25

4.3 Analysis Modelling . 26

4.3.1 Use Case View . 27

4.3.1.1 Business Use case model: . 27

4.3.1.2 Use Case Model . 28

4.3.2 Logical View - Analysis Model . 28

4.3.2.1 Preferences Module . 28

4.3.2.2 Integration Module . 28

4.3.2.3 Social Network Implementation Module(SN implementation mod-

ule): . 34

4.3.2.4 Use case traceabilities: . 36

4.4 Conclusion . 45

5 Design 47

5.1 Introduction . 47

5.2 Architecture . 47

5.3 Logical View - Design model . 48

5.3.1 Common API . 49

5.3.2 Facebook Implementation . 53

5.4 Design Patterns: . 60

5.4.1 Singleton . 60

5.4.2 Factory Method . 61

5.5 Conclusion . 63

6 Implementation 64

6.1 Introduction . 64

6.2 Choice of Softwares . 64

6.2.1 Choice of IM . 64

6.2.2 Choice of Social Network . 65

6.2.2.1 Facebook . 65

vi

CONTENTS

6.2.2.2 Bebo . 65

6.2.2.3 Orkut . 65

6.2.2.4 Hi5 . 66

6.2.2.5 Plaxo, MySpace . 66

6.2.3 Software . 66

6.3 Plugins and Extension points . 66

6.4 Integrator Module . 67

6.4.1 com.dit.st.sn.integration . 67

6.4.2 com.dit.st.sn.integration.manager . 67

6.4.3 com.dit.st.sn.actions . 68

6.5 Implementation Module for Facebook . 70

6.6 Localisation . 78

6.7 Some Challenges faced . 79

6.8 Conclusion . 83

7 Testing 86

7.1 Introduction . 86

7.2 Testing . 86

7.2.1 Test Plan . 86

7.2.2 Test cases . 87

7.2.2.1 Authentication Test Cases . 87

7.2.2.2 Status Test Cases . 89

7.2.2.3 Preference Test cases . 90

7.2.2.4 Test cases about integration . 90

7.3 Conclusion . 94

8 Evaluation 95

8.1 Introduction . 95

8.2 ISO/IEC 9126 . 95

8.3 Evaluation of Sametime Social . 96

8.3.1 Evaluation Methodology . 96

8.3.2 Results . 97

8.4 Conclusion . 99

9 Conclusions & Future Work 100

9.1 Conclusions . 100

9.1.1 Success of the software . 100

9.2 Future Work . 101

vii

List of Tables

2.1 Popular social networking sites based on number of active users 13

4.1 Type of use cases . 38

6.1 Softwares used in the project . 66

6.2 Online status mapping between ST and Facebook 82

7.1 Test case 4-Status change reflection . 89

8.1 Characteristics and their explanation from ISO 9126(source: (Chua & Dyson 2004)) 96

8.2 Evaluation of Sametime Social using ISO 9126 98

viii

List of Figures

2.1 Types of Online Communities and percent of internet users by online groups to

which they belong (Source: Pew Internet & American Life Project, Jan.-Feb. 2001

(Survey, Internet users, n=1,697. Margin of error is + or – 3% (Project, P.I.A.L

2002)) . 8

2.2 Some properties of a Social Network. (Source: Representation of Social Networks

(Lam n.d.)) . 9

2.3 Elements of a social network, illustrated in a simple sociogram 9

2.4 Connectivity matrix for entities A through G in Figure 2.3 (source – (Churchill

& Halverson 2005)) . 10

2.5 A backdoor attack (source: (Rittinghouse & Ransome 2005)) 15

2.6 An illustration of a typical firewall architecture in an enterprise (Source:(Rittinghouse

& Ransome 2005)) . 16

3.1 Waterfall Model . 19

3.2 Process Structure of Rational Unified Process (source: Kruchten (Kruchten 2003)) 21

3.3 Development methodology used . 23

4.1 Questionnaire . 25

4.2 Bar diagram to show the percentage of types of users 26

4.3 Bar diagram to show percentage of social network users 27

4.4 Use case view . 27

4.5 Business use case model . 29

4.6 Use case model . 30

4.7 Analysis model structure . 31

4.8 Class diagram for Preferences module . 32

4.9 Integration Module Structure . 32

4.10 Class Diagram for General Actions . 33

4.11 Class Diagram for Group and Person actions . 34

4.12 Class diagram for Internal Integration module . 35

4.13 Social Network Implementation module structure 36

4.14 Class diagram for Realisation of General Actions Module 37

4.15 Class diagram for Realisation of Group and Person Actions module 38

4.16 Class diagram for Social Network Proxy module 39

4.17 Use case Traceabilities . 40

4.18 Sequence diagram for “Authorise the Social Network application” use case 41

4.19 Activity diagram for login use case and post login activities 42

4.21 Activity diagram for “Call buddies” use case . 43

ix

LIST OF FIGURES

4.20 Sequence diagram for “Send Notifications” use case 44

4.22 Sequence diagram for “Add friends to a group” use case 46

5.1 Architecture of the project - Sametime Social . 48

5.2 Architectural View . 49

5.3 Package structure of Common API . 49

5.4 Classes in Basic Plugin Package . 50

5.5 Classes in Managers Package . 50

5.6 Classes in User Package . 51

5.7 Classes in Actions Package . 52

5.8 Sametime Connect - Status toolbar . 53

5.9 Structure of Facebook Implementation . 53

5.10 Classes in Facebook Managers package . 54

5.11 More classes in Facebook Managers Package . 55

5.12 Classes in Facebook Actions package . 56

5.13 Example for ST Group Action . 56

5.14 Example for ST Person Action . 57

5.15 Classes in Facebook UI . 57

5.16 Classes in Base Package . 58

5.17 Classes in Facebook User Package . 59

5.18 Classes in Facebook Preferences Package . 60

5.19 Singleton Pattern Example . 61

5.20 Class Hierarchy that factory method knows . 62

5.21 Sample code for Factory Method and an application object that uses it 63

6.1 Sample contents of SNList.conf used by ManagerFactory 68

6.2 Code that reads the SNList.conf file and instantiates the SN managers 68

6.3 Code that contributes to extension point, org.eclipse.ui.viewActions 68

6.4 Code that populates menu in the status toolbar 69

6.5 Code that contributes to extension point for adding actions to Groups 69

6.6 Sample Settings.conf for Facebook . 70

6.7 Timer task that refreshes status of Facebook users 71

6.8 Code that creates ST person objects using user id 72

6.9 Code that gets the friends of logged in user . 73

6.10 Response format for user information . 74

6.12 Facebook Menu in Status tool bar . 74

6.13 Cascading Group Actions . 75

6.14 Cascading LiveName context menu . 76

6.15 Facebook Chat . 76

6.16 Facebook Preference Field Editors . 77

6.17 Facebook Preferences . 78

6.18 Sample entries in Messages.java and corresponding values in messages.properties 79

6.11 Code that gets the online status of a list of users 84

6.19 Changed Post requests . 85

8.1 Bar Diagram to show types of users selected for feedback 97

1 Chat with Jason Simoneau . 107

x

LIST OF FIGURES

2 Notes given as part of survey . 108

3 Questionnaire used for requirements analysis . 109

4 Facebook Java toolkit license . 110

5 Facebook application details page . 111

xi

Chapter 1

Introduction

The advent of web 2.0 enhanced the creativity, communication and collaboration over the inter-

net. This led to the evolution of many internet based applications including Social Networking

sites, blogs and wikis. Instant Messaging system, which is a non-web application, existed prior

to web 2.0. A web 2.0 application, Social Networking system, and a non-web application, In-

stant messaging system, are integrated together in this project. The need for such integration,

challenges anticipated to face, the aims and objectives of the project are discussed in this chapter.

1.1 Project Background

As a part of working environment or social environment, internet users are always in a need

to have some tool that helps them to communicate and collaborate with their colleagues or

friends in real time. IBM(International Business Machines Corporation) Lotus Sametime is an

award-winning solution for the same need (IBM Lotus Sametime n.d.). It allows corporate users

to maintain contact lists, chat, share files with their contacts and use other collaboration and

communication services listed in section 1.4. This software includes a server and a client. The

server is hosted by the organisation and employees of the organisation use the client which

connects to the server, to support communication and collaboration between users. In order to

leverage the services provided by Sametime(IBM Lotus Sametime n.d.), all the contacts should

be of the same domain that the server is. With new releases, IBM Sametime extended it’s

services to support AOL AIM®, ICQ®, Apple® iChat™, Yahoo®Messenger and Google Talk™

public IM networks through IBM Lotus Sametime Gateway software. Social networks on the

other side are another way to collaborate with people in different organisations and different

walks of life. The reason to use a social networking site varies from casual conversation with

friends to sharing views on varied topics to sharing media files and comment on them. While

this is a common scenario in today’s online social world, users have to continuously monitor their

friends across different social websites, maintain different contact lists in different interfaces and

manage them. Instead, a desktop tool that integrates these social websites into one interface and

that provides a common look and feel to all contact lists or contacts would be an ideal solution

for this problem.

1

CHAPTER 1. INTRODUCTION

1.2 What is the need to integrate Social Networking system

and Instant Messaging system?

There have been different kinds of researches and organisational moves regarding social networks

and their impact on the work culture. Some of them are discussed in this section. Elizabeth

(Rosenthal 1997) studied the team relations with people outside the team and the team’s per-

formance at work. Her research focused on the pattern of ties that the team members have and

how these ties affect the team performance. Her study has provided an evidence for the fact that

social or personal networks play an important role in the team performance and the differences

in the social networks explain the variations in team performance.

“Globalisation is transforming the competitive environment of small and medium-

sized firms. Because these firms are competing with their larger counterparts in

an economy where collaboration is increasingly central to organisational effective-

ness, one must pay more attention to the social networks that organisations rely on.”

(Van Laere & Heene 2003)

Van Laere & Heene think that social networks are one way to achieve collaboration in any

organisation and participation in social networks can be influential in providing information

in timely fashion. According to Burt (Burt 1992), for small and medium-sized firms with a

limited amount of resources and competencies available, social networks offer comparatively

strong opportunities for a balanced enterprise development in competitive environment. Hence

it is favorable for employees of any organisation to maintain both organisational and social

networks. Well said by Mitchell-Wong and others (Mitchell-Wong et al. 2007) that online social

world is currently not as integrated as real social world and it is of everyone’s interest to make

online social world in-line with real social world.

“Unlike the physical world where social ecosystems are formed from the integrated

and managed relationships between individuals and organisations, the online digital

world consists of many independent, isolated and incompatible social networks estab-

lished by organisations that have overlapping and manually managed relationships.”

(Mitchell-Wong et al. 2007)

As mentioned earlier, there are a few organisational moves to integrate social networks. Here are

two examples of them. IBM Lotus Sametime is an instant messaging solution for collaboration in

organisational networks which later extended it’s services to few other public instant messaging

systems as listed in section 1.1.

1.3 Project Aims and Objectives

In this online social world, people use a number of social networks. Considering the advantages

of participating in social networks in work as discussed in the section 1.2, the project’s main

idea is to provide a solution to integrate organisational network and social networks in some

way. The simple and important aspect of this sort of integration is to provide a way to access

both the networks. The only way to access social networks in organisations now is through the

individual websites. It is quite hard and confusing to maintain and monitor different interfaces

for different social websites. The aim of this project is to provide a single and uniform interface

to access required social networks. The simple and efficient way to participate in an instant

messaging activity is through a desktop tool. The aim is to build a single and uniform interface

2

CHAPTER 1. INTRODUCTION

for different social websites along with organisational network using a desktop tool. IBM Lotus

Sametime being an award winning desktop solution for instant messaging in any organisation,

is a good way to provide a platform for collaboration with social networks. The scope of the

project when expressed in the terms of aims and objectives will be as follows:

• Objectives of the project:

◦ To integrate Enterprise Messaging and collaboration with Social Networks.

◦ To deliver the solution as a desktop tool.

• Aims of the project:

◦ To use an instant messaging system for communication in organisational network.

◦ To provide uniform interface for compatible social networks.

◦ To provide the UI (User Interface) that pretends as the UI of Organisational IM

(Instant Messaging) system for SN (Social Network) contact lists.

◦ To provide as many services of social networks as possible; this is limited by the scope

of API (Application Programming Interfaces) exposed by social networks which is an

external constraint.

As mentioned earlier, IBM Lotus Sametime becomes ideal solution for communication and collab-

oration in an organisation. So the aim-1(as described above) of the project is to use IBM Lotus

Sametime client. The organisation maintains an IBM Lotus Sametime server. Each employee

of the organisation uses an IBM Lotus Sametime client for communication and collaboration in

the organisational network. For simplicity, IBM Lotus Sametime will be referred to as Sametime

or ST here onwards in this document. Similarly aim-3 is to use the UI of Sametime for social

networking sites as well but provide the functionality as offered by the social networking sites. So

the users should be convinced that Sametime is providing the services of social networking as it

does for the organisational network which is not the case. Aim-4 is to provide the services offered

by the social networking sites individually as well as services provided by Sametime wherever

possible. The risks foreseen at this stage are

1. The services that Sametime and social sites support are not the same.

2. Technologies or standards that social sites offer their services in are not the same.

3. Data and data formats supported by Sametime and social sites are not compatible.

Sametime supports several features as described in section 1.4 and all of them are not supported

by social sites. Social sites offer several features including blogs and feeds which are not supported

by Sametime. So a compromise between those services is achieved in chapter 4. All social

networking sites do not provide API for developers and the sites which provide development

support, do not provide them in same technology or standard. So a generic design is required,

which is independent of the API technology, and is covered in chapter 5.

1.4 IBM Lotus Sametime

To achieve the aims outlined in section 1.3, this project makes use of the existing benefits and

features offered by IBM Sametime and builds a social application over it. While change in the

3

CHAPTER 1. INTRODUCTION

range and scope of services provided by social sites is an ongoing business policy, it is impossible

to list out a complete set of services that are offered by all the social networks. As a first attempt,

here is the list of services or features offered by Sametime that are planned to be exploited in

the project. The features (IBM Sametime Features n.d.) are categorised as follows

• Real-time collaboration: User presence, enterprise Instant Messaging and Web confer-

encing.

• Mobile Access: Being able to contact whole team where ever the user is.

• Instant Messaging Federation: Connect Lotus Sametime with the leading public in-

stant messaging providers.

• Telephony: Telephoning contacts.

The enhancements in each category are explained in IBM website (IBM Sametime Features

n.d.). To name a few, they are video messaging, tabbed chat interface, screen capture, and

web-conferencing.

“With it’s open and flexible Eclipse framework, Lotus Sametime 7.5 enables cus-

tomers and third-party vendors to rapidly build and deploy plugins. Incorporating

Web 2.0 technologies will enable customers to create new solutions such as mashups,

effectively bringing leading capabilities from consumer focused applications to enter-

prises.” (IBM Press room 2006)

Sametime’s provision to extend it using plugins written in Eclipse is the way planned to be

adopted in this project. The plugin is meant to integrate Sametime with social networks. The

term ‘Integration’ in the scope of this project refers to the functionality of the proposed product

which allows users to maintain their contacts belonging to different social networks inside IBM

Sametime client. The UI of the project resembles the Sametime UI where as the functionality

it provides can be of social networks.

1.5 Intellectual Challenge

The inconsistencies between Sametime and social sites throw a big challenge and on the other

side, different social sites expose their services in different technologies based on which developers

would have to build applications for the respective sites. So building a universal application is

a difficult task to achieve. One solution is to propose all the social sites to expose their services

in a specific technology so that a single application can be run across all social sites. This is an

ideal solution to provide uniformity and integration.

The initiative of Google in this regard is it’s project called ‘OpenSocial’. OpenSocial is

an API provided by google which when supported by all social sites can be an easy way to

integrate all social websites. This also means that a single OpenSocial application runs across

all social sites and can provide integrated functionality of the social sites. While this has been

an interesting step towards integration of social sites, the support from social sites is yet to be

provided and published. Social sites like Orkut and Ning have already published the OpenSocial

support while many social sites listed at Google’s site (Google Code n.d.b) have announced to

join the OpenSocial initiative. Once this project is accomplished, social sites can be integrated

using a single set of API.

4

CHAPTER 1. INTRODUCTION

Inspite of the integration of social sites using the single set of API provided by Google’s

OpenSocial, there is still a need to integrate it with organisational network which does not come

under social network category and hence not compliant with OpenSocial. OpenSocial requires

a container to run the application and the containers are the social sites. It also provides SPI

(Service Provider Interface) which allows external websites to connect to the social sites as per

the requirement (Google Code n.d.a).

As discussed above, OpenSocial provides the platform to integrate social sites and any ex-

ternal website. But the aim of this project is to provide a desktop solution for the integration of

organisational and social networks. The other option for building social applications is by using

the individual APIs that social sites expose. Again, the technology in which social sites expose

their APIs is not same. So it will be challenging to provide a single set of API for the proposed

integration in order to leverage different technologies of APIs and push the data into the UI of

Sametime.

1.6 Thesis Roadmap

The related research and the development life cycle of the project is discussed and explained in

the rest of this document. The research related to the areas of Social networking and Instant

messaging in home and work environments is discussed in chapter 2. The design methodology

used is discussed in chapter 3 and the stages of the methodology used are covered in the chapters

that follow it. The project requirements and functionality are discussed in chapter 4. The project

architecture and the design based on the analysis done in chapter 4 are presented and explained

in chapter 5. The design model is then implemented using suitable technologies and environment

as discussed in chapter 6. The software thus created is tested using a test plan. The plan and

test cases executed are presented in chapter 7. Finally the project is evaluated in chapter 8 and

some future work is presented in chapter 9.

5

Chapter 2

Literature Review

2.1 Introduction

The concepts of SN and IM were briefly discussed in the chapter 1. These concepts are discussed

in detail, in this chapter, with the help of related research. The history, properties, common

representations, the importance, purpose, the attitude and behaviour of the people towards SNs

are discussed in detail.

The concepts of IM like it’s evolution, it’s importance, security concerns and how they are

addressed are also discussed in this chapter. Finally, the influence of SN in organisations which

forms the basis for need of integrating both the systems, that supports the discussion in section

1.2, is also presented.

2.2 Social Networking

2.2.1 Introduction to Social Networking

The concept of Social Networking is not a new one, which came after the advent of internet,

but has already existed by then though in a different form. The fact that human being is

called a social animal is also supported by the ability of people to work together in groups

creating more value than the sum of values created working alone. At a minimum level, Social

Network consists of three or more people communicating and collaborating with each other.

Such a network can be in any form of social gathering including schools, temples and churches.

While such networks can be formed without internet, the advent of internet has created a

backbone for virtual social networks where people make their connections for communication

and collaboration even without physically meeting them. Such connections between people are

seemless and limitless and hence they create opportunity for virtually larger social network than

they can imagine in real life. In today’s electronic media, social networking is nothing but a

network created by individuals using internet, World Wide Web and web applications for their

communication and collaboration in ways which were impossible before internet. According to

Weaver and Morrison (Weaver & Morrison 2008), the production model has changed to increase

the reachability of web applications created for social networking.

“The model has changed from top-down to bottom-up creation of information and

interaction, made possible by new Web applications that give power to users. While

in the past there was a top-down paradigm of a few large media corporations cre-

6

CHAPTER 2. LITERATURE REVIEW

ating content for the consumers to access, the production model has shifted so that

individual users now create content that everyone can share.”

They believe that there is a determinable structure of the way people directly or indirectly know

each other and Social Networking is built on this idea. The concept of Social Networks also

believes on notions such as “Six degrees of Separation” which states that every person in this

world is knowingly or unknowingly connected to everyone else through a chain of not more than

six acquaintances (Churchill & Halverson 2005).

The internet based social networking systems allow it’s users new and a variety of ways of

communication including, PCs (Personal Computers) or even their mobile phones. All users

need to do to initiate their network is to create a profile or their own online page on the system

chosen and select available users as their friends who are also displayed on their profile. They are

allowed to constantly search for new contacts and make them friends by adding them to their

contact lists. They can communicate either privately or publicly. Increase in internet access

facilities at home, like availability of high speed reliable internet, facilitates the use of social

networking systems.

2.2.2 History of Online Social Networking systems

This section presents the history and emergence of social networking systems. While the emer-

gence of concept of social networking is discussed in the section 2.2.1, this section discusses about

the evolution of sophisticated online social networking sites.

According to the research of Samantha Lam(Lam n.d.), early social networking sites in-

cluded Classmates.com (1995) which focused on connecting with former class mates in schools

and colleges, SixDegrees.com(1997-2001) which focused on the indirect relationships based on

the popular Six Degrees notion. Then came into market, an other popular social networking

website named “MySpace” which reported more visitors than “Google”. She also mentioned that

“Facebook”, a good competitor which grew rapidly in size even in exponential rate, overtook

MySpace. Later, websites like “Facebook” started supporting external add-on applications for

their platform.

The percentage of internet users who contacted various online groups is shown in in the figure

2.1 .

2.2.3 Sociometry (SNA)

In short, Sociometry is a quantitative study of social relationships.

Research in Sociometry:

This section presents some of the research involved in the field of Sociometry including the rep-

resentation of Social Networks. In their paper, Jamali and Abolhassani (Jamali & Abolhassani

2006) discussed about some important properties of social networks in general. They explained

some of the conventional social network models used for representation of relationships in social

networks and also for their statistical analysis. The conventional models of social networks,

as discussed in their paper, are graphs and matrices used to represent the relationships and

statistical models for analysis. These were not always successful, there were some associated

problems. For example, statistical models had degeneracy and scalability problems. Handcock

(Handcock 2002) discussed the degeneracy problems in statistical models in his paper, where

as Hoff and others (Hoff, Raftery & Handcock 2002) discussed the scalability problems in their

7

CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Types of Online Communities and percent of internet users by online groups to which
they belong (Source: Pew Internet & American Life Project, Jan.-Feb. 2001 (Survey, Internet
users, n=1,697. Margin of error is + or – 3% (Project, P.I.A.L 2002))

papers. The graph and matrix models have shown readability problems with large number of

nodes and connections. Jamali and Abolhassani (Jamali & Abolhassani 2006) represented so-

cial networks using nodes and edges where nodes represent actors and edges joining the nodes

represent the relationships between two actors. Other important aspects in social network repre-

sentation (where importance is based on frequency of these definitions in literature) are outlined

in the figure 2.2.

During 1930s, sociometric analysts in US investigated how the feelings of well-being related

to the people’s social lives. Elizabeth and Christine (Churchill & Halverson 2005)found this

research closely associated with the sociogram devised by Jacob Moreno. A Sociogram is a

visual diagram which represents the people and the relationships between them using points and

lines where a point represents a person and a line joining two points represents the connection

between those people. They also stated that Kurt Lewin and Fritz Heider were among other

major players in this research. Kurt Lewin promoted mathematical models of group relations

and Fritz Heider focused on perceptions of people about their relationships.

Figure 2.3 is an example sociogram which depicts the structure of relationships between nodes

(which represent people) or entities A through G. In the figure 2.3, elements of a social network

are illustrated as a simple sociogram. The nodes in figure 2.3 are represented by circles and the

connections or relationships are represented by arrowed lines. It consists of both unidirectional

and bidirectional lines. Node A links two subgroups of linked nodes consisting of B, C and D

and E and F respectively. A single node G is also connected to A. Another interesting point

is that A connects to E but E is not connected to A. The lines are also called links or arcs or

8

CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Some properties of a Social Network. (Source: Representation of Social Networks
(Lam n.d.))

Figure 2.3: Elements of a social network, illustrated in a simple sociogram

edges or ties. The single nodes like G are also called singleton. B, C and D form a subgroup so

do the nodes E, A and F. If the relationship is defined as “sending wedding invitations to”, the

links from the network explain the following.

• A sends invitation to B, C, E, F, and G.

• A receives invitations from B, C, F and G.

• E and F invite each other

• B, C and D send and receive invitations among themselves.

• A does not receive an invitation from E.

Example analysis from the figure 2.3 can be that A is serving as potential connection source

between the members of two subgroups as it is spanning the boundary between them. From

the graph in figure 2.3 , a connectivity matrix can be visualised as in figure 2.4. In the matrix,

the cells are binary digits ‘0’and ‘1’. A ‘1’ in a cell indicates that there is a connection between

the nodes represented by the row and column of that particular cell and in the same way a

‘0’ indicates that there is no connection between the nodes. The directional link is interpreted

as follows – the row represents the ‘From’ node and the column represents the ‘To’ node. For

example, A is connected to E but E is not connected to A and hence row A and column E has

1 and row E and column A has 0. A node is supposed to be connected to itself and hence the

leading diagonal in the matrix is 1 (the cells like A-A , B-B are always 1)

9

CHAPTER 2. LITERATURE REVIEW

Figure 2.4: Connectivity matrix for entities A through G in Figure 2.3 (source – (Churchill &
Halverson 2005))

2.2.3.1 Why do these social Networks matter?

With any possible representation of social networks, the questions that arise are why should a

social network be represented in any model, what can be derived from it and will the derivations

be useful and so it is very important to understand or analyse what is already represented by a

given social network. The availability of data to analyse is directly or indirectly proportional to

some factors including the number of people using the social network systems and the amount

of their interactions. More availability of such data makes analysts interested in observing

and characterising the details about connections including their origin, timing period, the way

they are made and how they will be helpful. There are many researches done at the level

of interpersonal communications and interests. Wellman and Gulia (Wellman & Gulia 1999)

examined the social information flows for both kinds of ties or links, strong and weak. Kraut

and others(Cummings, Butler & Kraut 2002) examined how online social relations influenced the

psychological health of people. Hampton and Wellman (Hampton & Wellman 2003) examined

how these relationships and interactions affected face to face communications and interactions in

real life communities, Sunden (Sundén 2003) studied how people represent themselves through

constructed online identities, which is also called impression management.

Despite no business model being emerged by then, companies like LinkedIn, MySpace, Orkut,

Friendster and Tribe became increasingly interesting in social network concepts and were suc-

cessful in launching social networking websites. Social Network Analysis was also used

• To analyse the ways of communication & cooperation that people used

• For the identification of knowledge flows like the source of information or knowledge among

the people and who do they share this information or knowledge with.

SNA (Social Network Analysis) when applied in the context of a business, the informal com-

munication networks could be revealed and the source or the flow of information within the

organisation between the formal procedures and relationships could be identified. Elizabeth and

Christine (Churchill & Halverson 2005) observed that several consultancy firms offered SNA

based services and promised to improve productivity, efficiency and reduce costs by optimising

the information flow. In the context of research, the process of understanding the flow of informal

10

CHAPTER 2. LITERATURE REVIEW

networks in inter and intra organisations lead to a separate area for study called Organisational

Network Analysis (ONA). Cross and others (Cross, Nohria & Parker 2002) have contributed to

this area of study.

2.2.3.2 Attitude and Behaviour towards Social Networking Sites

Although there were enormous number of social networkers, their attitude towards Social net-

working sites was different and the reason to use the them was not the same. Some research

is done by OfCom, UK (Ofcom, Office of Communications 2008) in this area. According to

Ofcom’s qualitative research, social networkers could be differentiated into five groups based on

the difference in their attitude to the social networking sites and their behaviour while using

them. These groups are described as follows.

• Alpha Socialisers: The people who use the social networking sites very often for flirting,

meeting new people. Their main motive is being entertained. There were only minority of

people of these type at the time of research.

• Faithfuls: The people who used the social sites to maintain their old friendships generally

from their school or universities. According to the report, there were many people of this

kind.

• Attention Seekers: The people who used the social sites to seek the attention from

people and were so keen on obtaining comments from others about their profiles or pho-

tos uploaded or anything published about them. There were only some part of social

networkers of this type.

• Followers: The people who joined the social sites just because others were doing or to

keep up with the changing technologies or to keep up with their peers.

• Functionals: The people who joined the social sites for specific purpose. There were only

a minority of social networkers of this type according to the report.

While the majority of internet users were part of Social networking, there were people who were

not using the the sites for varied reasons. The report (Ofcom, Office of Communications 2008)

also classified the non users of social networking based on the reason for not using them as

follows:

• Concerned about safety: Many people were afraid of using the social sites because

they were afraid of publishing their personal details on the internet. They were concerned

about the safety of making their details available online although technically they would

not need to publish legitimate or correct details.

• Technically inexperienced: There were a portion of non users of social sites who were

not aware of using the technology and who lack the confidence in using computers and the

internet.

• Intellectual Rejecters: These type of people would not have any interest in using these

sites at all and see using them as just a waste of time.

11

CHAPTER 2. LITERATURE REVIEW

2.2.3.3 Consequences of using Social Networks

Although social networking was intended to keep up social relationships, personal and work

related collaborations, the websites have some negotiable pitfalls such as unwanted consequences

of the availability of sensitive personal information to the public. Inspite of the safety measures

taken by the websites, there were possibilites where users were confused over the privacy settings

and contacting with strangers online. The report (Ofcom, Office of Communications 2008) stated

that some users were annoyed by few activities including self-promotion and online bullying. The

report indicated that many users were very positive about using the social networking sites and

that there were only a few who reported negative experiences. The research suggested several

areas of potentially risky behaviour including:

• Privacy settings: Some users left their privacy settings as open by default. It stated

that 41% of children who were aged between 8 & 17 and 44% of adults aged between 18

& 24 left their profile visible to everyone.

• Giving out sensitive personal: Some users willingly gave out their sensitive personal

information like photographs to everyone. 25% of registered users posted sensitive personal

data like phone number, address and email address on their public profiles.

• Giving out reputationally damaging information: Some users posted reputation-

ally damaging information about others on their pages such as provoking photographs,

photographs of their teachers or bosses drinking or smoking.

• Contacting complete strangers online: Many users of all age groups added complete

strangers as their friends and share their personal information. 17% of adults contacted

complete strangers and 35% contacted friends of friends

Although the purpose of social networking is to increase their social networks by knowing new

people and communicating with them, it can still be a security risk. Inspite of the outlined risks

of security many people appeared unconcerned due to various reasons including

• Lack of awareness

• False assumptions that social sites would take care of privacy and security issues.

• Lack of knowledge about managing their privacy settings

• Not so easy availability and understandability of the privacy and safety measures on the

internet.

• Perception that social networking security and privacy concerns would not be so serious

as internet banking systems.

2.2.3.4 Web 2.0

Social networking websites are also part of the wider Web 2.0 context. OfCom (Ofcom, Office

of Communications 2008) defines web 2.0 as

“The specific technology that has enabled this growth in the number and popularity of

social networking sites is part of a wider online phenomenon, enabling self-expression,

communication and user interaction online, known as Web 2.0.”

12

CHAPTER 2. LITERATURE REVIEW

Though Web 2.0 is not unique to social networking, it has eased the development of several

interactive and collaborative applications including user generated content websites also called

UGC (example: YouTube and Picasa), file sharing websites and Massive Multiplayer Online

Role Playing Games (MMORPGs. Example: VirtualWorld, Second Life)

2.2.4 Popular Social Networking Softwares

The table 2.1 shows the list of popular websites, when they were founded and the active number

of users at 22 August 2007 as researched by Forbes (Forbes 2007)

Table 2.1: Popular social networking sites based on number of active users

Social Network Site Founded In Number of Active Users
Windows Live Spaces December 2004 130 million

MySpace July 2003 115 million
Orkut January 2004 60 million

Friendster 2003 47 million
Classmates.com 1995 40 million
Facebook February 2004 34 million
Flickr February 2004 11 million

Inline with numerous media reports, the most used social networking websites as reported

by OfCom (Ofcom, Office of Communications 2008) were Facebook, MySpace and Bebo. The

report also indicates that about 62% of adults who use social networking sites are also a user of

Facebook, 50% used MySpace and 33% used Bebo.

2.3 Instant Messaging

2.3.1 Introduction to Instant Messaging:

Instant Messaging is a simple but most liked and used concept where users exchange text mes-

sages in real time using a software application. It is often called in short as “IM” or “IMing”

(also referred as IM in this report here onwards). Generally IM softwares allow features like

maintaining a contact list (or buddy list), sending and receiving messages from contacts in real

time and see the online status of the contacts. Instant Messaging softwares were designed for

both home and office use. Some high end IM applications also provide many features including

file transfer in real time, spell check and call in realtime.

2.3.1.1 Origin and Evolution of Instant Messaging

Most of the internet users use emails(short name for electronic mails) for communication, which

was developed by ARPAnet in 1972 (Project, P.I.A.L 2002). Early email systems were only

point to point which means that a person could only send an email to only one other person

and not more. Later Listservers were invented in 1975 which allow one to many postings. Jenny

Preece and others (Preece, Maloney-Krichmar & Abras 2003) in their report mentioned that the

first emoticon (short name for emotion-icon which is a short and brief graphical representation

of an emotion. Something like ’:-)’ to indicate an emotion of being happy) was invented in 1979

by Kevin Mackenzie. The usage of such emoticons softened the impact of otherwise dry email

text by making it interesting to send and receive. It is also said that “ A picture is worth 1000

13

CHAPTER 2. LITERATURE REVIEW

words”. Later in mid 1980s, communication tools like email systems were improved by allowing

graphical user interfaces (GUI).

As per the report (Preece, Maloney-Krichmar & Abras 2003) the next in the evolution were

online bulletin boards which were designed to work like physical bulletin boards. These boards

allow it’s users to post any messages and those messages were displayed in various ways. Thus

posted messages were threaded to mean that messages related to a topic were associated or

linked with each other. Threading messages allowed users to navigate from first message of the

thread to later messages and again backwards for example providing ’next’ and ’previous’ links.

Later systems appeared to offer many enhancements including allowing users to search on topics,

users who posted messages, date of posting messages, links to email, displaying user profiles and

web pages, two dimensional graphical representation of people involved called “avatars”. At this

stage the normal contact lists turned into online communities based on the scope of the system.

The communication tools like email, list servers, bulletin boards, Usenet news are asynchronous

communication technologies which means that the users communicate with their communication

partners even when both parties do not co-present in time.

The Synchronous communication systems include chat systems, instant messaging and tex-

ting systems which means that the communication partners have to be co-present. Generally

conversations were rapid and short. Texting systems were like instant messaging on phone lines.

The report (Preece, Maloney-Krichmar & Abras 2003) also stated that in 1991 (an year after

ARPAnet ceased in existence) the World-Wide-Web (WWW) was developed by Tim Berners

Lee and was released by CERN (European Organisation for Nuclear Research). WWW then

facilitated widespread usage of web sites. In the area of online communications, WWW eased

the development of several online communities and many forms of communication software.

2.3.2 IM at work

Real time communication and collaboration was possible using IM softwares at homes. But

designing effective real time collaboration tools for people at workplace was heart of research

in computer cooperative work (CSCW) says QhanHeese and others (Quan-Haase, Cothrel &

Wellman 2005) The security issues, the effective utilisation of IM software among the employees

were key issues in employing IM at work. Nardi and O’Day (Nardi & O’Day 1999) think that

CSCW could not be developed solely online.

“Successful development and deployment must take into account the social context

of use, and must understand the situations in which users switch among different

means of communication” says Nardi and O’ Day (Nardi & O’Day 1999)

Many researches (Handel & Herbsleb 2002, Herbsleb et al. 2002, Poe 2001) have shown that

in many organisations, employees use IM. IM systems were being used in either way with or

without email systems. Speed and ease added to the workplace communication by IM made it

so popular in workplace. It was also observed (Nardi, Whittaker & Bradner 2000, Handel &

Herbsleb 2002) that IM eliminates the time lost to “telephone tagging” or making fruitless trips

to absent coworker’s office as IM requires not more than an internet connection along with a

small application launched on the computer.

2.3.3 IM and Security

As mentioned in the section 2.3.1.1, IM systems have improved from providing real time text

message transfer to providing transfer of files. This feature posed a risk of carrying worms and

14

CHAPTER 2. LITERATURE REVIEW

other malware from one computer/network to another similar to what emails could do. Thus IM

systems provide an access point for backdoor trojan horses. They can also be used by hackers to

obtain backdoor access to otherwise safe computers/networks without any open port listening

to it and hence bypassing desktop and boundary firewalls as in figure 2.5

Figure 2.5: A backdoor attack (source: (Rittinghouse & Ransome 2005))

Peer-to-peer file sharing which is another security threat that allows a directory or drive to

be shared is also allowed in IM. This feature allows all files on a computer to be shared and thus

leads to the spread of virus or malware affected files to other systems. Viruses are transfered to

other computers, bypassing the gateway anti-virus software. The text messages being transfered

can also be urls for pages that contain malicious code on the internet. Rittinghouse and Ransome

(Rittinghouse & Ransome 2005) mentioned that even the use of organisational IM systems like

IBM Lotus Sametime and Microsoft Office Live communications, the communications will be

safeguarded internally and hence the communications, once enter the public networks, are again

exposed to security threats.

However constant improvement in security features were made for major enterprise solutions

like IBM Sametime which is used in this project. So whatever choice has been made by a company

to employ an IM system, be it popular and free IM or corporate-focused and secure IM, and again

deploy suitable security layers such as antivirus software, firewalls and vulnerability management

on top of IM solution, it has to be aware of associated security risks.

Rittinghouse and Ransome (Rittinghouse & Ransome 2005) reiterated that architecture and

design of the IM should always reflect an effective security strategy and in simple words it’s

security strategy must employ the sophisticated techniques in establishing the connection with

IM service.

2.3.3.1 Using Firewalls

Improvements and steps taken against existing security risks to IM systems always results in

new security threats being identified. So out-of-the-box firewall configurations often would not

be sufficient for blocking unwanted access to the IM systems. Latest IM systems were designed

15

CHAPTER 2. LITERATURE REVIEW

keeping firewalls in mind and they employ many techniques to sneak past corporate firewalls for

reaching the IM servers as mentioned in the book (Rittinghouse & Ransome 2005).

Some companies block non trustable or non approved IM system usage in the internal net-

work. In order to do that, the IM clients must be prevented from reaching the IM server by

adding the servers (names or ip addresses) to the firewall block list for each of the IM services

to be blocked. The usage of firewalls is illustrated in figure 2.6.

Figure 2.6 illustrates the usage of perimeter firewalls in organisational networks which again

are connected by perimeter network.

Figure 2.6: An illustration of a typical firewall architecture in an enterprise (Source:(Rittinghouse
& Ransome 2005))

Perimeter firewalls are used for blocking non approved or non trusted IMs. Generally organ-

isations configure their perimeter firewalls so that all internet services are blocked other than

critical set of services like SMTP email, HTTP Web surfing and DNS. This led IM providers to

design their software so that the clients tunnel over the allowed set of internet services and thus

they slip past the firewalls.

2.3.3.2 Blocking and Proxying IM

As discussed in the section 2.3.3.1, IM services on the whole could be blocked by firewalls, so

that IM client can not be able to connect to the IM service provider or the IM server. But an

effective way to block the IM can be allowing the connection to happen, later intercepting the

connection and reject the user log-in packet. So from the end user perspective, it appears like a

normal failed log-in attempt but not that the connection was unsuccessful. Another way can be,

allowing the login to happen but intercepting or rejecting all other message packets and showing

a warning to the user that IM usage is not allowed. Rittinghouse and Ransome (Rittinghouse

& Ransome 2005) proposed using an application level proxy server for this purpose. The proxy

server can be configured based on the security policies determined by IT manager and this would

be an added advantage to organisations. The to and fro messages and files can also be scanned

for any malicious content or filter URLs using the proxy server.

16

CHAPTER 2. LITERATURE REVIEW

2.4 Social Networking and Organisational influence

2.4.1 Entrepreneur level influence

Many researches (Borch 1994, Hansen 1995, Larson & Starr 1993, Reynolds 1991, Starr &

MacMillan 1990) have shown that business decisions were always embedded by entrepreneurs in

social structures. A structural approach was used by Greve and Salaff (Greve & Salaff 2003)

to study the way entrepreneurs used their social relations to help launch any business. En-

trepreneurs consider any advice and resources they obtain from social relations, as different

contacts and resources are always a requirement to establish any business. The structural ap-

proach used by Greve and Salaff also implied that entrepreneurs used social relations, to obtain

any useful resources, in diverse cultural settings. They obtained and gained access to resources

like support, knowledge and distribution channels through their social networks and would in-

teract with other people and organisations, to widen the resource availability and try to sustain

their new firms.

Donald McDonald (McDonald 2003) stated that social networks are a way to visualise the in-

teractions in organisational settings. Their descriptive and analytical power made them popular

and useful in designing groupware systems.

2.4.2 Other Organisational benefits

Social networks also are used in many systems as a mechanism for recommending sources for

collaboration. Visualisation techniques are used to find specific people who served as most

common source for collaboration. An example of such systems is a ReferralWeb (Kautz, Selman

& Shah 1997). Co-authoring and co-citation relationships were mined to create a social network

and the visualisation of that network was used to find a subject expert. Such a social network

was also used to answer other queries like how far away each researcher was located and if any

one was in between them.

Some studies (Ackerman 1998, George Chin, Myers & Hoyt 2002, Ehrlich & Cash 1999) re-

garding collaborative behaviour found that any single person’s social network influences other

people’s collaborative behaviour and information seeking. In these studies, social networks

showed a broad and complex range of social and organisational interaction and hence demon-

strate the importance of social networks in workplace. Expert finding system is a type of

recommendation system which is designed to discover a person who can be treated as subject

experts in a specific problem domain. These were used to locate expertise in any unfamiliar part

of an organisation and they also provide alternatives in the key expert’s absence.

2.5 Conclusion

The concepts of SN and IM, their importance in an organisation and the behaviour of people

with the SN systems are discussed in this chapter. The very idea of the project, to integrate

both the systems, is also supported by the discussion in section 2.4.

Now that the need to integrate them is clear, the life cycle stages of the development of the

project are covered in the rest of the document. Development methodology used is explained in

chapter 3 which guides other stages.

17

Chapter 3

Development Methodology

3.1 Introduction

The concepts of SN and IM are discussed in chapter 2. The need to integrate both the systems,

based on existing research, is discussed in the sections 1.2 and 2.4. Having supported by the

research, the project life cycle started by choosing an appropriate development methodology

which is then developed in various stages.

The activities that are involved in a project or a system are defined using a development

methodology or a system methodology. The activities of developing and evolving systems, right

from the initial feasibility study to when the system is ready and fulfills the requirements laid,

are defined by the methodology employed. The continuity in the process of completing a project

is supported by use of a particular methodology. According to Keyes(Keyes 2003), in a corporate

environment, it is the methodology employed that assures the organisation, that the process of

developing and maintaining the system (project) is sustainable and repeatable. The development

methodology used for the project is discussed in this chapter.

3.2 Comparison of development methodologies

The following development methodologies are discussed in this section to identify the most

appropriate methodology for the project.

• Waterfall model

• Agile Methodology - Extreme Programming

• Rational Unified Process

The benefits, shortcomings and the suitability of these methodologies are discussed in this sec-

tion.

3.2.1 Waterfall Model

Waterfall model, also called as linear sequential model, is a sequential or systematic approach.

It suggests that the stages in software development have to be sequential.

18

CHAPTER 3. DEVELOPMENT METHODOLOGY

3.2.1.1 What is Waterfall model?

The figure 3.1 illustrates the model. Although this model is generally derided as old-fashioned,

when the requirements are well understood in advance, it can do reasonably well because of

it’s simplicity. The main activities or phases or stages of this model are Analysis, Design,

Implementation, Testing and Maintainance as shown in figure 3.1.

Figure 3.1: Waterfall Model

Bradac (Bradac, Perry & Votta 1993) analysed few real time projects which follow this

methodology and found that the each stage blocks the stages next to it and leads to the respective

teams to wait in case of dependencies.

3.2.1.2 Benefits

• It is very simple, and so would have less learning curve, and well structured.

• It is a systematic approach organised stepwise which provides much clarity.

3.2.1.3 Shortcomings

• The analysis and specification should be done at the starting stages of the projects and

never revisited, which makes it practically difficult for real time projects.

• A prototype of the product is obtained at later stages so this might not be what clients

want.

• The strict structure of stages require that future problems have to be anticipated at the

early stages itself, which might not be practically possible.

3.2.1.4 Why the project can not employ it?

Eventhough there are no teams to wait for other teams in case of any dependencies, the absolute

sequential model can not be employed for the project because of the constantly changing features

19

CHAPTER 3. DEVELOPMENT METHODOLOGY

(hence requirements) and development support of the products used (Sametime as well as Social

Networks). So some kind of incremental or iterative procedures are needed for this project.

3.2.2 Agile methodologies

According to Fowler(Fowler, M 2000), in the field of software engineering, the term ’Agile’ refers

to a philosophy of software development rather than a simple process or methodology . There

are many approaches in agile including “Extreme Programming”, “Scrum” and “Crystal”.

3.2.2.1 Description

The main focus of agile methodologies according to Abrahamsson and others(Abrahamsson et al.

2002) are listed as below

• Individuals and Interactions: The relationship between software developers is more

emphasised than the processes and tools. The team spirit, close team relationships and

close working environment are enhanced by the agile practices.

• Working Software: The working version of software is emphasised more than produc-

ing comprehensive documentation. Simple, efficient, technically advanced and reusable

software is demanded for producing frequent releases of the software.

• Customer Collaboration: The customer, developer relationships are given precedence

over contract negotiations. From a business point of view, the sofware is expected to deliver

business value from the day one and thus reducing the risks of contract non-fulfillment.

• Responding to Change: The software development team along with customer represen-

tatives should be informed about any changes or adjustments that might emerge during

the development process.

Agile methods are very deliberate and disciplined approach to software development. It brings

the whole team together by a set of simple practices and enables the team to know where the

project is and allows them to change the practices to ensure the productivity. Agile methods

stress on customer satisfaction and are designed so that the product is delivered to the customers

as and when they need. They emphasise team work. They encourage the team members to

complete the project as early as possible and also allow customers to give any new requirements

or alter the requirements even in the later stages of the development. The practices in agile

methods are team oriented and hence more suitable for team environments.

3.2.2.2 Benefits

• Fast delivery of the software.

• Customer satisfaction.

• Allows adoption of enhancements even at later stages.

3.2.2.3 Why the project can not employ it?

All Agile methodologies are team oriented. Apart from not having a team, an iterative approach

is still required by the project because of it’s ever changing requirements in the products it uses

as also mentioned in section 3.2.1.4. So iterative approach of agile methodologies is suitable

for the project. But it’s team work focused practices can not be implemented due to resource

constraints (both time and people working on it).

20

CHAPTER 3. DEVELOPMENT METHODOLOGY

3.2.3 Rational Unified Process

Rational Unified Process shortly called as RUP (and references as RUP here onwards in this

document) is both a process and a product. RUP is a process product. It is developed by

Rational Software and it comes with a suite of development tools. Kruchten (Kruchten 2003)

says that RUP is also a process framework which is adapted and often extended to suit the

organisational needs. Fowler (Fowler, M 2000)says that RUP provides a common set of practices

and development teams can choose those practices that suit their projects. RUP is use case

driven, iterative and architecture centric. Fowler (Fowler, M 2000)also says that RUP is adapted

in infinite number of variations ranging fromWaterfall woth ’analysis iterations’ to picture perfect

agile.

3.2.3.1 RUP Architecture:

The two dimensional architecture of RUP is shown in the figure3.2. Time is represented by the

horizontal axis which shows the lifecycle of the process and workflows of the core processes are

represented by vertical axis.

Figure 3.2: Process Structure of Rational Unified Process (source: Kruchten (Kruchten 2003))

The phases of RUP are described as below:

• Inception: The project is evaluated typically by stakeholders to decide if it is viable to

do the next phase.

• Elaboration: Use cases are identified in this phase and the software is developed in

iterations. At the end of this phase, a skeletal working system should be developed that

would act as a starting point for development.

• Construction: Functionality of the software is developed in this phase.

• Transition: Activities done at later stages are included, like deployment and training,

but may not be done iteratively.

21

CHAPTER 3. DEVELOPMENT METHODOLOGY

3.2.3.2 Reasons why RUP suits the project:

• The support for SN applications might be changed very often and so do the requirements.

So an Iterative method is more suitable.

• In RUP, integration is not one big task done at the end, instead, it is done progressively.

So the approach is a process of continuous integration.

• The iterative approach in RUP lets the developers mitigate risks earlier as generally more

risks are discovered and addressed at integration time. So risks discovered in each iteration

are addressed in the same iteration.

• Common parts are designed and then implemented partially in the iterative approach and

this eliminates the need for identifying all the commonality in the starting phase itself

before anything is designed.

• RUP mainly consists of models, developed and maintained constantly, of the system being

developed. According to Kruchten(Kruchten 2003), the models help the architects and

developers to understand the problem and shape it’s solution. Models are created or

written using UML (Unified Modeling Language). But UML does not tell the developers

how to develop software. It just provides the required vocabulary but does not essentially

help in writing the book. RUP comes along with the UML to complement it’s processes

and modeling them. Hence it is a reasonably good approach to use RUP for developing

small or large softwares.

• The approach of RUP is use case driven but not process driven and hence use cases defined

for the system become the basis for the development process at any stage.

3.2.4 Methodology Adopted

The RUP methodology is not employed as is(with it’s two dimensional approach) but is adapted

as required. The Business Modeling, Requirements, Analysis are done in non iterative manner.

Design and Implementation phases are done in iterative manner where each iteration adds a use

case and then tested. Essentially the adapted methodology resembles Waterfall model except

for Design and Implementation phases along with some testing done in iterations. For each SN

integration, the whole methodology is applied again which means that it is started from analysis

and optional design followed by iterative implementation, testing and evaluation phases.

22

CHAPTER 3. DEVELOPMENT METHODOLOGY

Figure 3.3: Development methodology used

3.3 Conclusion

After analysing the process, benefits and shortcomings of the waterfall, agile and RUP method-

ologies, this chapter discussed why they can not be adopted in the project as they are. As many

practices of RUP suit the project, they are adopted but not as they are.

The adopted methodology for this project is a hybrid form of waterfall and RUP method-

ologies as explained in the section 3.2.4. Havind decided on the methodology to be used, the

development life cycle is covered in the rest of the documents.

23

Chapter 4

Analysis

4.1 Introduction

The development methodology is explained in the chapter 3 and the project is analysed in this

chapter as a first phase of it’s life cycle. The requirements are first analysed and then a business

model is presented along with the system analysis model. These models form the basis for the

system design. The models are the UML diagrams created using Rational Rose and hence the

chapter is organised based on Rational Rose views.

4.2 Requirements Analysis

The requirements are finalised with the help of a survey conducted for a group of users.

4.2.1 Survey Design

For the requirements analysis, a survey is conducted with simple set of questions as to what is

expected in general for a product that integrates IM and SN systems and does it really interest

the people at work and at home. The survey was just user oriented and not technology oriented.

About 25 users at work and 25 users at home were chosen for the survey. They were asked a set

of questions that help in revealing the requirements of the project.

4.2.2 Survey Questions

List of questions asked is shown in the figure 4.1. There were two kinds of questions. One is

multiple choice questions and the other is descriptive.

Questions 1 through 5 were designed to get a rough estimate of type and amount of people

interested in using this software and thus to know if this product would be useful at all. Questions

6 through 8 were designed to know the preferences of users for the integration.

Question1,2 These questions were designed to obtain a rough estimate of people, who would

have interest in this software. People who were already using or interested in using both

IM and SN systems, would be the parties interested to use this product.

Question3 This question was designed to know if the users would like to access both systems

in single interface.

24

CHAPTER 4. ANALYSIS

Figure 4.1: Questionnaire

Question4 This question was designed to help analyse the results of the questions 5,6 and 7, as

home users might have different preferences of how they would like the resulting integrated

software to be and corporate users might have different preferences.

Question5 This question was designed to know what type of users and thus know their attitude

towards Social Networks. These results help to analyse the usefulness of the software in

evaluation phase covered in chapter 8.

Question6 This question was designed to know the type of interface users prefer, either internet

application which can be accessed through browsers or desktop application which does not

need a browser.

Question7 This question was designed as an other way to know the popular sites used among

the sample users.

Question8 This question was designed to get the list of features that most people generally use.

There can be many features supported by different SNs but this question helps starting

the project with most wanted features and add any other features in future versions.

4.2.3 Survey Outcomes

Out of 50 sample users, 35 were both IM and SN users who also wanted to have a single desktop

interface for IM and SN systems. The reason as analysed is that some of the users at work do

not have access to many of the social networking sites. Many of the corporate IM users, who

25

CHAPTER 4. ANALYSIS

have access to SN sites, and most of the home users do not like to keep all the SN sites open and

constantly monitor for their friends, to see if they are online and that the desktop application is

easy and flexible to use than internet application. The interesting part is about which SN sites

they use. The results were charted as a bar diagram shown in figure 4.3. The top two sites were

Facebook and Bebo. 84% of the people use Facebook (Facebook and others), 72% among them

use Bebo (Bebo and others).

The percentage of SN users of each type, as categorised in section 2.2.3.2 , out of the sample

users are charted in picture 4.2. More percentage of users (both home and office) are Faithfuls

and Followers. Though this project does not interest all Followers (The people who joined the

social sites just because others were doing or to keep up with the changing technologies or to

keep up with their peers), it would interest some of the Followers. It would interest people who

want to use SNs for the sake of keeping up with others but not for keeping up with changing

technologies, as this integration might or might not support all the services that SNs support.

Figure 4.2: Bar diagram to show the percentage of types of users

Majority of the users at work did not want all features of the SNs for integration but just

some of the common features like

• Online presence

• Maintaining friends list

• Chatting

• Sending and receiving files for collaboration

• Sending and receiving emails

Some of the home users wanted all possible features for integration.

The requirements gathered are represented as use cases and modelled in section 4.3.

4.3 Analysis Modelling

UML diagrams for the project are drawn using Rational Rose and so the diagrams are organised

by the views as laid out by Rational Rose. In Rational Rose, the model is constructed based on

26

CHAPTER 4. ANALYSIS

Figure 4.3: Bar diagram to show percentage of social network users

the type of project and the template used for this chapter is of Java.

4.3.1 Use Case View

In Rational Rose, business use case model and system use case model are organised in use Case

view as shown in figure 4.4.

Figure 4.4: Use case view

4.3.1.1 Business Use case model:

In business use-case model, each business use case represents a business process from the view

of an external user without any insight into the application. It just represents what can be

achieved by the project. The business use case represented in the figure 4.5 depicts the business

user who is a user of both Instant Messaging system and Social Networking sites. The diagram

only presents some of the usecases for following reasons:

1. The IM related use cases provided by the project will depend on the IM system chosen at

later stages. However IBM Sametime is proposed in the Chapter 1 and it provides many

usecases of which three are shown in the diagram.

27

CHAPTER 4. ANALYSIS

2. The SN use cases provided by the project will depend on the social network which is being

integrated with IM. However common usecases like GetFriends, Chat with Friends are

presented in the diagram.

4.3.1.2 Use Case Model

The use case model in RUP presents a model which supports business processes and thus describe

the behaviour of the system. Figure 4.6 is the simplified use case model of the project. It is

simplified for the reasons given in the section 4.3.1.1. The actor in the use case model is termed

as “SNIMUser” and the name is self explanatory and means that the user named by it is a Social

Network and Instant Messaging user. This SNIMUser actor realises the “User” actor in Business

use case model.

4.3.2 Logical View - Analysis Model

This View presents the analysis models. Analysis model consists of the analysis classes that

describe an abstract realisation of all the system use cases using different kinds of diagrams

including sequential diagrams, class diagrams and activity diagrams. Key classes are identified

and the brief function of them is identified. Boundary classes, control classes and entities are

modelled and related in class diagrams. The analysis model then evolves into design model.

Figure 4.7 presents the analysis model structure of the project.

4.3.2.1 Preferences Module

For user friendly integration, the project provides some preferences that users can set as per their

requirement. For example, the project proposes to support the general preferences like if the

integration is needed for a social network, the IM group(group name) to which friends from that

particular social network can be added. Figure 4.8 presents the class diagram for preferences

module. The main classes as designed at this stage are

PreferenceVault: This class represents the place holder for preferences. All the preferences

either default (when user do not select any) or user set ones are stored here for later use.

PreferenceManager: This class manages the storage and retrieval of the preferences and hence

depicted as control class.

Preferences: This class represents the preference that is being set and stored or retrieved and

hence depicted as entity class.

PreferencePage: This class can be a delegate or the UI (User Interface) itself that is presented

to the user for setting the preferences and hence depicted as boundary class.

IPreferenceManager: This interface is exposed for the SN implementation module so that

it can implement it’s own logic of interpreting the preferences and/or provide customised

preferences that are relevant to the Social Network code that it manages.

4.3.2.2 Integration Module

This module provides the basic framework and interfaces required for the Implementation mod-

ule. Integration module is the generic and essential module to all social network implementations

where as Implementation module is specific to a single Social Network. The structure of this

module is shown in the figure 4.9.

28

CHAPTER 4. ANALYSIS

F
ig
u
re
4.
5:
B
u
si
n
es
s
u
se
ca
se
m
o
d
el

29

CHAPTER 4. ANALYSIS

F
ig
u
re
4.
6:
U
se
ca
se
m
o
d
el

30

CHAPTER 4. ANALYSIS

Figure 4.7: Analysis model structure

1. General Actions for supported Social Networks: This sub module contains the

UI required for the integration of IM and SN systems. This UI for Sametime can be a

menu in the toolbar. This generic actions can lead to different UI for each of the social

network that is integrated. Figure 4.10 depicts the class diagram for this sub module. IBM

Sametime provides some extension points which allow applications to hook into Sametime

UI as part of Eclipse framework. The plugins and extension points are explained in detail

in section 6.3. In the class diagram depicted in figure 4.10, “IM UI extension point”

represents the extension point provided by Sametime API. The application proposed by

the project(referred as the current application or this application here onwards in the

document) extends or defines this extension point to provide the UI for all SNs selected

for the integration as a list of menus for example where each list item can be a menu

for actions related to each of the SNs. “Generic Menu for Social Networks supported”

represents the class that extends the extension point “ IM UI Extension Point”. This class

provides a means to display the UI for actions organised by the list of Social Networks. In

simple implementations this “means” can be a list of menus each for one SN and that menu

provides menu items for that particular SN and thus, “UI for single SN” will be list item

or sub menu provided by the “Generic Menu”. This is an interface because this should be

implemented by the SNs that need to be integrated. Similarly, the interfaces like “Login”

and “Logout” depicted in the figure 4.10 will be the menu items which represent actions for

that particular SN. The list of actions provided at this level depends on the availability of

SNs API. Basically the design is to provide menus one for each SN that needs integration

and that menu provides the actions relevant to that SN. This is the design followed across

all the UI extension points used in the project.

2. Group and Person Actions: This sub module contains the UI for the actions as ex-

31

CHAPTER 4. ANALYSIS

Figure 4.8: Class diagram for Preferences module

Figure 4.9: Integration Module Structure

tensions to group or person objects of the IM. For Sametime, these can be context menu

actions for group and person objects(in buddylist) which can be seen on right clicking on

a group or person. Figure 4.11 is the class diagram for Group and Person Actions sub

module. In the figure 4.11, the “Group Action Extension Point” class is an extension point

provided by Sametime to add actions to groups. The applications that extend this exten-

sion point can add custom actions to the context menu of a group in the buddy list. The

“Generic Menu for an SN” is a menu inside a context menu of the groups, which provides

the relevant actions for that particular SN. Same is the design for Person actions. Person

actions are added to the context menu of a person in the buddy list.

3. Internal Integration: This module contains the relevant code to perform the main

integration. It is a set of classes and interfaces, which when used by the Implementation

module, manages the user actions, acts as middle layer between the UI and SN client.

It receives the actions requests from UI which it then processes along with the data from

preferences, SN Registry and other entities to generate SN client requests. It again receives

32

CHAPTER 4. ANALYSIS

Figure 4.10: Class Diagram for General Actions

the responses from SN client, matches these responses with the IM formats and then

presents them to the user. The figure 4.12 depicts the relations between the classes and

interfaces used in this module.

Activator: It is part of the plugin architecture discussed in sub-section 6.3. This class

activates the whole plugin. It’s only after the activation that the plugin responds to

all kinds of events.

SNCommunityListener: It is part of the Sametime which listens to the community

events and thus extending this provides an opportunity to react on the occurrence of

community events.

ManagerFactory: It is part of the Factory design pattern which is defined in sub-section

5.4.2.

SNManager: ManagerFactory creates and destroys the objects of this type. This can be

extended by the specific SN module. This handles all the activities needed for the

integration.

FriendsList: It stores the list of friends (contacts from an SN).

SNSettings: It contains all the settings required for communications with the SN. It’s

simplest implementation can be a file with all the properties set.

SNUser: It is a generic class that represents a user of SN. This class when extended in

the SN implementation module, represents the user of that particular SN.

SNUserManager: It manages the list of SNUser type objects. The simplest implemen-

tation is to map person objects(Sametime’s user) to corresponding SNUser objects.

33

CHAPTER 4. ANALYSIS

Figure 4.11: Class Diagram for Group and Person actions

4.3.2.3 Social Network Implementation Module(SN implementation module):

This module, as depicted in figure 4.13, realises the modules from Integration module. This

module contains the code for one particular SN. So for each SN that needs integration, the

relevant code must be in this structure.

1. Realisation of General Actions: This sub module, as the name says, provides the

realisation of the interfaces laid out by “General Actions” sub module 1 of Integration

module. The figure 4.14 is the class diagram for this module.

Specific Menu for a Social Network: This is the specific menu for one SN which

provides menu items for generic actions relevant to the corresponding SN.

Authentication Module: This class performs the authentication tasks for that specific

SN. This also uses the “LoginForm” to present an UI for authentication credentials.

Specific SN Proxy Client: This class is a proxy for the SN specific client and commu-

nicates with the corresponding “SN API”.

2. Realisation of Group and Person Actions: This sub module, as the name says,

realises the interfaces laid out by “Group and Person Actions” sub module 2 of Integration

module. The figure 4.15 is the class diagram for this module. It represents the involved

classes and the relation between them.

SN relevant Group Menu Creator: This is the UI that is presented to the user as

Group action menu for the corresponding SN. This class implements the “Create relevant

Group Actions” interface that is provided by the “Group and Person Actions” (sub section

2) module in Integration module. The relevant actions are passed down to “Specific SN

Manager” from “Social Network Proxy” module.

SN relevant Person Menu Creator: This is the UI presented to the user as Person

action menu (the context menu for the person in buddy list). This class implements the

“Create relevant Person Actions” interface provided by the “Group and Person Actions”

(sub section 2) module in Integration module. The relevant actions are passed down to

“Specific SN Manager” from “Social Network Proxy” module.

34

CHAPTER 4. ANALYSIS

F
ig
u
re
4.
12
:
C
la
ss
d
ia
gr
am
fo
r
In
te
rn
al
In
te
gr
at
io
n
m
o
d
u
le

35

CHAPTER 4. ANALYSIS

Figure 4.13: Social Network Implementation module structure

3. Social Network Proxy: This sub module contains the classes that support the code that

is required to act as a proxy for the “SN client” from “SN API”. The actions from the UI

are passed down to this module. This module is responsible for the actions to be processed

and interpreted and sent as requests to the SN. The figure 4.16 is the class diagram for

this module.

Specific SN User: This is the class that represents a SN specific user and this extends

the “SN User” class from Integration Module.

Specific User Manager: This class manages the SN specific users and maps with their

unique ids and Person objects(Sametime persons) for the use of all modules mainly SN

Manager. This class extends “SN User Manager” from Integration module.

Specific SN Manager: This class extends or generalises “SN Manager” from Integration

module and performs the correlation tasks as described for “SN Manager” but for a specific

SN.

Specific SN Proxy Client: This class acts as a proxy to the actual SN specific client

available from “SN API”.

SN API: This package is not developed as part of this project but is used as part of the

library. This package provides the actual SN specific client and it’s supporting classes.

4.3.2.4 Use case traceabilities:

This section presents the use case realisations for the use cases laid out in section 4.3.1.2 and the

sub diagrams to explain some of the important use cases. The figure 4.17 shows the use cases

that realise the use cases from use case model.

36

CHAPTER 4. ANALYSIS

F
ig
u
re
4
.1
4
:
C
la
ss
d
ia
g
ra
m
fo
r
R
e
a
li
sa
ti
o
n
o
f
G
e
n
e
ra
l
A
c
ti
o
n
s
M
o
d
u
le

37

CHAPTER 4. ANALYSIS

Figure 4.15: Class diagram for Realisation of Group and Person Actions module

Table 4.1: Type of use cases

IM feature SN feature Application
Send Mails Send Live Messages to Friends Select Social Networks to integrate
Call Buddies Get Friends from a Social Network Get Online Presence of Friends

Add friends to a group Send Notifications Authorise the Social Network Application
Chat

The use cases can be grouped into three based on which product offers the features they

describe, if it is IM feature or SN feature or that is offered by the application (project) or related

to the integration of SN and IM. Among the use cases presented in the figure 4.17 , the table

4.1 shows the classified use cases. This section presents the detailed diagrams for atleast one of

the use cases in each type (types shown in the table 4.1). From here onwards, the application

or software developed as part of the project is referred as “Application” and the social Network

application is referred as “SN application” or just “social network application” itself.

1. Use case - Authorise the Social Network application

Brief Description: This use case allows the user to authorise the social network applica-

tion (Any Facebook application must be authorised by its owner before it can be connected

to the Facebook. This plugin also uses a Facebook application created specifically for the

purpose of the project and the application page at Facebook is shown in Appendix D).

Events: The events involved in this use case are clearly explained using a sequence diagram

as in figure 4.18

(a) User clicks the corresponding menu item to login.

(b) The application opens the login form.

(c) User enters the login credentials.

(d) The application sends the credentials to the social network and gets the session in-

formation.

38

CHAPTER 4. ANALYSIS

Figure 4.16: Class diagram for Social Network Proxy module

Preconditions:

(a) The social network application must be configured properly. It should be created

at the SN website and thus should have the application details like api-key and api-

secret, which are required for the communications with SN and must be stored in the

configuration file.

(b) The user currently trying to login must be the user of the SN.

Postconditions: After the application is authorised by an authentic SN user, any of the

startup tasks can be executed.

The figure 4.19 shows the activity diagram for this use case along with post login activities

in general. The application owner or creator creates the application at the SN website. The

Implementation module must know the settings or details of the application like api_key

and api_secret as already mentioned in Preconditions of this usecase and should store

those values in the configuration file. The post login actions or startup tasks referred in

postconditions of the use case are shown in this activity diagram and they differ from SN

to SN but in general, they can be the tasks like Loading friends form SN and add them to

the IM buddy list, Get the status of all friends in a separate thread if getting friends does

not include this information and track the session time out . This application being only

client side desktop application, it may or may not be able to listen to the events sent by

the server. In such cases, the session time out must have to be simulated.

2. Use Case - Send Notifications

Brief Description: This is an example of a feature offered by a social network. This

allows users to send notifications to other user(s) of the SN application

Events:

39

CHAPTER 4. ANALYSIS

F
ig
u
re
4.
17
:
U
se
ca
se
T
ra
ce
ab
il
it
ie
s

40

CHAPTER 4. ANALYSIS

F
ig
u
re
4.
18
:
S
eq
u
en
ce
d
ia
gr
am
fo
r
“A
u
th
or
is
e
th
e
S
o
ci
al
N
et
w
or
k
ap
p
li
ca
ti
on
”
u
se
ca
se

41

CHAPTER 4. ANALYSIS

Figure 4.19: Activity diagram for login use case and post login activities

(a) Users trigger the action relevant to Send Notifications by selecting the corresponding

UI.

(b) Application processes the action and presents the users with a form or window which

asks for the required data before sending the notifications.

(c) Users enter the required data.

(d) Application wraps the data into format that SN client requires and sends the request

to the client.

(e) SN client sends the request to the server.

(f) Server sends the response to the SN client.

(g) SN client receives it and forwards to the application.

(h) Application interprets the response and if there is any error, shows the relevant reason

of failure to the users.

(i) In case of users not having relevant permissions for the “Send Notifications” action,

and if the SN allows a way to ask them if they want to grant permissions, then the

application shows Grant Permissions dialog to the users.

42

CHAPTER 4. ANALYSIS

(j) Users response is then processed.

(k) After the user has granted permission in the last step, they can initiate the action

again.

The sequence diagram in figure 4.20 depicts the events described above.

Preconditions: The user must have authorised the application by logging in.

Postconditions: If no errors occurred at server, the notifications will be sent, if there is

any error, the user will be notified.

3. Use case - Call buddies

Brief Description: This feature is offered by the Sametime IM used for the project. It

allows the users to call the contacts in the IM’s buddy list.

Events:

(a) User starts the action by selecting the UI relevant to calling buddies. One of the user

interfaces is the context menu for buddies (person objects) in case of ST.

(b) The call is initiated and user can talk to the callee.

Figure 4.21: Activity diagram for “Call buddies” use case

Preconditions: The user must be logged into ST and also into the SN application.

Postconditions: Call will be initiated in case of no errors and in case of errors, ST notifies

the user about the error occurred.

43

CHAPTER 4. ANALYSIS

F
ig
u
re
4.
20
:
S
eq
u
en
ce
d
ia
gr
am
fo
r
“S
en
d
N
ot
ifi
ca
ti
on
s”
u
se
ca
se

44

CHAPTER 4. ANALYSIS

4. Use case - Add Friends to a group

Brief Description: This feature is part of the application and is used as part of the

integration of IM and SN. This allows user to add friends of the SN user to a group of IM

or ST in this case. This use case is initiated from the “Get Friends” interface from figure

4.10 and also as a startup task “Load friends and add to IM” shown in figure 4.19.

Events:

(a) User starts the action either by logging in or from the general actions UI.

(b) The figure 4.22 depicts the events in this use case in form of a sequential diagram.

This diagram shows the general action as the starting point of the use case.

(c) The application responds to this user’s action by running a thread that gets the friends

of logged in user.

(d) It interprets the response and returns the friends in form of SN users.

(e) It creates the contacts in a format that IM understands and maps them to SN users.

(f) It gets the preferences related to the group name to store the contacts that IM un-

derstands (referred as IM contacts or IM contact objects here onwards).

(g) It adds the IM contacts which represent the friends of logged in SN user to the IM

group.

Preconditions: The user must be logged in to IM. The user should also authorise SN

application but if has not already, then the application uses the login use case depicted in

4.18 to allow the user to authorise the application.

Postconditions: The friends of logged in user are obtained and are added as IM contacts

to a group.

4.4 Conclusion

The survey conducted in section 4.2.1 helped in framing the requirements of the software. The

survey outcomings as discussed in the section 4.2.3 provided the starting point for the devel-

opment of the software. It explained that majority of the corporate and home users would be

interested in using an integrated solution for IM and SN systems as a desktop utility. The fea-

tures that majority of users were interested in were also outlined in the section 4.2.3. Hence

the analysis models(discussed in section 4.3) focused on those features for the first version of

the software. They can be revisited for any improvements using another development cycle as

outlined in the methodology(in section 3.2.4). The section 4.3 provided the business and sys-

tem use cases and explained them using different UML diagrams. Now that the analysis of the

project is done, the models developed in this phase can be used for design phase which is covered

in the chapter 5.

45

CHAPTER 4. ANALYSIS

F
ig
u
re
4.
22
:
S
eq
u
en
ce
d
ia
gr
am
fo
r
“A
d
d
fr
ie
n
d
s
to
a
gr
ou
p
”
u
se
ca
se

46

Chapter 5

Design

5.1 Introduction

The analysis models provided in chapter 4, explain the features and behaviour of the system.

Having created the analysis models, the next phase would be to create design models which

explain the structure and components of the system.

The software architecture in relation to the existing Sametime connect architecture will be

explained in this chapter. The design models of the software based on the analysis models will

also be explained. Along with the design modules, the design patterns used are also covered.

5.2 Architecture

The main architecture of the project is illustrated in figure 5.1. As the picture illustrates, the

plugin(s) developed as part the project sits in the Sametime Connect client (the desktop client

of IBM Lotus Sametime) and so it becomes part of the client, when installed, and communicates

with Sametime server through the connect client or otherwise called as Sametime client or ST

client in short. The plugin(s) that will be designed in this chapter are shown in the box named

Sametime Social Architecture in the figure 5.1. The plugins and other components in this box

are explained here in this section.

SN Integrator Plugin is the plugin that provides common functionality and interfaces

required for each of the Social Network implementation modules represented by “SN Impl Plugin”.

It extends the extension points provided by Sametime for integrating with it and leaves the

implementation to the implementation modules.

SN Impl Plugin SN Impl Plugin1, SN Impl Plugin2 and SN Impl Pluginx in the figure

5.1 represent the implementation modules for social networks (SN1, SN2 ... SNx) which contain

the respective libraries (SN library1, SN library2 ... SN libraryx - either readily available or

as developed as required). The libraries connect and communicate with the respective Social

network servers (SN Server1, SN Server2 ... SN Serverx) which process the requests made

and supply the data requested. The implementation plugins use the framework laid out by the

integrator plugin to provide the necessary data, related to the SN it represents, for integration.

47

CHAPTER 5. DESIGN

Figure 5.1: Architecture of the project - Sametime Social

5.3 Logical View - Design model

This section presents the design model of the project. This model in RUP is adapted to model

the implementation environment. It thus serves as an abstraction of the source code. It also

is considered as a “blueprint” for the structure and details of source code. It is a hierarchy of

packages which inturn consists of classes. The classes on design model are abstractions of classes

in the actual source code. The figure 5.2 shows the structure of the design model created. It

shows the implementation packages for three SNs but similar is the structure for all SNs. This

section explains the design for one of the implementation packages (Facebook implementation)

and the same can be applied for the implementation package of any SN.

Sametime Connect Client: This package consists of the SDK for the Sametime client.

The project uses this SDK for integrating SN into the ST.

Common API: This package relates to analysis model package “Integration module” which

is shown in the figure 4.7. It consists of classes that are required for plugin architecture and the

integration framework classes or interfaces that can be implemented for each SN to be integrated.

Facebook implementation: This package consists of classes needed for the integration

48

CHAPTER 5. DESIGN

Figure 5.2: Architectural View

of a single SN with ST. It implements the framework laid out by Common API package and

extends the basic functionality it provides. This package provides the support to the SN, for

which it is developed, by running from the ST environment hooking up with ST client through

Common API.

Facebook Library: This is the library required to integrate Facebook with ST. It used to

be supplied by Facebook directly but they stopped supporting it in May, 2008 and suggested

few alternative libraries. It is not part of the project but a library it needs.

Facebook Platform: This is not part of the project but just shown for clarity of design

model structure.

5.3.1 Common API

This package consists of the API that implementation packages need to implement for integration

of corresponding SNs. These classes are organised into four packages as shown in figure 5.3.

Figure 5.3: Package structure of Common API

1. Basic Plugin Package: This package consists of classes related to plugin life cycle as

shown in figure 5.4

AbstractUIPlugin is a class from Eclipse framework on which ST is developed. This is

an abstract class when extended provides lifecycle methods for the plugin.

49

CHAPTER 5. DESIGN

PluginActivator is a class designed to be the Activator for the plugin and it extends

AbstractUIPlugin.

CommunityListener is an interface from Sametime SDK which listens to community

events like community login event and community status event.

SNCommunityListener is an abstract class provided for implementation packages if

they have any functionality to perform on community events.

Figure 5.4: Classes in Basic Plugin Package

2. Managers Package: This package consists of classes that manage other classes. The

figure 5.5 shows the classes that come into this package.

Figure 5.5: Classes in Managers Package

ManagerFactory is a factory class that instantiates manager classes for SNs. Section

5.4.2 explains the factory classes.

SocialManager is an abstract class which provides base for social networks to extend. It

will be a singleton class when extended. It provides methods for accessing other classes

which are part of implementation including User manager and Contact list and also contain

the name of social network it manages. It also implements BuddyListListener from Same-

time SDK. This listener listens to the buddy list events (Nielson, Juergensen, Menashes,

Patton & Schejter 2002).

50

CHAPTER 5. DESIGN

3. User Package: This package consists of classes that manage users. This package provides

the interfaces required for the corresponding implementation classes. The figure shows the

classes that belong to this package.

Figure 5.6: Classes in User Package

SNUser is the class that represents generic social network user. The class that extends

it shall represent the user of specific SN that the class is packaged for. This class acts as

a simple bean with fields or properties of person as it’s attributes and the corresponding

getters and setters as it’s operations. The attributes of the class depend on the social

network. The implementation class includes the attributes that the SN allows to use.

Similar is the case with operations.

SNFriendsList is the abstract class that represents generic friends list. The class that

extends it shall represent the friends list or contact list for the user in that SN that the

class is packaged for. This class typically consists of the list of friends of the logged in

user and some operations or methods that access this list, users in the list as well as the

methods that load the users into the list, refreshing contacts. This class is an aggregate of

SNUser class. The figure shows that it is an aggregate by reference because SNUser class

is an abstract class and can not be instantiated as is.

4. Actions Package: This package consists of the classes responsible for UI actions. They

associate themselves with the extension points provided by Eclipse framework and act as

delegate classes for the UI actions. These classes are designed to provide a menu of list of

SNs configured for integration where ever possible. When user selects a menu item, the

action is delegated to corresponding SN’s menu manager. Figure 5.7 shows the classes that

belong to it.

StatusChangeAction is a class from ST SDK. This is an action class for actions that

appear on the status toolbar in the ST’s main window, above the buddy list, at the end

51

CHAPTER 5. DESIGN

Figure 5.7: Classes in Actions Package

of current location as shown by red rectangle in figure 5.8.

SNActions extends “StatusChangeAction” and implements jface.IMenuCreator. “Sta-

tusChangeAction” delegates the action to this class. This class is designed to display

a menu of a list of SNs configured for integration. It uses the factory method from “Man-

agers Package” described in section 2 to get the list of SNs and then populates the menu.

And the sub menus are populated using the implementation packages.

SNViewActionMenuManager is a menu manager template class. It provides methods

for providing the menu items relevant to an SN which can not be determined at this level.

GroupActionDelegate is a class from ST SDK. It provides a means for providing extra

functionality in the context menu of a group. When a user right clicks on a Group in buddy

list, a pop-up menu appears and if an application wants to provide it’s own menu item in

that pop-up then, it needs to extend this class. It needs instances of “GroupAction” class

to be added. It acts as a delegate to any actions added through the parent application and

delegates the action to corresponding Group actions.

GroupAction is a class from ST SDK. It represents a Group action. This is the class

that provides the actual action to the group’s context menu.

SNGroupAction extends “GroupAction” to represent group actions for the current ap-

52

CHAPTER 5. DESIGN

plication.

Figure 5.8: Sametime Connect - Status toolbar

5.3.2 Facebook Implementation

This package consists of classes that provide the integration of Facebook with ST. Majority of

classes are designed to extend or implement the classes and interfaces in Common API package.

The classes in this package are organised in different sub-packages each providing a specific type

of function. The figure 5.9shows the structure of this package.

Figure 5.9: Structure of Facebook Implementation

1. Facebook Managers: This package consists of manager classes which implement the

classes from section 2. The figure 5.10 shows the classes it contains.

53

CHAPTER 5. DESIGN

Figure 5.10: Classes in Facebook Managers package

FacebookMgr is a class that extends “SocialManager” class from Managers Package. It

provides the methods related to Facebook features. It maintains the references to other

manager classes, the client proxy class, settings class and some helper tasks which in-

clude RefreshStatusTask and TimeOutTask. It also implements the BuddyListListener for

handling the buddy list events.

RefreshStatusTask is a timer task which is designed to execute periodically. This task,

when run, makes a request to Facebook to return the status of the friends of the logged

in user. This is needed because, this application being a pure desktop client application,

there is no way for it to listen to any server events and hence the functionality is simulated

using timer task.

TimeOutTask is a timer task designed to execute periodically as with RefreshStatusTask.

The period is obtained from preferences. This task is used to simulate Facebook session

time out.

LoadContactsOfLoggedInPerson is a thread that runs shortly after the user logs in.

54

CHAPTER 5. DESIGN

It loads the friends of the logged in user by requesting Facebook, interpreting the results

and creating SNUser objects. It then populates the SNUSerManager.The delay is used to

avoid UI freeze soon after user is logged in and thus the loading process is done in the

background.

Figure 5.11: More classes in Facebook Managers Package

FacebookMenuMgr is a class that extends “SNViewActionMenuManager” from Com-

mon API package to provide common actions for Facebook including login, logout and

change status.

2. Facebook Actions: This package consists of classes that are related to user actions. The

classes extend or implement the action classes and interfaces designed in Common API’s

Actions package shown in figure 5.7. Figure shows the classes in this package.

FbGroupMenuCreator is a class that creates the group actions. A group action is

a menu item seen in the context menu of groups in the ST buddy list. The figure 5.13

shows an example Group action called “Add Contact” outlined in red for the group “Work”.

Similarly this class is designed to create group actions relevant to Facebook. The actions

“SendNotificationEmailAction”, “SendNotificationAction” and “SendLiveMessageAction” as

shown in figure 5.12 are designed at this point. But for better accessibility, there will be one

single group action for each SN and so in this package, the group action will be “Facebook”

which will be a menu of actions each for supported feature.

FbGroupAction is a class that is a group action itself. It extends SNGroupAction (an

abstract class provided by Common API). It consists the menu creator which returns the

group features provided by Facebook.

55

CHAPTER 5. DESIGN

Figure 5.12: Classes in Facebook Actions package

FbGroupActionDelegate is a class that creates the group action and returns to the

runtime while displaying the group context menu.

Figure 5.13: Example for ST Group Action

ST.LiveNameActionDelegate is a class that allows application to add actions to live

names. Live names in ST are the contacts in buddy list and they are so called because of

the inline status notification of contacts. Users can see the actions, added using this class,

in the context menu of the contacts(live names or persons), in the buddy list. The figure

56

CHAPTER 5. DESIGN

5.14 shows an example of person action or livename action called “Chat” outlined in red.

FbPersonAction is a class that extends the ST’s person action interface “LiveNameAc-

tionDelegate” for providing person actions relevant to Facebook.

SendNotificationEmailAction is a class that represents both a person action and a

group action, when run, sends the email notification to the person in case of person action

and to the group in case of group action.

SendNotificationAction is a class that represents both person and group actions, when

run, sends a notification to the person in case of person action and to the people in group

in case of group action.

SendLiveMessageAction as with the actions above, this class, when run, sends a live

message to the relevant people. But it needs the receiver(s) to be online.

Figure 5.14: Example for ST Person Action

3. Facebook UI Package: This package consists of classes related to any custom UI created

for Facebook. Figure 5.15 shows the classes of this package.

Figure 5.15: Classes in Facebook UI

All the UI designed at this stage are windows or dialog boxes for various purposes. All of

these dialogs extend jface.Dialog from Eclipse framework.

57

CHAPTER 5. DESIGN

ChatDialog is used to exchange live messages with online Facebook contacts.

FbEditStatusDialog is used to change the status text of the logged user.

FbLoginDialog is used for authorising the SN application using Facebook credentials as

named as login process in the context of this application.

FbGrantPermissionDialog is used for granting any missing permissions. The SN appli-

cation should have user permissions for certain tasks like email permission to send emails

to a Facebook contact.

NotificationWindow is used to send notifications or notification emails to Facebook

contacts.

4. Base Package: This package consists of classes that are used generally by all packages.

Figure 5.16 shows the classes that come into this package.

Figure 5.16: Classes in Base Package

FacebookConstants is designed as a placeholder for any constants used in the project.

The constants shown in the figure 5.16 as attributes of this class are preference constants.

FacebookUtil is designed as the utility class for Facebook implementation package. It

consists of commonly used methods in the project which might include creating recognis-

able contact ids for Facebook contacts. The word “recognisable” signifies that application

should be able to identify the contacts using the contact id because there can be certain

features which should only be available to Facebook contacts. The application should also

be able to extract the id of the users that Facebook provides so that Facebook recognises

them.

58

CHAPTER 5. DESIGN

FacebookSettings is a class that wraps up all the parameters required for the integration.

It loads the parameters from a file.

FacebookClientWrapper is a class that acts as proxy to the Facebook client from Face-

book library. It delegates all the requests to the client from the API after wrapping all the

parameters required for it to process the requests. It also helps in changing the formats of

objects between Facebook and ST.

5. Facebook User Package: This package consists of the classes related to Facebook users

(user objects). The figure 5.17 shows the classes that come under this package.

Figure 5.17: Classes in Facebook User Package

FacebookUser is a class that represents a Facebook user. It does not have any knowledge

of ST. The attributes or properties of the Facebook user are maintained using an enum

class called “ ProfileField” which is provided by Facebook library.

FacebookUserMgr is a class that manages the Facebook user objects and the ST version

of users called “Person” objects. It also maps between the two formats. It also implements

“PersonListener” from ST to listen to Person events to maintain the consistent list of person

objects and Facebook user objects in case of deletions of contacts in the buddy list.

FbFriendsList is a class that extends “SNFriendsList” class from “Common API” package.

It contains the list of friends of logged in user as references to “SNUser” type objects. It

acts as a simple bean for the friends list.

LoadContactsJob is a thread, when run, loads the friends of the logged in user and

converts the Facebook users into ST persons. It also refreshes the status of friends.

59

CHAPTER 5. DESIGN

6. Facebook Preferences: This package consists of classes related to preferences. It allows

users to set some preferences for Facebook. The figure 5.18 shows the classes that come

under this package.

Figure 5.18: Classes in Facebook Preferences Package

FacebookPreferences is a class that creates a preference page for Facebook in ST prefer-

ences window. It extends “FieldEditorPreferencePage” from jface to manage any changed

preferences and implements “IWorkbenchPage” from Eclipse to create a preference page.

PreferenceInitialiser is a class that extends “AbstractPreferenceInitialiser” (from Eclipse

framework) to support preference initialisation. This class typically provides the default

values for the preferences which are used when user does not set any preferences.

5.4 Design Patterns:

This section describes the design patterns used in this project directly. The software used while

implementating this project might have many other design patterns followed but they are not

covered here. For example, the programming languages might have used design patterns includ-

ing Iterators and Composite and SN libraries might have used Proxy pattern for communication

with the respective server.

5.4.1 Singleton

This is one of the commonly used creational patterns. Creational patterns are those which are

used while creating objects in OO (Object Oriented) applications.

Brief Description: This design pattern ensures that a class has only one instance. Certain

pieces of software need some classes to have exactly one instance like single printer spooler in a

printer network, a single database connection in an application. Such classes are called singleton

classes. A singleton class itself is responsible for not allowing more than one instance of itself to

be created. It also provides a way to access the single instance. This is called Singleton pattern.

In this project, the Manager class shown in figure 5.10 is an example of Singleton class.

Example code for a Singleton Class is in the figure

60

CHAPTER 5. DESIGN

Figure 5.19: Singleton Pattern Example

5.4.2 Factory Method

Factory Method is another creational design pattern.

Brief Description: In some scenarios, an object might not know which class of a known

class hierarchy it should instantiate. It might only know the class hierarchy but not the exact

subclass among a set of subclasses of the common parent class. The reason might vary from

situation to situation. Some times the decision might depend on the configuration settings or

sometimes the state of application. In such cases, this design pattern is used. It recommends

encapsulating the selection criteria to be implemented in a designated method and calls it the

factory method. Thus the factory method selects an appropriate class from a known class

hierarchy based on the implemented selection criteria, instantiates it and returns the instance

of the parent class type. As it returns the object, of required class as parent class type, the

application object, which calls this method for the instance, does not need to know about the

exact class in class hierarchy. In this application, the ManagerFactory class shown in figure 5.5

is used to create SocialManagers based on the configuration file. A simple implementation of

this factory pattern decides whether to use local file logger or send the log messages to a remote

system based on a configuration file. The figures 5.20 and 5.21 show a simple example of how

this can be implemented.

61

CHAPTER 5. DESIGN

Figure 5.20: Class Hierarchy that factory method knows

62

CHAPTER 5. DESIGN

Figure 5.21: Sample code for Factory Method and an application object that uses it

5.5 Conclusion

The architecture of the project was explained in relation to the Sametime connect architecture.

Design models of this project were created based on the analysis models from chapter 4 and the

architecture explained in section 5.1. The models were UML diagrams created using Rational

Rose and most of them were class diagrams. This chapter also presented the brief idea of where

would the UI, developed as part of the project, be seen in the Sametime Connect client. The

what and why of the design patterns used were also explained along with sample code. The

models created in this chapter would be developed to create a working version of the product

using appropriate software and this is covered in the chapter 6.

63

Chapter 6

Implementation

6.1 Introduction

The design models developed in the chapter 5 were used in the implementation phase of the

software, to develop the classes required. Hence the implemented software could be organised

based on the modules created in the design phase. Implementation phase now should comprise

of activities including selecting appropriate softwares and implementing the design models to

form the workable software. These activities are covered in this chapter along with any issues

faced during implementation and how they were overcome. The result of this phase would be a

testable software. This phase was done in iterations each iteration to implement one use case.

This phase again can be repeated for each SN that has to be integrated.

6.2 Choice of Softwares

This section presents some of the decisions made for choosing a social network to integrate with

IBM Sametime.

6.2.1 Choice of IM

The choice of IM is already made as mentioned in chapter 1 to use IBM Lotus Sametime. The

choice is also supported by some points mentioned in the listing below

1. IBM Lotus Sametime provides extensible development environment by making use of

Eclipse framework. This framework is explained in detail in section 6.3.

2. It is an award winning solution (IBM Lotus Sametime n.d.) for communication and col-

laboration.

3. It is an enterprise solution which also allows the public IMs through Gateways.

4. It allows telephoning the contacts added.

5. It provides rich user experience.

6. It provides good security.

64

CHAPTER 6. IMPLEMENTATION

6.2.2 Choice of Social Network

There are many social networks to choose from. The idea is to provide integration to any

social network regardless of what type of SDK they provide. The design modelled in chapter 5

is generic for all social networks and the implementation differs based on the technology of the

SDK the corresponding server supports. Thus the technical details are left to the implementation

modules. So the implementation is started with one SN and the implementation for other SNs

will be planned as time permits. Adding an implementation module for another SN can be done

as a new iteration or completely as a new version for the software.

Many social networks do not provide any information about the development support. It was

not a straightforward research to find out about the development support in case of many SNs

except a few including Facebook, Bebo, Myspace, Friendster and Orkut. The following listing

briefly presents some research done while choosing initial SN for implementation.

6.2.2.1 Facebook

1. The initial motivation was the small questionnaire, filled by a some SN users, in the

Requirements phase outlined in section 4.2.1. It showed that most of the corporate and

home users use Facebook.

2. Facebook also claims that there are about 120 million active users (Facebook Press Room

n.d.) as on November 2008.

3. It provides development support in wide range of technologies including REST (REpresentational

State Transfer), PHP, Python, FBML(Facebook Markup Language), FQL(Facebook

Query Language) and Ruby. REST is helpful to use in desktop application.

4. There are many open source libraries available though Facebook has stopped official sup-

port for Java, so there would be no need to implement a library anew.

6.2.2.2 Bebo

1. Bebo provides development support in Java, PHP and Ruby. Java can be used in desktop

applications.

2. There is no official information on how many active users are there.

3. Some of the API only assume the users who are members of the application being imple-

mented while processing the requests. For example API related to getting friends of a user

returns only the friends who are also the members of the current application (which sends

the request).

6.2.2.3 Orkut

It provides development support only in OpenSocial 0.7. OpenSocial 0.7 only supports online

applications (either run on OpenSocial’s sandbox or a custom one). So it does not suit the

development of desktop application. OpenSocial 0.8 supports desktop applications and the API

of this version is not yet available .

65

CHAPTER 6. IMPLEMENTATION

6.2.2.4 Hi5

It provides OpenSocial 0.8 support which allows REST API and thus supports the development

of desktop applications. But, the API is still in Beta as of September (Hi5 2008). It provides a

separate Sandbox, betasandbox.hi5.com, to run Hi5 applications .

6.2.2.5 Plaxo, MySpace

They provide REST API but there is no official library. Hence a custom client library has to be

implemented.

So as a proof of concept for the integration of social networks through a common API,

Facebook is chosen as a starting point to integrate with Sametime. Rest of this chapter presents

a walk-through of the development stage of the project.

6.2.3 Software

The softwares used for development and testing of this project are outlined in the table 6.1. It

lists the type of software used, it’s name and version and brief reason why used it and how.

Table 6.1: Softwares used in the project
Software type Software name Software Version Why and Where

Operating System Windows XP SP2
The system used to develop the
software and test it

Operating System Windows 2000 SP4 Used only for testing

Operating System Ubuntu (Linux) 8.0.4 Used only for testing

IDE Eclipse SDK 3.2.2
For development of plugins (both
integrator and implementation)

Java Compiler Java SDK 5.0
Used for development and
testing

Java Runtime J9 JCL Desktop 6.2
Runtime recommended by
Sametime SDK

Product Source Sametime Internal API 8.0.1
Used for developing a sametime
application

Product Sametime Connect Client 8.0.1 Used to run the application

Library Facebook Client library 1.8.0 beta and final
Used to develop Facebook
implementation module

Latest Facebook library available at the time of implementation was 1.8.0 beta but by the

time implementation finished it was 1.8.0 final. So the application was verified with both the

versions. At the time of documentation of the project, the latest version was 2.0.3 with which the

application was not tested. 1.8.0 final version of the library is available at Google code website

(Google Code 2008).

6.3 Plugins and Extension points

Eclipse platform is a framework used to build any sort of IDE. This is the framework used by

Sametime Connect client. So the same framework is used for the development of the project,

Sametime Social. Eclipse IDE is built based on plugin architecture. A plugin, in Eclipse, is a

basic unit of function or component. The Eclipse platform itself is composed of plugins and so

are the tools that extend it. A plugin is packaged with everything required to run the component

for which it is built. It also consists of a manifest file called plugin.xml. The details including

66

CHAPTER 6. IMPLEMENTATION

interconnections with other plugins, it’s dependencies and visibility of it’s classes to other plugins

are contained in this file.

A plugin will be able to expose parts of it’s functionality to other plugins, as well as, use

functionality exposed by other plugins. These requirements will also be declared in the man-

ifest file. The declarations pertaining to the functionality exposed to other plugins are called

“Extension Points” and the declarations pertaining to using the functionality exposed by other

plugins are called “Extensions”. When the Eclipse application is run, all the available plugins

are discovered by the platform and the declarations in the manifest files are processed and the

plugins are linked together. A plugin, by default, is activated when the code in it has to be run;

but this can be configured to be activated at the time of application launch. A plugin, when

activated, will be provided it’s own class loader. This class loader enforces the visibility, of the

classes and functionality, as declared in the manifest file.

6.4 Integrator Module

This is the plugin that integrates social networks with Sametime connect client and thus pro-

vides users a single interface to access both Instant messaging and Social Network systems. It

provides the common framework for the integration which is then used and implemented by the

implementation modules. This section explains how this plugin works. This plugin is spread

across different packages depending on the type of functionality it provides.

6.4.1 com.dit.st.sn.integration

This package contains the classes that are required as a plugin and required to be at the plugin

level.

Activator is a class that every plugin must contain and it controls the life cycle of the plu-

gin. On start of the plugin (when plugin is loaded by the runtime), it initiates all social

managers. But the list of social networks to initialise is not known at this time and so a

separate ManagerFactory is used which returns the social managers for the SNs that need

integration.

SNCommunityListener is an abstract class that provides a way for the implementation mod-

ules to listen to the community events including CommunityLifeCycleEvent, Community-

LoginEvent, CommunityServiceEvent and CommunityStatusEvent. These events are ex-

plained in detail in the toolkit (Ott 2008)

6.4.2 com.dit.st.sn.integration.manager

This package contains the classes that manage other parts of the plugin and are explained in

this section.

ManagerFactory is a class that manages the instances of the social managers that are config-

ured for integration. Each social manager manages the requests, responses and supporting

objects related to one SN. ManagerFactory reads the list of social managers and the loca-

tion of manager classes from a configuration file. The file (SNList.conf) used in the project

contains the entries for Facebook and Bebo as shown in the figure 6.1.

After reading from the file, it instantiates each of the social managers using reflection and

maintains them. The code that does this work is shown in the figure 6.2

67

CHAPTER 6. IMPLEMENTATION

Contents of a configuration file that ManagerFactory class loads

List of Social Network managers ready for integration

Format used is <SN name> = <SN Manager class location>

Facebook = com.dit.st.sn.integration.Facebook.impl.FacebookManager

Bebo = com.dit.st.sn.integration.Bebo.impl.BeboManager

Figure 6.1: Sample contents of SNList.conf used by ManagerFactory

Figure 6.2: Code that reads the SNList.conf file and instantiates the SN managers

6.4.3 com.dit.st.sn.actions

This package contains the classes that extend the extension points of sametime connect client.

These classes are later used by implementation modules.

SNActions extends the class called StatusChangeAction which allows it to display a UI com-

ponent at the location shown in figure 5.8. StatusChangeAction is available from the

toolkit. This class also creates a menu with a submenu for each of the SN. The submenus

are created by the SN implementation modules. For the menu to appear at the status

tool bar, the plugin has to contribute to the extension point, org.eclipse.ui.viewActions, as

shown in the figure 6.3.

Figure 6.3: Code that contributes to extension point, org.eclipse.ui.viewActions

68

CHAPTER 6. IMPLEMENTATION

It shows the menu as an icon(the image - images/My-friends-blue.gif , the relevant code is

shown in figure 6.3). It generates the submenus at runtime depending on the available SN

implementation modules. This code is shown in the figure 6.4.

Figure 6.4: Code that populates menu in the status toolbar

SNGroupActionDelegate extends the ST class GroupActionDelegate in order to add a new

group menu to the group’s context menu in ST buddylist. For this reason, it contributes to

the extension point called org.eclipse.ui.popupMenus and to the object, com.ibm.collaboration.

realtime.livenames.GroupSelection, as shown in figure 6.5. The application after contribut-

ing to the relevant extension point, should also be able to handle the group events (like

events generated when user selects the group menus). For this, it should provide a delegate

class that extends com.ibm.collaboration.realtime.people.internal.livenames.GroupActionDelegate.

SNGroupActionDelegate serves this purpose and handles the group events. This class pop-

ulates the menu whose menu items are the SNs configured for integration. The code that

provides this functionality is similar to code shown in figure 6.4. Each such menu item is

in turn a menu for the group actions available for that particular SN and is implemented

in class, SNGroupAction .

Figure 6.5: Code that contributes to extension point for adding actions to Groups

SNGroupAction creates a group action menu which is relevant to a particular SN. Such menu

will be displayed inside the generic menu created by SNGroupActionDelegate. This ab-

69

CHAPTER 6. IMPLEMENTATION

stract class is to be implemented by the implementation modules for adding relevant group

actions.

6.5 Implementation Module for Facebook

com.dit.st.sn.integration.facebook.*

These packages consists of classes related to Facebook implementation. These packages collec-

tively form an implementation module for Facebook. This module implements the integration

module discussed thus far in this chapter. The implementation modules for different Social net-

works are pluggable. Addition or removal of each implementation module just adds or removes

the integration of the SN, it represents, with ST. This section shows the important parts of

Facebook implementation. For Facebook implementation, this project uses REST API provided

by Facebook platform because this project is designed to be pure client implementation.

Configuring an implementation module involves only two steps enlisted below :

• Implement the module using the framework laid down by integrator module and based on

the technology planned to use for communicating with SN server.

• Provide the location of SocialManager to the integrator module in the file SNList.conf as

shown in figure 6.1.

FacebookManager is a class that manages the functionality and coordinates the objects of the

Facebook implementation (of the integrator module). When plugin is loaded, the integrator

module instantiates all the configured SNs. In initiation phase, a SocialManager loads

the FacebookSettings which contains the information related to the Facebook application

created at the Facebook website. The information required for creating a proxy client

to make further Facebook requests on behalf of the Facebook application are populated

in the settings.conf file. The mandatory properties are shown in figure 6.6. Then it

initialises FacebookMenuManager which displays the Facebook related common actions in

the ST status toolbar and FacebookUserManager which maintains the Facebook users and

corresponding ST objects . It also listens to the BuddyListListener to handle buddy list

events for example, on expanding a collapsed group (which causes a buddy list event),

refreshes the status of the group members.

Figure 6.6: Sample Settings.conf for Facebook

On login action, this class starts three tasks to simulate client-server event handling mech-

anism. After a user logs into the Facebook application, Facebook manager starts an asyn-

chronous task that loads all the friends of the logged in user. It is implemented asyn-

chronously to avoid any delays caused by the requests and responses involved in getting

the friends list. Batch API is used to get the user information of the friends list to increase

the processing speed. Second task is a timer task which runs periodically given the period.

70

CHAPTER 6. IMPLEMENTATION

This task simulates session timing out. Users set the session timeout period and it is sent

to Facebook as session timeout parameter while logging in. So the timer task informs the

users that their session has timed out at the server. Users will be transparent to this task

and tries to relogin. Third task is also a timer task whose period is again implemented

as a user preference and this task refreshes the status of all the friends of the user. The

general implementation in case of non desktop applications would be that the client regis-

ters with relevant events and will get the user status change events from the server. This

task simulates this functionality except that it is done periodically but not as soon as the

status change happens. In case of smaller refresh periods, the lapse between actual status

change and when it is visible in ST narrows down but at the cost of more traffic. The code

that does this is shown in the figure 6.7 . All these tasks are stopped when user logs out

of Facebook as well as ST.

Figure 6.7: Timer task that refreshes status of Facebook users

FacebookManager also maintains the list of user properties to retrieve from Facebook. In

Facebook terminology, the user properties are called ProfileFields. At the time of creation

of user’s friends list, it gets the user fields from Facebook and creates Facebook users and

then create ST users and stores them in user manager. This is done using the code shown

in figure 6.8.

FacebookUserManager manages all the user related objects in both Facebook format and

ST format and provides mapping between them. It supplies the users in either Facebook

format or ST format as requested and caches the logged in user. It also clears all the users

on receiving user log out event or community log out event and then gets populated when

the user logs in again. It does so to facilitate users to login with different Facebook accounts

or login from a different client, which is not an uncommon scenario. Doing so will also

make the application analogous to Sametime connect client. It makes the list consistent

to what is displayed in the client by listening to PersonEvent which is dispatched on any

changes in buddy list. For example, if a person is removed from ST buddy list, the user

manager also removes the person and the corresponding Facebook object from it’s memory.

FacebookContactList maintains the logged in user’s friends list as an array of user ids (in

71

CHAPTER 6. IMPLEMENTATION

Figure 6.8: Code that creates ST person objects using user id

the format that Sametime recognises). It is responsible for getting friends of the logged in

user and populates the user manager with corresponding ST person objects. It also resets

the status of all Facebook contacts to ’Offline’ when user logs out. As it knows the friends

of the logged in user, Facebook manager’s timer task that refreshes the status of friends

uses this class to do so.

FacebookUser is a simple class that stores the set of user properties or attributes and serves

them as required. It acts like a simple Java bean. Each user attribute is stored as a

ProfileField class supplied by the Facebook API. Facebook gives out many attributes for a

user which are all not supported by ST and at the same time, Facebook does not support

or expose all attributes that Sametime supports. Attributes including company name,

email address, user image and status are supported by both ST and Facebook. Name and

telephone number are supported by Sametime but not Facebook. Attributes including first

name, last name, age, address and work history are supported by Facebook but not ST. So

last name and first name are concatenated to get name attribute. Email address is not ex-

posed for the Facebook users but for some users, who granted email permission to the Face-

book application, Facebook generates some proxied email addresses to use while sending

email notifications. This is discussed in section 6.7. But just to show where email address

72

CHAPTER 6. IMPLEMENTATION

appears in business card, a mock email address is created for all users, except for those who

have proxied email addresses, using the format <firstname>.<lastname>@facebook.com

FacebookClientWrapper is a proxy class for the Facebook client supplied in the Facebook

library. It contains methods that are not provided but required by the application. It

utilises the client functionality where sufficient and extends it as required. So it also acts

as a decorator to the supplied client. It mainly parses and interprets the responses sent

by Facebook platform. This class along with Facebook library acts as a bridge between

sametime and Facebook. Facebook identifies users using their user ids also called UIDs

(unique id) and stores them as Java ’long’ type literals and user attributes as ProfileFields

which is of type ’enumeration constant ’ in Java. There is a constant in enumeration,

ProfileField, which represents a single user attribute. So Facebook requires these (UID

and/or ProfileFields) values to get any user related data. This class thus uses Facebook

language to retrieve required information. For example, when FacebookContactList wants

to load the friends of logged in user, then it sends the UID of logged user from user manager

and the client wrapper uses the code in figure 6.9 to get the list of UIDs of friends of the

logged in user.The method getFriendsAsList() parses the response and returns the list of

UIDs. The client wrapper then requests for the user details as another batch request. The

response format for each user is shown in figure 6.10. The actual batch response includes

Figure 6.9: Code that gets the friends of logged in user

the user information for all the friends. So a recursive function is used to parse this batch

response and thus create Facebook user objects (of type FacebookUser).

The client wrapper also gets the online status of multiple users in one go using a batch

request. But this time, it uses FQL instead of REST API. The corresponding method takes

in an array of ST user objects (of type Person) and uses a list of user ids that Facebook

understands in a query to get the online status. Relevant code that does this function is

shown in the figure 6.11 along with the response format of online status of a user. The

figure also shows how the status is extracted from the xml response sent by Facebook and

sets the status to the ST user objects. This class also provides other overloaded methods

for getting user information.

73

CHAPTER 6. IMPLEMENTATION

Figure 6.10: Response format for user information

FacebookMenuManager extends SNViewActionMenuManager which is a menu manager used

to populate the actions in status tool bar of ST connect client. This class provides the menu

related to Facebook and is displayed as shown in the figure 6.12. In this implementation,

it provides options to login, logout, add logged in user to the buddy list, get friends of the

logged in user and edit Facebook status message. When users are not logged in, it disables

all other options except login and when they log out, it enables all options except login. It

communicates with FacebookManager to know if user is logged in and FacebookManager

checks the session information and returns the login state of the user.

Figure 6.12: Facebook Menu in Status tool bar

FacebookGroupAction extends SNGroupAction to provide a menu for Facebook group ac-

tions. Facebook group actions are those actions that can be executed on a group of

Facebook users. In this implementation, this menu provides options to refresh contacts,

send notifications and send emails to the group of Facebook users. The group in this con-

74

CHAPTER 6. IMPLEMENTATION

text is a ST group which holds Facebook users saved as ST user objects. It uses a jface

IMenuCreator to create a menu for all relevant actions. The group actions implemented

in this module are

• Refresh Status of Facebook users

• Send Notification

• Send Notification Email

The generic and facebook group actions are shown in the figure 6.13.

Figure 6.13: Cascading Group Actions

FacebookPersonAction extends SNPersonAction to provide a menu for Facebook person ac-

tions. Facebook person actions analogous to Facebook group actions are those actions that

can be executed on a live name (a ST user shown in the buddy list. User names added

in the buddy list are called live names because they show the status of the person visually

by highlighting the name along with a status icon). The corresponding UI is seen as menu

or a menu item in the context menu of a live name. In this implementation, this class

provides a menu for Facebook whose menu items are the actions that can be executed for

the Facebook user that the live name represents. The person actions implemented in this

module are

• Facebook Chat

• Refresh status of the person

• Send Notification

• Send Notification Email

The generic and facebook person actions are shown in the figure 6.14.

75

CHAPTER 6. IMPLEMENTATION

Figure 6.14: Cascading LiveName context menu

Facebook chat opens an SWT browser which links to the Facebook chat interface. The reason

for not using ST chat interface is explained in the section 6.7. Figure 6.15 shows how this UI

looks like.

Figure 6.15: Facebook Chat

FacebookPreferences manages the user preferences for Facebook. This class extends class,

FieldEditorPreferencePage and implements interface, IWorkbenchPreferencePage from Eclipse

to provide a preferences page in ST preferences and manage them. The preferences used

are

76

CHAPTER 6. IMPLEMENTATION

• A Boolean1 preference which allows users to select a check box if they need integration of

Facebook into ST.

• A String2 preference which allows users to select a name for the group in buddy list to

hold the Facebook contacts.

• A Integer3 preference which allows users to set the time period for refreshing status of

contacts. The necessity of this preference is explained in the section 6.7. This preference

needs time in minutes and will be in effect only from the next user login.

• Another Integer preference which allows users to set the time period for session or con-

nection time out. The necessity of this preference is explained in the section 6.7. This

preference also needs time in minutes and will be in effect only from the next user login.

Eclipse uses a preference store to store all the preferences set by the user (or default values

if user did not change them), which are then retrieved as required in the application. The

code that creates the preference fields is shown in the figure 6.16.

Figure 6.16: Facebook Preference Field Editors

Figure 6.17 shows how the preference page looks like.

1Boolean: A data type which takes either “true” or “false” as values
2String: A data type which takes any charanters as values
3Integer: A data type which takes numbers as values

77

CHAPTER 6. IMPLEMENTATION

Figure 6.17: Facebook Preferences

6.6 Localisation

Localisation is done using message bundling mechanism of Eclipse framework. Eclipse provides

a method to easily localise strings. It requires a class to extend org.eclipse.osgi.util.NLS class

and the subclass should initialise the strings on class load. This subclass contains all the mes-

sages as class variables and these variables are given values in language specific properties files

using the format <key> = <value>. The subclass of NLS is named as Messages.java for the

project which contains all the strings used in Facebook implementation module and the mes-

sages.properties has the string literals. In real time project scenario, the translation team takes

the messages.properties file and translates all the strings into different languages and puts them

in different files which are named after the locale. For example, french strings will be placed

in messages_fr.properties and english strings in messages_en.properties. Figure 6.18 shows the

sample entries of messages.properties. Strings in plugin.xml are also localised and the corre-

sponding entries are placed in files named as plugin_en.properties based on the locale and the

strings are referred as %<key> where as entry in properties file looks like <key> = <value>.

78

CHAPTER 6. IMPLEMENTATION

Figure 6.18: Sample entries in Messages.java and corresponding values in messages.properties

6.7 Some Challenges faced

This section covers discussion around some issues faced and how they were resolved in devel-

opment phase. The issues were related to the incompatibilities between the requirements and

relevant support provided from Facebook library and API. Some of the issues were also resolved

by changing the open source library used. So the source package is used but not just the jar

files.

• Posting requests using the client library

For any Facebook request, the REST client from Facebook client library sends HTTP

(Hyper Text Transfer Protocol) Post requests through a java.net.HttpURLConnection to

Facebook. It then parses the document to log the response, returns the same document to

the application, then the application parses and interprets the response.

◦ Problem: But it uses org.apache.commons.io.input.AutoCloseInputStream which

closes automatically once the end of file is reached. So the client throws a premature

end of file exception whose stack trace is shown here. So no responses are parsed.

79

CHAPTER 6. IMPLEMENTATION

Premature end of file.

org.xml.sax.SAXParseException: Premature end of file.

at org.apache.xerces.parsers.DOMParser.parse(Unknown Source)

at org.apache.xerces.jaxp.DocumentBuilderImpl.parse(Unknown Source)

at javax.xml.parsers.DocumentBuilder.parse(Unknown Source)

at
com.facebook.api.FacebookRestClient.callMethod(FacebookRestClient.java:

266)

at

com.facebook.api.FacebookRestClient.callMethod(FacebookRestClient.java:
224)

at

com.facebook.api.FacebookRestClient.auth_createToken(FacebookRestClient

.java:1069)

◦ Solution: The REST client is changed to use org.apache.commons.httpclient.HttpClient

and org.apache.commons.httpclient.methods.PostMethod. Once the method is exe-

cuted, response is read as xml instead of parsing the stream directly. The old and

new code is shown in the figure 6.19 as shown in a difference merge tool.

• Recognising ST person objects as Facebook users

When ST person objects are added to the ST buddy list, there should be someway of

recognising a user as Facebook user in order to display Facebook relevant person actions

in the context menu of a livename. A livename is a term used to refer ST person in buddy

list because it is designed to style the appearance of name and the status icon based on

the online status of the corresponding user. One way of achieving this is to set some

data in person object that can be retrieved for analysis at later stages. Data like type of

the user or SNname that the user belongs to serves the purpose. Data can be set using

person.setData(“key”,”value”) method call. So by using person.setData(“type”, “Facebook”)

and again person.getData(“type”), the application should be able to recognise the person

object involved as a Facebook user.

◦ Problem: Once the client is restarted, the data stored using person.setData() is lost.

On investigation, it is found that ST does not save the data set on person objects

into the local cache nor does it save remotely. It is only stored in the memory. So

person.getData(“type”) does not suffice the purpose. So the application should explic-

itly store it locally and use it at later stages. But as storing locally means, making it

mandatory for users to use a single computer always. So this is not analogous to ST

which allows user to login from any computer.

◦ Solution: ST uses contact id along with community id as an attribute to uniquely

identify a person object. Making use of this design, the application now creates it’s

own contact id and provides to ST, where the created contact id is made up of a static

string to recognise as Facebook user and the UID of the corresponding Facebook user

which is provided by Facebook platform itself. For example, if a Facebook user has

a UID of 12345678, then the contact id used while creating ST person object will

be “SNFB-UID12345678”. When resolving Facebook users from ST person objects,

the contact id is parsed for the static Facebook identifier string “SNFB-UID”, and if

found, the rest of the contact id string is used as UID to get the Facebook user from

user manager. The UID field is not explicitly given as an enum constant in enum

type, ProfileField, and so is added to it.

80

CHAPTER 6. IMPLEMENTATION

• Chat with Facebook users (stored as ST users) as with actual ST users

Chat is the feature around which Instant Messaging systems are built. This feature of

an IM system, allows two online users to send/receive messages to each other almost in

realtime. The requirements gathered from the survey mentioned in section 4.2.1 include

the chat feature as most wanted feature for the users surveyed. The ideal scenario would

be to double click on the live names which opens a chat interface as with actual ST users.

But the problem with this approach is that, chat interface opens up a connection with

the community server for sending and receiving chat messages, so it requires the users

at both ends of a chat to be members of the community which is not the case. Hence

it is not possible to provide that level of integration. A transcript of chat with an IBM

expert in this area of ST is provided in Appendix-A. Another alternative is to use the

Facebook - LiveMessage API. This API needs some javascripts to register an event for

chat functionality

◦ Problem: The Facebook API requires a JSON object of the form { “message”:“abcd”

}. There was a bug in the client library which returns an error code - 0 but error

message - success. This error code was not defined in the error code list in the Face-

book developers wiki (Facebook Developers Wiki 2008a). Hence a bug was reported

at their website (Google Code 2008, Google Code: Issues 2008).

◦ Solution: As the API can not be used until it is fixed, a workaround was implemented

which suffices the purpose. The workaround is using the Facebook’s Chat interface

embedded in an Eclipse browser (which gives an impression that the window is part

of ST platform). But a drawback of this workaround is that when the Facebook chat

interface is opened, it shows all online friends and allows chatting with them where as

the context of using this feature is to chat with the person with whom the action(chat

action) is invoked. If this feature is moved to the group’s context menu instead of live

name context menu, then from user point of view, that would mean that the action

allows user to start a multi person chat with the group members which is not the

intention.

• Sending Emails

As part of IM system, the application should allow users to send emails to their friends.

For sending an email, the application should know email addresses of the recipients. Unlike

other attributes of a user, email address is not provided by Facebook. Eventhough, there

is a place holder in ST Person object, Facebook does not send email addresses of it’s users

to other users because of it’s privacy policy. So it uses proxied email addresses which are

generated for application/user pair. But it needs users at both ends to grant permissions

to the Facebook application.

◦ Problem: Facebook API allows sending emails to users via the Facebook application.

So users at both ends must grant the application required permission(an extended

permission called “email”). So when user A tries to send an email to user B, the

request first goes to the application, then it checks if user A has granted it email

permission, if yes then it checks if user B has granted it the “email permission”, if yes

then it sends the email. However if user A and/or user B have not granted the “email

permission”, then it throws an error to user A. If user A has granted the permission

but not user B then it sends a grant permission request to user B. But in case of

81

CHAPTER 6. IMPLEMENTATION

desktop applications, there is no way to send a grant permission request to other

users.

◦ Solution: Not complete but partial solution has been implemented. When user A

tries to send an email but did not grant email-permission to the Facebook application

then Facebook throws a permission error. Now the application presents a grant per-

missions dialog to user A and when it is granted, it tries to send the email to user B.

If user B has not granted the “email permission”, then user A will be informed about

that. Now user A has granted “email permission” to the Facebook application. When

the same situation happens to user B as well, then they will be able to send emails to

each other. Unfortunately, this is not the real solution, this is the only possible way

for desktop application unless Facebook provides new API to send grant permission

requests to other users. An enum constant named PROXIED_EMAIL in enum type,

ProfileField, whose value is “proxied_email”, is added in the Facebook client library.

• Status of a Facebook user

There are two concepts of status of a user in Facebook. One is the online status and the

other is the status message set by the user. The online status is the availability status of

the user which is similar to an IM system and the status message is the message set by

the user to let the profile visitors know what the user is doing. Besides using the status

message field for setting the actual status message, SN users use it to set their favourite

captions or any announcements to all the friends or wishing the friends on a common event.

But ST has only one status which is availability or online status. So mapping between

Facebook status and ST status is not straightforward as setting other user attributes like

user name, company name. The application is responsible for matching between ST and

Facebook status. It uses a Java enum type to hold the Facebook online statuses (“active”,

“offline”, “idle” , “error”) and then uses an utility method that converts Facebook status to

ST status using the mapping shown in the table 6.2. Although ST provides many more

statuses, Facebook provides only those shown in the table 6.2.

Table 6.2: Online status mapping between ST and Facebook

Facebook status ST status
active STATUS_AVAILABLE
offline STATUS_OFFLINE
idle STATUS_AWAY
error STATUS_UNKNOWN

ST also provides a way to set some status message to the ST person objects. Although in

ST, there are predefined strings to set based on the online status, it also provides a way

to set a user defined status message. Using person.setStatusText() sets the status message

and can be seen on the business card of the user that the object person represents.

◦ Problem: The Facebook client library used does not provide an enum constant, in

ProfileField enum type, for status message.

◦ Solution: A new enum constant is added in the enum type, ProfileField(available in

the client library source package), named Message whose value is “message”. This is

a child attribute of the status tag in the xml sent by Facebook as shown in the figure

6.10.

82

CHAPTER 6. IMPLEMENTATION

• When to Refresh Status of the contacts?

In an IM system, IM client changes the status of a live name when the status of the

corresponding user changes. This is achieved using the event handling mechanism. Server

sends the status change events to the client and the client updates the status.

◦ Problem: But this application being a pure desktop one and is only connected to

the Facebook server by REST API, no callbacks can be used to get any events. So

the problem is how to refresh the status of Facebook users.

◦ Solution: Status of the Facebook users, added as ST users, in the connect client can

be refreshed periodically and users are allowed to set the period in preferences. The

lower the period, the accurate the status. But performance is a considerable factor.

So a default value of 3 minutes is used and users are allowed to refresh the status when

ever they need by providing a group action. Although this is not an ideal solution, it is

a reasonable solution considering the fact that users would not constantly monitor the

status and if they want accurate status, they can always refresh the status manually.

The application runs a daemon thread after login action, to refresh the status of the

logged in user’s friends.

• Session timeout

This issue is similar to the issue of refreshing status of contacts. Generally, in a web

application, when user session times out, requests made after timeout are not processed

at the server and a time out error is thrown. Even in Sametime Social, requests made

after session timeout, are not processed and the user is thrown an error. To avoid sending

requests after session times out, a daemon thread is run which simulates the time out

operation and once the session times out, user is warned about it and is asked to login.

This avoids sending and receiving requests which are not at all processed at the server.

Users are also allowed to set the session timeout period as a Facebook preference. This

session timeout period is sent to Facebook while creating a client, and is also saved locally

for use by the daemon thread. But the parameter sent at creation time did not seem to

have an effect so the application sets this value explicitly after the session is created.

6.8 Conclusion

The design models created in chapter 5 were used in this chapter to create the software. A

working and fully functional plugin was created in this chapter. All functionalities, represented as

use cases in chapter 4, were provided by this plugin when installed in a Sametime Connect Client.

This plugin, in this first version, has provided integration with Facebook but has also provided

the framework which could be used for integration of more SNs. Some important decisions made

in development phase, significant code snippets from the plugin and some challenges faced while

implementation were also covered in this chapter. Having developed the software, the next phase

would be to test it, which is covered in chapter7.

83

CHAPTER 6. IMPLEMENTATION

Figure 6.11: Code that gets the online status of a list of users84

CHAPTER 6. IMPLEMENTATION

F
ig
u
re
6.
19
:
C
h
an
ge
d
P
os
t
re
q
u
es
ts

85

Chapter 7

Testing

7.1 Introduction

The fully functional software was resulted at the end of implementation phase, which is described

in the chapter 6. This software has to be tested to make it error free. Testing for the project is

based on the guidelines provided by the IEEE standard 829 (IEEE Standard for Software and

System Test Documentation 2008). Testing is an important phase in software development life

cycle because, software is generally prone to a lot of bugs which would have not been anticipated

at the time of development. So an important framework is required to perform testing of a

product. The standard provides a common framework for all the activities, tasks and processes

that support the software life cycle. It recommends to define the test tasks, and the required

inputs and outputs to run the test. It also recommends to define the master test plan and level

test plans along with the related test documentation to include the test design, test case, test

procedure and test reports.

7.2 Testing

Although the guidelines provided by IEEE 829 are very formal and suit for real time corporate

projects, the essence of the standard can be adapted to small sized projects. The section 7.2.1

presents the Master test plan of the project.

7.2.1 Test Plan

The main objective of the master test plan is to do the system testing for the project and deliver

the functional system free of bugs. Test cases are planned to execute in each logical module

from the user’s perspective. For example in an application that integrates ST and SN through

a common API, the logical modules from user’s perspective can be authentication module, chat

module, email module, common UI irrespective of number of SNs used and preferences module.

The test cases planned would cover all these modules. Section 7.2.2 presents the test cases

executed for the project based on IEEE 829 test case format. The application delivered only

supports Facebook in this version, so test cases are also based on ST and Facebook.

86

CHAPTER 7. TESTING

7.2.2 Test cases

Here are some of the test cases executed to test the application functionality and usability. The

test cases are categorised as follows based on the context of the application where a particular

feature applies. Each test case is discussed and executed against the application developed and

is documented in this section. All test cases have the following common prerequisites and the

special prerequisites that apply only for the test cases are mentioned in test case descriptions.

1. Sametime connect client should be launched.

2. Facebook application is created at Facebook platform.

3. This software is installed and configured properly.

7.2.2.1 Authentication Test Cases

Test cases related to authentication module of the application are discussed and executed in this

section. The scenarios related to login and logout are thus discussed here as follows.

1. User cant logout before logging in

Description: A Facebook user should be allowed to login and then logout but not the

other way.

Prerequisites: None

Steps to execute:

(a) Click on “Social Networks Actions” on status toolbar.

(b) Select the appropriate social network menu. For example select ‘Facebook’ from the

pull down menu.

Expected Result:

(a) As user is not logged in, “Login” menu option should be enabled and others disabled.

(b) Clicking on the Login menu option, the user should be able to login to the Facebook

using valid user credentials.

(c) After user successfully logs in, login menu item should be disabled and others enabled.

Actual Result:

(a) Login option enabled initially.

(b) Clicking on the Login menu item, user is presented with login dialog. When correct

user credentials are entered, user is informed about the success of login and allowed

to return to the application.

(c) After successfully logged in and closed the login dialog, the login menu changes dis-

abling login menu item and enabling other menu items which are valid only after user

is logged in.

Result: Pass

2. User relogin after login, re-logout after logout

Description: Once User is logged in, there is no need to login again. But in case the

user logs in again, the user should be informed about the action. Similarly user logout

87

CHAPTER 7. TESTING

action does not need to be repeated and the user should be informed about any repetitive

logouts.

Prerequisites: None

Steps to follow:

(a) The ST user who also have Facebook account logs in successfully into Facebook using

application’s login UI.

(b) The same user tries to login to Facebook again.

(c) User logs out successfully

(d) The same user tries to logout again.

Expected Result:

(a) User should not be allowed to login for the second time or when tries to login, should

be informed about a live session.

(b) Similarly when users try to logout for the second time, either they should not be

allowed to logout or be informed about the invalid action.

Actual Result:

(a) User logs in successfully using the application’s login UI

(b) Same user tries to login for the second time, but login UI is disabled.

(c) User logs out successfully

(d) When user tries to logout again, logout menu item is disabled.

Result: Pass

3. Login using invalid credentials

Description: Invalid credentials should not authorise Facebook application and so user

should not any get Facebook services.

Prerequisites: None

Steps to execute:

(a) Click on the SN Actions>Facebook>Login menu item in status tool bar.

(b) Enter wrong credentials

(c) Try to refresh the status of the Facebook group members or any action that needs

Facebook user session (which needs user to be logged in successfully)

Expected Result:

User should not be allowed to perform any actions that need a session or inform user of

absent session or allow user to login again.

Actual Result:

Result: Pass

88

CHAPTER 7. TESTING

7.2.2.2 Status Test Cases

1. Status change of Facebook users reflects in the contact list

Description: The status changes of Facebook users in the website should be reflected in

the buddy list of Sametime Connect client.

Prerequisite: User should be logged into both Sametime and Facebook.

Steps to Execute: The steps to execute this test case is outlined in the table 7.1. The

table shows the verification points for the test case along with the expected and actual

result. The status to check includes the online presence as well as the status message.

Online presence is checked visually by seeing the status icon in livename and the status

message is checked in the business card.

Table 7.1: Test case 4-Status change reflection
Verification Points Expected Result Actual Result

Real time Status Reflection

• Change the status of a user
in Facebook website.

• The user status should be
changed in the connect
client almost at realtime

The status is not changed
immediately. But this is
explained in the section 6.7

Refresh Status from the UI The UI for refreshing the status
of the contacts is designed at two
locations of the connect client.

• In context menu of a
Facebook group

• In context menu of a
Facebook livename as part
of refreshing person
information

• User selects Refresh Status
menu option from the
context menu of a Facebook
group and it refreshes the
status of all members of the
group successfully.

• User selects Refresh status
menu option from context
menu of a Facebook live
name and it refreshes the
status of the selected
person successfully.

Refresh Status Daemon thread

• Status of the contacts is
refreshed periodically and
the period is set as a
preference.

• Status is refreshed
automatically and
periodically where the
period is taken from
preferences.

2. Change the Status message of logged in user

Description: Users should be able to change their status message from the application’s

UI.

Prerequisites: User should be logged in both ST and Facebook though the application’s

UI.

Steps to execute:

• Click on the Edit my status message menu item in status tool bar.

89

CHAPTER 7. TESTING

• Enter the new status message in the Edit Status dialog.

Expected Result:

• Status message is changed in the Facebook website.

• The new status message is also shown in the business card.

Actual Result:

New status message is reflected in the Facebook website as well as in the buddy list.

Result: Pass

7.2.2.3 Preference Test cases

1. Session times out using the timeout value in preference page

Description: As already explained in section 6.7, session timeout preference value is sent

to the server. So session should time out after this amount of time. This scenario is checked

in this test case.

Prerequisites: User should be logged in.

Steps to execute:

• User enters the preference related to session timeout in Facebook preferences page.

• Observe if session times out after the amount of time saved in preferences.

Expected Result:

• Session times out after the amount of time saved in preferences.

• All Facebook menus should be disabled except Login menu item.

Actual Result:

• A dialog pops up after a period of time, specified by session time out preference,

warning user about the session timeout.

• After session times out, all Facebook menus are disabled. They are enabled only after

user logs in again.

Result: Pass

7.2.2.4 Test cases about integration

1. Populating friends list and user fields properly

Description: The main point of integrating SN and ST is to have one interface for both

systems. So it is required to add all the friends in SN to the ST. The added list should

also have as much information related to the users as possible. The supported attributes

as mentioned in section 6.5 are name, company name, email address for those users with

proxied email addresses and user image.

Prerequisites: User should be logged in.

Steps to execute:

• Select the Get Contact List menu item from the Facebook menu in the status tool

bar.

90

CHAPTER 7. TESTING

• Check the buddy list.

Expected Result:

• All the friends of the logged in user should have been added to the buddylist in a

group named by the Facebook Group name preference value.

• When hovered over each live name in this group, the business card should contain

correct attributes.

Actual Result:

• Buddy list contains all the friends of logged in user.

• Business card contains all attributes of user mentioned in the description of this test

case.

Result: Pass

2. Send Emails to the friends

Description: Users should be able to send emails to their friends through the ST interface.

Prerequisites: User should be logged in and have atleast one friend added to the buddy

list.

91

CHAPTER 7. TESTING

V
e
ri
fi
c
a
ti
o
n
P
o
in
ts

S
te
p
s
to
e
x
e
c
u
te

E
x
p
e
c
te
d
R
e
su
lt

A
c
tu
a
l
R
e
su
lt

S
en
d
G
ro
u
p
em
ai
l

•
S
el
ec
t
th
e

S
en

d
N

o
ti
fi
ca

ti
o
n

em
a
il
m
en
u
it
em
fr
om
th
e

co
n
te
x
t
m
en
u
of
th
e

F
ac
eb
o
ok
gr
ou
p
.

O
r

•
A
n
ot
h
er
w
ay
of
se
n
d
in
g

em
ai
ls
is
fr
om

S
en

d
m
en
u

in
gr
ou
p
’s
co
n
te
x
t
m
en
u
.

•
T
y
p
e
th
e
em
ai
l
co
n
te
n
t
an
d

se
n
d

•
If
se
n
d
er
s
h
av
e
n
ot
gr
an
te
d
ac
ce
ss

to
F
ac
eb
o
ok
ap
p
li
ca
ti
on
,
it
sh
ou
ld

in
fo
rm
th
em
ab
ou
t
it
an
d
sh
ou
ld

al
lo
w
th
em
to
gr
an
t
ac
ce
ss
.

•
If
re
ce
iv
er
s
h
av
e
n
ot
gr
an
te
d

p
er
m
is
si
on
,
th
en
th
e
ap
p
li
ca
ti
on

sh
ou
ld
in
fo
rm
th
e
se
n
d
er
ab
ou
t
it
.

•
If
b
ot
h
se
n
d
er
an
d
re
ce
iv
er
h
av
e

gr
an
te
d
p
er
m
is
si
on
,
th
en
re
ce
iv
er

sh
ou
ld
ge
t
th
e
em
ai
l
se
n
t.

S
am
e
as
ex
p
ec
te
d
re
su
lt
.

S
en
d
p
er
so
n
al
em
ai
l

•
S
el
ec
t
th
e

S
en

d
N

o
ti
fi
ca

ti
o
n

em
a
il
m
en
u
it
em
fr
om
th
e

li
ve
n
am
e’
s
co
n
te
x
t
m
en
u
.

O
r

•
A
n
ot
h
er
w
ay
of
se
n
d
in
g

em
ai
ls
is
fr
om

S
en

d
m
en
u

in
li
ve
n
am
e’
s
co
n
te
x
t

m
en
u
.

•
T
y
p
e
th
e
em
ai
l
co
n
te
n
t
an
d

se
n
d

•
If
se
n
d
er
s
h
av
e
n
ot
gr
an
te
d
ac
ce
ss

to
F
ac
eb
o
ok
ap
p
li
ca
ti
on
,
it
sh
ou
ld

in
fo
rm
th
em
ab
ou
t
it
an
d
sh
ou
ld

al
lo
w
th
em
to
gr
an
t
ac
ce
ss
.

•
If
re
ce
iv
er
s
h
av
e
n
ot
gr
an
te
d

p
er
m
is
si
on
,
th
en
th
e
ap
p
li
ca
ti
on

sh
ou
ld
in
fo
rm
th
e
se
n
d
er
ab
ou
t
it
.

•
If
b
ot
h
se
n
d
er
an
d
re
ce
iv
er
h
av
e

gr
an
te
d
p
er
m
is
si
on
,
th
en
re
ce
iv
er

sh
ou
ld
ge
t
th
e
em
ai
l
se
n
t.

S
am
e
as
ex
p
ec
te
d
re
su
lt
.

Result: Pass

3. Send Notifications to the friends

Description: Users should be able to send notifications to their friends through the ST

interface.

Prerequisites: User should be logged in and have atleast one friend added to the buddy

list.

92

CHAPTER 7. TESTING

V
e
ri
fi
c
a
ti
o
n
P
o
in
ts

S
te
p
s
to
e
x
e
c
u
te

E
x
p
e
c
te
d
R
e
su
lt

A
c
tu
a
l
R
e
su
lt

S
en
d
G
ro
u
p
n
ot
ifi
ca
ti
on

•
S
el
ec
t
th
e

S
en

d
N

o
ti
fi
ca

ti
o
n

m
en
u
it
em
fr
om
th
e
co
n
te
x
t

m
en
u
of
th
e
F
ac
eb
o
ok

gr
ou
p
.

•
T
y
p
e
th
e
n
ot
ifi
ca
ti
on

co
n
te
n
t
an
d
se
n
d

•
If
se
n
d
er
s
h
av
e
n
ot
gr
an
te
d
ac
ce
ss

to
F
ac
eb
o
ok
ap
p
li
ca
ti
on
,
it
sh
ou
ld

in
fo
rm
th
em
ab
ou
t
it
an
d
sh
ou
ld

al
lo
w
th
em
to
gr
an
t
ac
ce
ss
.

•
If
re
ce
iv
er
s
h
av
e
n
ot
gr
an
te
d

p
er
m
is
si
on
,
th
en
th
e
ap
p
li
ca
ti
on

sh
ou
ld
in
fo
rm
th
e
se
n
d
er
ab
ou
t
it
.

•
If
b
ot
h
se
n
d
er
an
d
re
ce
iv
er
h
av
e

gr
an
te
d
p
er
m
is
si
on
,
th
en
re
ce
iv
er

sh
ou
ld
ge
t
th
e
n
ot
ifi
ca
ti
on
se
n
t.

S
am
e
as
ex
p
ec
te
d
.

S
en
d
p
er
so
n
al
n
ot
ifi
ca
ti
on

•
S
el
ec
t
th
e

S
en

d
N

o
ti
fi
ca

ti
o
n

m
en
u
it
em
fr
om
th
e
li
v
e

n
am
e’
s
co
n
te
x
t
m
en
u
.

•
T
y
p
e
th
e
n
ot
ifi
ca
ti
on

co
n
te
n
t
an
d
se
n
d

•
If
se
n
d
er
s
h
av
e
n
ot
gr
an
te
d
ac
ce
ss

to
F
ac
eb
o
ok
ap
p
li
ca
ti
on
,
it
sh
ou
ld

in
fo
rm
th
em
ab
ou
t
it
an
d
sh
ou
ld

al
lo
w
th
em
to
gr
an
t
ac
ce
ss
.

•
If
re
ce
iv
er
s
h
av
e
n
ot
gr
an
te
d

p
er
m
is
si
on
,
th
en
th
e
ap
p
li
ca
ti
on

sh
ou
ld
in
fo
rm
th
e
se
n
d
er
ab
ou
t
it
.

•
If
b
ot
h
se
n
d
er
an
d
re
ce
iv
er
h
av
e

gr
an
te
d
p
er
m
is
si
on
,
th
en
re
ce
iv
er

sh
ou
ld
ge
t
th
e
n
ot
ifi
ca
ti
on
se
n
t.

S
am
e
as
ex
p
ec
te
d

Result: Pass

4. Chatting with friends

Description: Users should be able to chat with their online friends

Prerequisites: User should be logged in. User should have atleast one online friend.

Steps to execute:

93

CHAPTER 7. TESTING

• Select the Facebook Chat menu item from the live name’s context menu.

• Start chatting.

Expected Result:

• Able to exchange instant messages with the friend selected.

Actual Result:

• See all online friends.

• When one friend is selected, able to exchange instant messages.

Result: Pass . Though not completely as expected. This is explained in section 6.7.

7.3 Conclusion

The software created in chapter 6 is tested using the guidelines provided by IEEE standard 829.

The guidelines are briefly discussed in the section 7.1. A test plan is created and is implemented

as described in section 7.2.1. The test cases were executed as explained in the section 7.2.2 and

ensured that the software is error free and satisfy the requirements of the project.

Now that the software is created and tested, it has to be evaluated to know how well it works

and this is covered in the chapter 8.

94

Chapter 8

Evaluation

8.1 Introduction

In any undertaking, evaluation would be the first and important step, so is the case with software.

Evaluation of software quality determines the position of the software in the market and hence

an important step in the software life cycle. Delivering a quality software is fundamental for it’s

success. But defining quality is a subjective matter. It is not necessary that all stakeholders

agree on what they think is good quality. ISO (International Standards Organisation) (ISO

1986)defines quality as

“Quality is the totality of features and characteristics of a product or service that

bear on it’s ability to satisfy specified or implied needs”

IEEE defines quality as

“Quality is the degree to which a system, component, or process meets specified

requirements and customer or user needs or expectations”

Both the definitions focus on customer satisfaction with the software product.

8.2 ISO/IEC 9126

ISO/IEC 9126 is a standard developed by ISO and the International Electrical technical Commis-

sion (IEC) for Software Engineering – Product Quality. Punter and others (Punter, Van Solingen

& Trienekens 1997) presented the intensions of the ISO/IEC 9126 standard as

• To provide a specification and evaluation model for the quality of software products.

• To address user needs of a software product explicitly, by allowing a common language for

user requirement specification, which is easily understandable by it’s stake holders

• To evaluate software product quality based on observation but not opinion

• To make a quality evaluation reproducible.

The standard is published in four parts. First part (ISO/IEC 2001) identifies the software quality

through six characteristics which are further divided in to sub-characteristics. Part 2 (ISO/IEC

2002a)describes the external metrics to measure the characteristics and sub-characteristics iden-

tified in part 1; part 3 (ISO/IEC 2002b) the internal metrics and part 4 (ISO/IEC 2002c) defines

95

CHAPTER 8. EVALUATION

the quality-in-use attributes. The standard (ISO/IEC 2001) states that the quality of the product

can be evaluated by measuring the internal attributes or external attributes (measuring external

behaviour) which are dependant on internal attributes or quality-in-use attributes which are

again dependant on external behaviour. The characteristics and sub-characteristics identified by

the standard are summarised in the table 8.1.

Table 8.1: Characteristics and their explanation from ISO 9126(source: (Chua & Dyson 2004))

8.3 Evaluation of Sametime Social

The evaluation for this product is done based on the format used by Chua and Dyson (Chua &

Dyson 2004).

8.3.1 Evaluation Methodology

After completion, the project was given for use to a subset of people selected for the survey in

requirements phase. The sample users chosen for evaluation were both ST and Facebook users.

These users were categorised based on the attributes and behaviour (discussed in section 2.2.3.2)

and charted using a bar diagram as shown in figure 8.1. From the bar diagram, it is evident

that of the sample users, there were no Alpha Socialisers, Attention Seekers and Functionals.

So feedback was collected from the Faithfuls and Followers and used for evaluating the project.

Faithfuls in this context, as defined in section 2.2.3.2, would use this software to maintain

their old relationships and thus wanted features that are relevant to that purpose (features like

maintaining friends list, chatting , telephoning and sharing files with them). Followers on the

other hand would use it for the sake of keep up with others and the technologies, thus wanted

both basic and advanced features (including posting comments on walls, access other Facebook

applications and control Facebook settings).

96

CHAPTER 8. EVALUATION

Figure 8.1: Bar Diagram to show types of users selected for feedback

The quality characteristics and sub-characteristics identified by the ISO 9126 standard form

the basis for evaluation. But from naive user point of view, all characteristics are not easily

assessable but “Functionality”, “Reliability”, “Usability”, sub-charateristic of “Efficiency” - “Time

Behaviour” , “Maintainability” except for its sub-characteristic - “Analysability”, “Adaptibility”

and Installability” sub-characteristics of “Portability” are assessed.

8.3.2 Results

The results are summarised in a matrix shown in table 8.2. Columns and sub-columns of the

matrix are the characteristics and corresponding sub-characterstics. Rows are the key features of

the product. An asterisk in the table cell means that the feature of that row satisfies the require-

ments of the sub-characteristic of that column. Numbers indicate the points in the explanation

given in this section for not satisfying the requirements.

1. The features do not perform ideally. Section 6.7 explains how these issues are handled in

the project.The term “User Integration” is used to indicate how well the Facebook users

are integrated into ST. As explained in the section 6.5, all attributes of Facebook user do

not have a match in Sametime. So all possible attributes are considered for integration.

The term “Status Integration” is used to indicate how well the status of users in Facebook

is mapped with that of corresponding ST users (corresponding ST users mean the ST user

objects created and added to represent a Facebook user). The mapping is successful but

the status is not refreshed in real time as expected. Chatting with Facebook users, who

are added to ST, is not same as chatting with actual ST users which is also explained in

section 6.7.

2. Chat feature for Facebook users, added as ST users, in this product allows the users to

chat with any of their online friends where as they should be allowed to chat with the user

for which the action is invoked.

3. ST also allows the users to change the preferences when offline. So authenticity can not

be guaranteed.

97

CHAPTER 8. EVALUATION

Table 8.2: Evaluation of Sametime Social using ISO 9126

F
e
a
tu
re
s

F
u
n
c
ti
o
n
a
li
ty

R
e
li
a
b
il
it
y

U
sa
b
il
it
y

E
ffi
c
ie
n
c
y

M
a
in
ta
in
a
b
il
it
y

P
o
rt
a
b
il
it
y

S
u
it
ab
il
it
y

A
cc
u
ra
te
n
es
s

In
te
ro
p
er
ab
il
it
y

S
ec
u
ri
ty

M
at
u
ri
ty

F
au
lt
T
ol
er
an
ce

R
ec
ov
er
ab
il
it
y

U
n
d
er
st
an
d
ab
il
it
y

L
ea
rn
ab
il
it
y

O
p
er
ab
il
it
y

A
tt
ra
ct
iv
en
es
s

T
im
eB
eh
av
io
u
r

C
h
an
ge
ab
il
it
y

S
ta
b
il
it
y

T
es
ta
b
il
it
y

In
st
al
la
b
il
it
y

A
d
ap
ta
b
il
it
y

Authentication * * * * * * * 13 * * 8 10 * 11 * * *
Preferences * * * 3 * * * * * * * * * 11 * * *

User Integration 1 * * * * * * * * * * 10 * 11 * * *
Status Integration 1 * * * * * * * * * * 10 * 11 12 * *

Chat 1 2 * * 4 * * 6 * * * * * 11 12 * *
Email 7 7 * * * 1,5 * * * * 9 * * 11 * * *

Notifications * * * * * * * * * * 9 * * 11 * * *

4. Any changes or bug fixes in chat feature are not considered for incorporation in the project

because of time constraints. The section 6.7 discusses the problem regarding chat feature.

5. Sending emails is allowed in Facebook applications, only when the sender and the recipient

have granted email permission to the Facebook application.

6. Both the chat UI and the method to launch it are different for actual ST users and Facebook

users added as ST users. This creates confusion for the user.

7. Emailing contacts is not implemented as expected due to the non availability of emails of

Facebook users. This is discussed in section 6.7.

8. Facebook needs it’s own login form to be used for log in. So it does not match the ST UI.

9. The UI used for Notifications, email notifications are not styled properly but a basic dialog

is used due to time constraints. So not very attractive.

10. The time of execution for these features depend on the network speed and the number of

users.

11. If Facebook changes the API, the Facebook implementation module might need some

changes which might affect the stability of the product but not necessarily.

12. For easy testing of chat and email feature, some test users are required.

13. Users confuse logging into the Facebook application with logging into Facebook. The

authentication mechanism provided for Facebook in this plugin is actually for authorising

the Facebook application but not for authenticating the user with Facebook platform.

98

CHAPTER 8. EVALUATION

8.4 Conclusion

Fully working and tested software is evaluated in this section. The evaluation is done using

ISO/IEC 9126 standard, which is briefly explained in section 8.2. The sample users chosen for

evaluation was a subset of users selected for a survey in requirements phase. The selected set

of users were both ST and Facebook users and hence they were aware of both the systems.

The feedback from them is used to evaluate the product against the characteristics and sub-

charateristics provided by ISO/IEC 9126 standard. At the end of this phase, the software is

functional, tested and evaluated.

From the evaluation, it is discovered that the software contains some flaws, of which some were

critical for user satisfaction and some were minor. The explanation in such cases was provided

in the section 8.3.2. The improvements, that can be made to cover the flaws discovered, are

listed in the chapter 9.

99

Chapter 9

Conclusions & Future Work

9.1 Conclusions

The software delivered, as part of this thesis, is a Sametime plugin developed using Eclipse.

This plugin is developed to use with Sametime 8.0.1 client. The project started with a literature

review which supported the objective of the project, to integrate IM and SN systems. A suitable

development methodology was then identified and explained. Requirements of the project were

analysed using a small survey conducted with a set of questions framed, whose intention was to

reveal the extent of interest that home and work users express about the idea of the project.

This phase helped to develop the project’s business and system analysis models.

Due to time constraints, it was decided to develop implementation module for one social

network (Facebook) and so the design modules for Facebook were developed and implemented

along with the integration framework. Thus developed software was tested based on the guide-

lines provided by the IEEE standard 829. The test cases were framed to test the functionality

of the software and determine if the requirements were met. A subset of sample users (who are

both ST and Facebook users) selected for the requirements survey were asked to use the plugin

developed and their feedback was collected to evaluate the software. ISO/IEC 9126 standard was

followed for evaluation. During testing, some flaws were discovered and were also surfaced from

user feedbacks. Some of these were analysed as critical for user satisfaction. This list include the

Facebook user status was not refreshed in realtime, chat interface for Facebook users was not

same as ST users. There were also some minor flaws including some Facebook user attributes

being dropped while integration and at the same time some ST person attributes were not used.

The reasons for these flaws not being fixed were also explained.

9.1.1 Success of the software

The success of the software when analysed using the aims and objectives as described in section

1.3 is as below

• Objectives of the project:

◦ To integrate enterprise messaging and collaboration with social networks: The plugin

is tested for the integration between Sametime which is an enterprise messaging sys-

tem and Facebook which is a social networking system. So this objective is attained.

◦ To deliver the solution as a desktop tool: Sametime is a desktop tool and the software

is a Sametime plugin so this objective is also attained.

100

CHAPTER 9. CONCLUSIONS & FUTURE WORK

• Aims of the project:

◦ To use an instant messaging system for communications in organisational network:

IBM Sametime is used which is an enterprise Instant Messaging system.

◦ To provide uniform interface for compatible social networks: The integration module

provides a common framework which can be implemented for different Social Net-

works.

◦ The UI (User Interface) to pretend as the UI of Organisational instant messaging

system for social network contact lists: The UI of Sametime is used for all Social

Networks and so it appears to be same for both organisational contacts and social

network contact lists.

◦ To provide as many services of social networks as possible; this is limited by the scope

of API (Application Programming Interfaces) exposed by social networks which is an

external constraint: The features interested to the sample users (home and work

users selected for the survey in requirements phase) were implemented in the plugin

developed due to time constraints.

As per the above discussion, the project is a success also as per the feedback from the evaluation

survey.

9.2 Future Work

The evaluation results help the process of improving the product and the improvements are

summarised in this section.

• Using a server component

As the call back mechanism is not possible for a pure client project as this, other possibil-

ities to install a server component, that takes care of call back mechanisms for Facebook,

can be explored. The server component should be responsible for registering the events

with Facebook and when it receives any event notifications, it should notify the clients

about them. This is useful to solve the problems related to automatic status updates and

automatic session management.

• Using Ontologies

To avoid implementation of each of the social network, for integration, one more level of

commonality can be introduced. This level is to implement a common ontology in the

common API and do all the integration in the common API itself. But this again requires

the implementation modules to conform the ontology of the social network to the common

ontology. This approach proposes a totally new architecture for the project so is not exactly

an improvement.

• UI improvements

◦ Preference pages can be more organised. A common preference page for the project

which contains the set of preference pages, one for each implementation module in-

stalled.

101

CHAPTER 9. CONCLUSIONS & FUTURE WORK

◦ Current implementation for the container of users from one SN is a group in buddy

list. But in case of performing any group actions, the users moved from one group to

another will not be tracked. So the application should actually parse all members of

all groups in buddy list, for the users of that particular SN (which might not be an

effective solution). Another way is to get users from user manager of that SN.

• Feature improvements

◦ The application should also allow a way to browse and add friends of friends which

is one of the main features of social networks.

◦ The application adds all the friends of the user as a flat list to a single group, dedicated

for that SN. But it can add the user’s friends in the same hierarchy as they are stored

in the SN website.

102

Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002), ‘Agile software development

methods’, Review and analysis .

Ackerman, M. S. (1998), ‘Augmenting organizational memory: a field study of answer garden’,

ACM Trans. Inf. Syst. 16(3), 203–224.

Booch, G. (1998), ‘Leaving Kansas’, IEEE Software, 15(1), 32–35.

Borch, O. (1994), ‘The process of relational contracting: developing trust-based strategic al-

liances among small business enterprises’, Advances in Strategic Management 10, 113–135.

Bradac, M., Perry, D. & Votta, L. (1993), ‘Prototyping a process monitoring experiment’, Soft-

ware Engineering, 1993. Proceedings., 15th International Conference on pp. 155–165.

Burt, R. (1992), Structural Holes: The Social Structure of Competition.

Chua, B. & Dyson, L. (2004), Applying the ISO 9126 model to the evaluation of an e-learning sys-

tem, in ‘Beyond the Comfort Zone: Proceedings of the 21 stASCILITE Conference’, pp. 184–

190.

Churchill, E. & Halverson, C. (2005), ‘Guest editor’s introduction: Social networks and social

networking’, Internet Computing, IEEE 9(5), 14–19.

Cross, R., Borgatti, S. & Parker, A. (2002), ‘Making Invisible Work Visible: Using Social

Network Analysis to Support Strategic Collaboration’, CALIFORNIA MANAGEMENT RE-

VIEW 44(2), 25–46.

Cross, R., Nohria, N. & Parker, A. (2002), ‘Six Myths About Informal Networks-and How To

Overcome Them’, MIT Sloan Management Review 43(3), 67–76.

Cummings, J. N., Butler, B. & Kraut, R. (2002), ‘The quality of online social relationships’,

Commun. ACM 45(7), 103–108.

Ehrlich, K. & Cash, D. (1999), ‘The Invisible World of Intermediaries: A Cautionary Tale’,

Computer Supported Cooperative Work 8(1-2), 147–167.

Facebook Developers Wiki (2008a), ‘Error codes - facebook developers wiki’, viewed 14 October

2008, http://wiki.developers.facebook.com/index.php/Error_code.

Facebook Developers Wiki (2008b), ‘Using batching api’, viewed 20 September 2008,

http://wiki.developers.facebook.com/index.php/Using_batching_API.

Facebook Press Room (n.d.), ‘Facebook statistics’, viewed 10 November 2008,

http://www.facebook.com/press/info.php?statistics.

103

BIBLIOGRAPHY

Forbes (2007), ‘Popular social networks based on the number of active users’,

viewed 1 November 2008, http://www.forbes.com/2007/08/22/social-nets-marketing-oped-

cx_ekc_0823social_slide_2.html.

Fowler, M (2000), ‘The new methodology’, viewed 12 September 2008,

http://martinfowler.com/articles/newMethodology.html.

George Chin, J., Myers, J. & Hoyt, D. (2002), ‘Social networks in the virtual science laboratory’,

Commun. ACM 45(8), 87–92.

Google Code (2008), ‘Revision 460: /tags/release-1.8.0/facebook-java-api’, viewed 30 November

2008, http://facebook-java-api.googlecode.com/svn/tags/release-1.8.0/facebook-java-api/.

Google Code (n.d.a), ‘Hosting opensocial apps’, viewed 1 October 2008,

http://code.google.com/apis/opensocial/container.html.

Google Code (n.d.b), ‘Who3́9;s using it?’, viewed 1 October 2008,

http://code.google.com/apis/opensocial/whoisusingit.html.

Google Code: Issues (2008), ‘Issue 124 - facebook-java-api’, viewed 24 October 2008,

http://code.google.com/p/facebook-java-api/issues/detail?id=124.

Greve, A. & Salaff, J. (2003), ‘Social Networks and Entrepreneurship’, Entrepreneurship Theory

and Practice 28(1), 1–22.

Hampton, K. & Wellman, B. (2003), ‘Neighboring in Netville: How the Internet Supports Com-

munity and Social Capital in a Wired Suburb’, City and Community 2(4), 277–311.

Handcock, M. (2002), Assessing degeneracy in statistical models of social networks, in ‘Workshop

on Dynamic Social Network Analysis, Washington, DC, November’.

Handel, M. & Herbsleb, J. D. (2002), What is chat doing in the workplace?, in ‘CSCW ’02:

Proceedings of the 2002 ACM conference on Computer supported cooperative work’, ACM,

New York, NY, USA, pp. 1–10.

Hansen, E. (1995), ‘Entrepreneurial network and new organization growth’, Entrepreneurship

Theory & Practice 19(4), 7–19.

Herbsleb, J. D., Atkins, D. L., Boyer, D. G., Handel, M. & Finholt, T. A. (2002), Introducing in-

stant messaging and chat in the workplace, in ‘CHI ’02: Proceedings of the SIGCHI conference

on Human factors in computing systems’, ACM, New York, NY, USA, pp. 171–178.

Hi5 (2008), ‘Opensocial 0.8 in beta on hi5’, viewed 26 September 2008,

http://www.hi5networks.com/developer/2008/08/opensocial08inbetaontheh.html.

Hoff, P., Raftery, A. & Handcock, M. (2002), ‘Latent Space Approaches to Social Network

Analysis’, Journal of the American Statistical Association 97(460), 1090–1098.

IBM Lotus Sametime (n.d.), ‘Ibm software - ibm lotus sametime’, viewed 3 December 2008,

http://www-01.ibm.com/software/lotus/sametime.

IBM Press room (2006), ‘Ibm ships lotus sametime 7.5, delivering the first uni-

fied platform for business collaboration’, viewed 30 November 2008, http://www-

03.ibm.com/press/us/en/pressrelease/20259.wss.

104

BIBLIOGRAPHY

IBM Sametime Features (n.d.), ‘Ibm lotus sametime - features and benefits’, viewed 10 November

2008, http://www-306.ibm.com/software/lotus/products/sametime/features.html.

IEEE Standard for Software and System Test Documentation (2008), IEEE Std 829-2008 pp. 1–

118.

ISO (1986), ‘ISO 8402 quality vocabulary, ISO copyright office, geneva, switzerland’.

ISO/IEC (2001), ‘ISO/IEC 9126-1 software engineering - product quality - part 1: Quality

model, ISO copyright office, geneva, switzerland’.

ISO/IEC (2002a), ‘ISO/IEC 9126-2 software engineering - product quality - part2: External

metrics, ISO copyright office, geneva, switzerland’.

ISO/IEC (2002b), ‘ISO/IEC 9126-3 software engineering - product quality - part3: Internal

metrics, ISO copyright office, geneva, switzerland’.

ISO/IEC (2002c), ‘ISO/IEC 9126-4 software engineering - product quality - part4: Quality in

use metrics, ISO copyright office, geneva, switzerland’.

Jamali, M. & Abolhassani, H. (2006), Different aspects of social network analysis, in ‘WI ’06:

Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence’,

IEEE Computer Society, Washington, DC, USA, pp. 66–72.

Kautz, H., Selman, B. & Shah, M. (1997), ‘Referral web: combining social networks and collab-

orative filtering’, Commun. ACM 40(3), 63–65.

Keyes, J. (2003), Software Engineering Handbook, Auerbach Pub.

Kruchten, P. (2003), The Rational Unified Process: An Introduction, Addison-Wesley Profes-

sional.

Lam, S. (n.d.), Representation of Online Social Networks, Master’s thesis.

Larson, A. & Starr, J. (1993), ‘A network model of organizational formation’, Entrepreneurship

Theory & Practice 17(2), 5–15.

McDonald, D. W. (2003), Recommending collaboration with social networks: a comparative

evaluation, in ‘CHI ’03: Proceedings of the SIGCHI conference on Human factors in computing

systems’, ACM, New York, NY, USA, pp. 593–600.

Mitchell-Wong, J., Kowalczyk, R., Roshelova, A., Joy, B. & Tsai, H. (2007), ‘Opensocial: From

social networks to social ecosystem’, Digital EcoSystems and Technologies Conference, 2007.

DEST ’07. Inaugural IEEE-IES pp. 361–366.

Nardi, B. A., Whittaker, S. & Bradner, E. (2000), Interaction and outeraction: instant messaging

in action, in ‘CSCW ’00: Proceedings of the 2000 ACM conference on Computer supported

cooperative work’, ACM, New York, NY, USA, pp. 79–88.

Nardi, B. & O’Day, V. (1999), Information Ecologies: Using Technology With Heart, MIT Press.

Nielson, S., Juergensen, V., Menashes, R., Patton, T. & Schejter, M. (2002),

‘Working with the sametime client toolkits’, viewed 17 October 2008,

http://www.redbooks.ibm.com/abstracts/sg246666.html?Open.

105

BIBLIOGRAPHY

Ofcom, Office of Communications (2008), ‘Social networking, a quantitative and qual-

itative research report into attitudes, behaviours and use’, viewed 13 October 2008,

http://www.ofcom.org.uk/advice/media_literacy/medlitpub/medlitpubrss/socialnetworking/report.pdf.

Ott, L. (2008), ‘A tour of the ibm lotus sametime v7.5 toolkits’, viewed 10 November 2008,

http://www.ibm.com/developerworks/lotus/library/sametime75toolkits/.

Poe, R. (2001), ‘Instant messaging goes to work’, Business2. 0, July .

Preece, J., Maloney-Krichmar, D. & Abras, C. (2003), ‘History of Emergence of Online Com-

munities’, Encyclopedia of Community. Berkshire Publishing Group, Sage .

Project, P.I.A.L (2002), ‘Getting serious online: As americans gain experience, they

use the web more at work, write e-mail with more significant content, perform

more online transactions, and pursue more serious activity’, viewed 11 October 2008,

http://www.pewinternet.org/reports/poc.asp?Report=55.

Punter, T., Van Solingen, R. & Trienekens, J. (1997), Software Product Evaluation, in ‘Pro-

ceedings of 4th European Conference on Evaluation of Information Technology (EVIT’97),

Delft’.

Quan-Haase, A., Cothrel, J. & Wellman, B. (2005), ‘Instant Messaging for Collaboration: A

Case Study of a High-Tech Firm’, Journal of Computer-Mediated Communication 10(4).

Reynolds, P. (1991), ‘Sociology and Entrepreneurship: Concepts and Contributions’, En-

trepreneurship Theory and Practice 16(2), 47–70.

Rittinghouse, J. & Ransome, J. (2005), IM Instant Messaging Security, Digital Press,Newton,

MA, USA.

Rosenthal, E. (1997), ‘Social networks and team performance’, Team Performance Management

3(4), 288.

Smyth, P. (2003), Statistical modeling of graph and network data, in ‘IJCAI Workshop on

Learning Statistical Models from Relational Data’.

Starr, J. & MacMillan, I. (1990), ‘Resource cooptation via social contracting: Resource acquisi-

tion strategies for new ventures’, Strategic Management Journal 11(4), 79–92.

Sundén, J. (2003), Material virtualities: approaching online textual embodiment, P. Lang.

Van Laere, K. & Heene, A. (2003), ‘Social networks as a source of competitive advantage for the

firm’, The Journal of Workplace Learning 15(6), 248–258.

Weaver, A. & Morrison, B. (2008), ‘Social networking’, Computer 41(2), 97–100.

Wellman, B. & Gulia, M. (1999), ‘Net-Surfers Don’t Ride Alone: Virtual Communities as Com-

munities’, Networks in the Global Village: Life in Contemporary Communities pp. 331–66.

Wells, D. (2001), ‘Extreme Programming: A Gentle Introduction’, viewed 20 September 2008,

http://www. extremeprogramming. org.

106

Appendix-A

Figure 1is a transcript of chat with Jason Simoneau (IBM), ST expert in SDK area.

Figure 1: Chat with Jason Simoneau

107

Appendix-B

The survey questions used for requirements analysis is shown in the figure 3 and the notes shown

in figure 2 to assist users in finding what types of SN users they are.

Figure 2: Notes given as part of survey

108

BIBLIOGRAPHY

Figure 3: Questionnaire used for requirements analysis

109

Appendix-C

Facebook Java toolkit license is shown in the figure 4.

Figure 4: Facebook Java toolkit license

110

Appendix-D

Facebook application created for the purpose of this project is shown in the figure 5.

Figure 5: Facebook application details page

111

Appendix-E

The mail thread with a facebook developer regarding facebook chat problem.

112

