Ackowledgements

I would like to thank all staff from Dublin Institute of Technology for the training provided over
the last 2 years. In particular, I would like to thank my supervisor, Damian Gordon, for his
patience, support and motivation provided while doing my thesis.

My special thanks to Brendan Murray who provided guidance in technical side of the project.
I also thank all the colleagues and friends who have spent their quality time on filling the survey
and providing the feedback.

Finally, I would like to thank my family and friends who gave their encouragement and

support.

iii

Abstract

In this era of web 2.0, various types of web applications are in practice. Online Social Networking
system being one of the popular web 2.0 applications is highly used for social communications.
Instant Messaging system is the commonly used communication and collaboration tool in the
work environment. Employees of any organisation are shown to rely on Social Networks for
some business decisions and problem solving which creates an interest in integrating both the
systems. But for various reasons including security, Social Networking systems are not allowed
to be used in corporate network (in work environment). Even when allowed, users of multiple
Social Networking Systems have to monitor all of them in different interfaces. The project
provides a solution for this problem. It uses a popular enterprise Instant Messaging tool, IBM
Sametime, as a common platform for using the inherent Instant Messaging features and provides
a common interface for any Social Network. The resultant product presents the users with same

look and feel, of the Sametime platform, for all the Social Networks integrated.

v

Contents

1 Introduction

1.1 Project Background
1.2 What is the need to integrate Social Networking system and Instant Messaging

SYStemM? . . . L e e
1.3 Project Aims and Objectives
1.4 1IBM Lotus Sametime
1.5 Intellectual Challenge
1.6 Thesis Roadmap L

2 Literature Review

2.1 Imtroduction e
2.2 Social Networkingo
2.2.1 Introduction to Social Networking
2.2.2 History of Online Social Networking systems
2.2.3 Sociometry (SNA)
2.2.3.1 Why do these social Networks matter?

2.2.3.2 Attitude and Behaviour towards Social Networking Sites
2.2.3.3 Consequences of using Social Networks
2234 Web 2.0
2.2.4 Popular Social Networking Softwares
2.3 Instant Messaging Lo
2.3.1 Introduction to Instant Messaging:
2.3.1.1 Origin and Evolution of Instant Messaging
232 IMatwork
2.3.3 IM and Security
2.3.3.1 Using Firewalls
2.3.3.2 Blocking and Proxying IM
2.4 Social Networking and Organisational influence
2.4.1 Entrepreneur level influence
2.4.2 Other Organisational benefits
2.5 Conclusion e

3 Development Methodology

3.1 Introduction e
3.2 Comparison of development methodologies
3.2.1 Waterfall Model
3.2.1.1 What is Waterfall model?

—_

T W NN

N o o oS

10
11
12
12
13
13
13
13
14
14
15
16
17
17
17
17

CONTENTS

3.2.1.2 Benefits 19
3.2.1.3 Shortcomings 19
3.2.1.4 Why the project can not employ it? 19
3.2.2 Agile methodologies oo 20
3.2.2.1 Descriptiono 20
3.2.2.2 Benefits 20
3.2.2.3 Why the project can not employ it? 20
3.2.3 Rational Unified Process 21
3.2.3.1 RUP Architecture:, 21
3.2.3.2 Reasons why RUP suits the project: 22
3.2.4 Methodology Adopted 22
3.3 Conclusion 23
Analysis 24
4.1 Introduction 24
4.2 Requirements Analysis 24
4.2.1 Survey Design 24
4.2.2 Survey Questions 24
4.2.3 Survey OutCcomes e 25
4.3 Analysis Modelling 26
4.3.1 Use Case VIeW 0 i i i it i e e e e 27
4.3.1.1 Business Use case model: 27
4.3.1.2 UseCase Model, 28
4.3.2 Logical View - Analysis Model 28
4.3.2.1 Preferences Module 28
4.3.2.2 Integration Module oL 28

4.3.2.3 Social Network Implementation Module(SN implementation mod-
ule): . .o 34
4.3.2.4 Use case traceabilities: L. 36
4.4 Conclusion e e e 45
Design 47
5.1 Introduction e e e 47
5.2 Architecture 47
5.3 Logical View - Design model 0. 48
53.1 Common API e 49
5.3.2 Facebook Implementation 53
5.4 Design Patterns: Lo 60
5.4.1 Singleton 60
5.4.2 Factory Method 61
5.5 Conclusion L e e e 63
Implementation 64
6.1 Introduction 64
6.2 Choice of Softwares e 64
6.2.1 Choice of IM e 64
6.2.2 Choice of Social Network 65
6.2.2.1 Facebook 65

vi

CONTENTS

6.2.3
6.3 Plugins

6.4 Integrator Module

6.4.1
6.4.2
6.4.3

6.5 Implementation Module for Facebook
6.6 Localisation
6.7 Some Challenges faced

6.8 Conclusion

Testing

7.1 Introduction

7.2 Testing
7.2.1
7.2.2

7.3 Conclusion

Evaluation

8.1 Introduction
C 9126

8.3 Evaluation of Sametime Social

8.2 ISO/IE

8.3.1
8.3.2

Conclusion

9.1 Conclusions

9.1.1
9.2 Future

6.22.2 Bebo
6.2.2.3 Orkut
6.224 Hi5
6.2.2.5 Plaxo, MySpace
Software,

and Extension points

com.dit.st.sn.integration L.
com.dit.st.sn.integration.manager

com.dit.st.sn.actions

Test Plan

Test cases

7.2.2.1 Authentication Test Cases

7.2.2.2 Status Test Cases

7.2.2.3 Preference Test cases

7.2.2.4 Test cases about integration

Evaluation Methodology
Results

8.4 Conclusion

s & Future Work

Success of the software
Work

vii

List of Tables

2.1

4.1

6.1
6.2

7.1

8.1
8.2

Popular social networking sites based on number of active users 13
Typeofusecases e 38
Softwares used in the project 66
Online status mapping between ST and Facebook 82
Test case 4-Status change reflection 89

Characteristics and their explanation from ISO 9126(source: (Chua & Dyson 2004)) 96
Evaluation of Sametime Social using ISO 9126 98

viii

List of Figures

2.1

2.2

2.3
24

2.5
2.6

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.21

Types of Online Communities and percent of internet users by online groups to
which they belong (Source: Pew Internet & American Life Project, Jan.-Feb. 2001
(Survey, Internet users, n=1,697. Margin of error is + or — 3% (Project, P.I.A.L

2002)) . .. 8
Some properties of a Social Network. (Source: Representation of Social Networks
(Lam n.d.)) .o 9

Elements of a social network, illustrated in a simple sociogram

Connectivity matrix for entities A through G in Figure 2.3 (source — (Churchill

& Halverson 2005))o 10
A backdoor attack (source: (Rittinghouse & Ransome 2005)) 15
An illustration of a typical firewall architecture in an enterprise (Source:(Rittinghouse

& Ransome 2005)) 16
Waterfall Model 19
Process Structure of Rational Unified Process (source: Kruchten (Kruchten 2003)) 21
Development methodology used oo 23
Questionnaire 25
Bar diagram to show the percentage of types of users 26
Bar diagram to show percentage of social network users 27
Use case VIEW o o o i e e e e 27
Business use case model oL Lo 29
Usecasemodel L e 30
Analysis model structure L 31
Class diagram for Preferences module 32
Integration Module Structure 32
Class Diagram for General Actions 33
Class Diagram for Group and Person actions 34
Class diagram for Internal Integration module 35
Social Network Implementation module structure 36
Class diagram for Realisation of General Actions Module 37
Class diagram for Realisation of Group and Person Actions module 38
Class diagram for Social Network Proxy module 39
Use case Traceabilities 40
Sequence diagram for “Authorise the Social Network application” use case 41
Activity diagram for login use case and post login activities 42
Activity diagram for “Call buddies” use case 43

ix

LIST OF FIGURES

4.20
4.22

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.11
6.19

8.1

Sequence diagram for “Send Notifications” use case 44
Sequence diagram for “Add friends to a group” use case 46
Architecture of the project - Sametime Social 48
Architectural View 49
Package structure of Common APT 49
Classes in Basic Plugin Package, 50
Classes in Managers Package 50
Classes in User Package 51
Classes in Actions Package o 52
Sametime Connect - Status toolbar 0L 53
Structure of Facebook Implementation 53
Classes in Facebook Managers package 54
More classes in Facebook Managers Package 55
Classes in Facebook Actions package 56
Example for ST Group Action 56
Example for ST Person Action 57
Classes in Facebook UL 57
Classes in Base Package 58
Classes in Facebook User Package 59
Classes in Facebook Preferences Package 60
Singleton Pattern Example 61
Class Hierarchy that factory method knows 62
Sample code for Factory Method and an application object that uses it 63
Sample contents of SNList.conf used by ManagerFactory 68
Code that reads the SNList.conf file and instantiates the SN managers 68
Code that contributes to extension point, org.eclipse.ui.viewActions 68
Code that populates menu in the status toolbar 69
Code that contributes to extension point for adding actions to Groups 69
Sample Settings.conf for Facebook oo 0. 70
Timer task that refreshes status of Facebook users 71
Code that creates ST person objects using userid 72
Code that gets the friends of logged inuser 73
Response format for user information 74
Facebook Menu in Status tool bar 74
Cascading Group Actions 75
Cascading LiveName context menu 76
Facebook Chat 76
Facebook Preference Field Editors 77
Facebook Preferences 78
Sample entries in Messages.java and corresponding values in messages.properties 79

Code that gets the online status of a list of users 84
Changed Post requests 85
Bar Diagram to show types of users selected for feedback 97
Chat with Jason Simoneau 107

LIST OF FIGURES

T o= W N

Notes given as part of survey L 108
Questionnaire used for requirements analysis 109
Facebook Java toolkit licenseo oo 110
Facebook application details page oo 111

xi

Chapter 1

Introduction

The advent of web 2.0 enhanced the creativity, communication and collaboration over the inter-
net. This led to the evolution of many internet based applications including Social Networking
sites, blogs and wikis. Instant Messaging system, which is a non-web application, existed prior
to web 2.0. A web 2.0 application, Social Networking system, and a non-web application, In-
stant messaging system, are integrated together in this project. The need for such integration,

challenges anticipated to face, the aims and objectives of the project are discussed in this chapter.

1.1 Project Background

As a part of working environment or social environment, internet users are always in a need
to have some tool that helps them to communicate and collaborate with their colleagues or
friends in real time. IBM(International Business Machines Corporation) Lotus Sametime is an
award-winning solution for the same need (IBM Lotus Sametime n.d.). It allows corporate users
to maintain contact lists, chat, share files with their contacts and use other collaboration and
communication services listed in section 1.4. This software includes a server and a client. The
server is hosted by the organisation and employees of the organisation use the client which
connects to the server, to support communication and collaboration between users. In order to
leverage the services provided by Sametime(IBM Lotus Sametime n.d.), all the contacts should
be of the same domain that the server is. With new releases, IBM Sametime extended it’s
services to support AOL AIM® ICQ®, Apple® iChat™, Yahoo®Messenger and Google Talk™
public IM networks through IBM Lotus Sametime Gateway software. Social networks on the
other side are another way to collaborate with people in different organisations and different
walks of life. The reason to use a social networking site varies from casual conversation with
friends to sharing views on varied topics to sharing media files and comment on them. While
this is a common scenario in today’s online social world, users have to continuously monitor their
friends across different social websites, maintain different contact lists in different interfaces and
manage them. Instead, a desktop tool that integrates these social websites into one interface and
that provides a common look and feel to all contact lists or contacts would be an ideal solution

for this problem.

CHAPTER 1. INTRODUCTION

1.2 What is the need to integrate Social Networking system

and Instant Messaging system?

There have been different kinds of researches and organisational moves regarding social networks
and their impact on the work culture. Some of them are discussed in this section. Elizabeth
(Rosenthal 1997) studied the team relations with people outside the team and the team’s per-
formance at work. Her research focused on the pattern of ties that the team members have and
how these ties affect the team performance. Her study has provided an evidence for the fact that
social or personal networks play an important role in the team performance and the differences

in the social networks explain the variations in team performance.

“Globalisation is transforming the competitive environment of small and medium-
sized firms. DBecause these firms are competing with their larger counterparts in
an economy where collaboration is increasingly central to organisational effective-
ness, one must pay more attention to the social networks that organisations rely on.”
(Van Laere & Heene 2003)

Van Laere & Heene think that social networks are one way to achieve collaboration in any
organisation and participation in social networks can be influential in providing information
in timely fashion. According to Burt (Burt 1992), for small and medium-sized firms with a
limited amount of resources and competencies available, social networks offer comparatively
strong opportunities for a balanced enterprise development in competitive environment. Hence
it is favorable for employees of any organisation to maintain both organisational and social
networks. Well said by Mitchell-Wong and others (Mitchell-Wong et al. 2007) that online social
world is currently not as integrated as real social world and it is of everyone’s interest to make

online social world in-line with real social world.

“Unlike the physical world where social ecosystems are formed from the integrated
and managed relationships between individuals and organisations, the online digital
world consists of many independent, isolated and incompatible social networks estab-
lished by organisations that have overlapping and manually managed relationships.”
(Mitchell-Wong et al. 2007)

As mentioned earlier, there are a few organisational moves to integrate social networks. Here are
two examples of them. IBM Lotus Sametime is an instant messaging solution for collaboration in
organisational networks which later extended it’s services to few other public instant messaging

systems as listed in section 1.1.

1.3 Project Aims and Objectives

In this online social world, people use a number of social networks. Considering the advantages
of participating in social networks in work as discussed in the section 1.2, the project’s main
idea is to provide a solution to integrate organisational network and social networks in some
way. The simple and important aspect of this sort of integration is to provide a way to access
both the networks. The only way to access social networks in organisations now is through the
individual websites. It is quite hard and confusing to maintain and monitor different interfaces
for different social websites. The aim of this project is to provide a single and uniform interface
to access required social networks. The simple and efficient way to participate in an instant

messaging activity is through a desktop tool. The aim is to build a single and uniform interface

CHAPTER 1. INTRODUCTION

for different social websites along with organisational network using a desktop tool. IBM Lotus
Sametime being an award winning desktop solution for instant messaging in any organisation,
is a good way to provide a platform for collaboration with social networks. The scope of the

project when expressed in the terms of aims and objectives will be as follows:

e Objectives of the project:

o To integrate Enterprise Messaging and collaboration with Social Networks.

o To deliver the solution as a desktop tool.
e Aims of the project:

o To use an instant messaging system for communication in organisational network.
o To provide uniform interface for compatible social networks.

o To provide the UI (User Interface) that pretends as the UI of Organisational IM
(Instant Messaging) system for SN (Social Network) contact lists.

o To provide as many services of social networks as possible; this is limited by the scope
of APT (Application Programming Interfaces) exposed by social networks which is an

external constraint.

As mentioned earlier, IBM Lotus Sametime becomes ideal solution for communication and collab-
oration in an organisation. So the aim-1(as described above) of the project is to use IBM Lotus
Sametime client. The organisation maintains an IBM Lotus Sametime server. FEach employee
of the organisation uses an IBM Lotus Sametime client for communication and collaboration in
the organisational network. For simplicity, IBM Lotus Sametime will be referred to as Sametime
or ST here onwards in this document. Similarly aim-3 is to use the Ul of Sametime for social
networking sites as well but provide the functionality as offered by the social networking sites. So
the users should be convinced that Sametime is providing the services of social networking as it
does for the organisational network which is not the case. Aim-4 is to provide the services offered
by the social networking sites individually as well as services provided by Sametime wherever

possible. The risks foreseen at this stage are
1. The services that Sametime and social sites support are not the same.
2. Technologies or standards that social sites offer their services in are not the same.
3. Data and data formats supported by Sametime and social sites are not compatible.

Sametime supports several features as described in section 1.4 and all of them are not supported
by social sites. Social sites offer several features including blogs and feeds which are not supported
by Sametime. So a compromise between those services is achieved in chapter 4. All social
networking sites do not provide API for developers and the sites which provide development
support, do not provide them in same technology or standard. So a generic design is required,

which is independent of the API technology, and is covered in chapter 5.

1.4 1IBM Lotus Sametime

To achieve the aims outlined in section 1.3, this project makes use of the existing benefits and

features offered by IBM Sametime and builds a social application over it. While change in the

CHAPTER 1. INTRODUCTION

range and scope of services provided by social sites is an ongoing business policy, it is impossible
to list out a complete set of services that are offered by all the social networks. As a first attempt,
here is the list of services or features offered by Sametime that are planned to be exploited in

the project. The features (IBM Sametime Features n.d.) are categorised as follows

e Real-time collaboration: User presence, enterprise Instant Messaging and Web confer-

encing.
e Mobile Access: Being able to contact whole team where ever the user is.

e Instant Messaging Federation: Connect Lotus Sametime with the leading public in-

stant messaging providers.
e Telephony: Telephoning contacts.

The enhancements in each category are explained in IBM website (IBM Sametime Features
n.d.). To name a few, they are video messaging, tabbed chat interface, screen capture, and

web-conferencing.

“With it’s open and flexible Eclipse framework, Lotus Sametime 7.5 enables cus-
tomers and third-party vendors to rapidly build and deploy plugins. Incorporating
Web 2.0 technologies will enable customers to create new solutions such as mashups,
effectively bringing leading capabilities from consumer focused applications to enter-
prises.” (IBM Press room 2006)

Sametime’s provision to extend it using plugins written in Eclipse is the way planned to be
adopted in this project. The plugin is meant to integrate Sametime with social networks. The
term ‘Integration’ in the scope of this project refers to the functionality of the proposed product
which allows users to maintain their contacts belonging to different social networks inside IBM
Sametime client. The UI of the project resembles the Sametime UI where as the functionality

it provides can be of social networks.

1.5 Intellectual Challenge

The inconsistencies between Sametime and social sites throw a big challenge and on the other
side, different social sites expose their services in different technologies based on which developers
would have to build applications for the respective sites. So building a universal application is
a difficult task to achieve. One solution is to propose all the social sites to expose their services
in a specific technology so that a single application can be run across all social sites. This is an
ideal solution to provide uniformity and integration.

The initiative of Google in this regard is it’s project called ‘OpenSocial’. OpenSocial is
an API provided by google which when supported by all social sites can be an easy way to
integrate all social websites. This also means that a single OpenSocial application runs across
all social sites and can provide integrated functionality of the social sites. While this has been
an interesting step towards integration of social sites, the support from social sites is yet to be
provided and published. Social sites like Orkut and Ning have already published the OpenSocial
support while many social sites listed at Google’s site (Google Code n.d.b) have announced to
join the OpenSocial initiative. Once this project is accomplished, social sites can be integrated

using a single set of API.

CHAPTER 1. INTRODUCTION

Inspite of the integration of social sites using the single set of API provided by Google’s
OpenSocial, there is still a need to integrate it with organisational network which does not come
under social network category and hence not compliant with OpenSocial. OpenSocial requires
a container to run the application and the containers are the social sites. It also provides SPI
(Service Provider Interface) which allows external websites to connect to the social sites as per
the requirement (Google Code n.d.a).

As discussed above, OpenSocial provides the platform to integrate social sites and any ex-
ternal website. But the aim of this project is to provide a desktop solution for the integration of
organisational and social networks. The other option for building social applications is by using
the individual APIs that social sites expose. Again, the technology in which social sites expose
their APIs is not same. So it will be challenging to provide a single set of API for the proposed
integration in order to leverage different technologies of APIs and push the data into the UT of

Sametime.

1.6 Thesis Roadmap

The related research and the development life cycle of the project is discussed and explained in
the rest of this document. The research related to the areas of Social networking and Instant
messaging in home and work environments is discussed in chapter 2. The design methodology
used is discussed in chapter 3 and the stages of the methodology used are covered in the chapters
that follow it. The project requirements and functionality are discussed in chapter 4. The project
architecture and the design based on the analysis done in chapter 4 are presented and explained
in chapter 5. The design model is then implemented using suitable technologies and environment
as discussed in chapter 6. The software thus created is tested using a test plan. The plan and
test cases executed are presented in chapter 7. Finally the project is evaluated in chapter 8 and

some future work is presented in chapter 9.

Chapter 2

Literature Review

2.1 Introduction

The concepts of SN and IM were briefly discussed in the chapter 1. These concepts are discussed
in detail, in this chapter, with the help of related research. The history, properties, common
representations, the importance, purpose, the attitude and behaviour of the people towards SNs
are discussed in detail.

The concepts of IM like it’s evolution, it’s importance, security concerns and how they are
addressed are also discussed in this chapter. Finally, the influence of SN in organisations which
forms the basis for need of integrating both the systems, that supports the discussion in section

1.2, is also presented.

2.2 Social Networking

2.2.1 Introduction to Social Networking

The concept of Social Networking is not a new one, which came after the advent of internet,
but has already existed by then though in a different form. The fact that human being is
called a social animal is also supported by the ability of people to work together in groups
creating more value than the sum of values created working alone. At a minimum level, Social
Network consists of three or more people communicating and collaborating with each other.
Such a network can be in any form of social gathering including schools, temples and churches.
While such networks can be formed without internet, the advent of internet has created a
backbone for virtual social networks where people make their connections for communication
and collaboration even without physically meeting them. Such connections between people are
seemless and limitless and hence they create opportunity for virtually larger social network than
they can imagine in real life. In today’s electronic media, social networking is nothing but a
network created by individuals using internet, World Wide Web and web applications for their
communication and collaboration in ways which were impossible before internet. According to
Weaver and Morrison (Weaver & Morrison 2008), the production model has changed to increase

the reachability of web applications created for social networking.

“The model has changed from top-down to bottom-up creation of information and
interaction, made possible by new Web applications that give power to users. While

in the past there was a top-down paradigm of a few large media corporations cre-

CHAPTER 2. LITERATURE REVIEW

ating content for the consumers to access, the production model has shifted so that

individual users now create content that everyone can share.”

They believe that there is a determinable structure of the way people directly or indirectly know
each other and Social Networking is built on this idea. The concept of Social Networks also
believes on notions such as “Six degrees of Separation” which states that every person in this
world is knowingly or unknowingly connected to everyone else through a chain of not more than
six acquaintances (Churchill & Halverson 2005).

The internet based social networking systems allow it’s users new and a variety of ways of
communication including, PCs (Personal Computers) or even their mobile phones. All users
need to do to initiate their network is to create a profile or their own online page on the system
chosen and select available users as their friends who are also displayed on their profile. They are
allowed to constantly search for new contacts and make them friends by adding them to their
contact lists. They can communicate either privately or publicly. Increase in internet access
facilities at home, like availability of high speed reliable internet, facilitates the use of social

networking systems.

2.2.2 History of Online Social Networking systems

This section presents the history and emergence of social networking systems. While the emer-
gence of concept of social networking is discussed in the section 2.2.1, this section discusses about
the evolution of sophisticated online social networking sites.

According to the research of Samantha Lam(Lam n.d.), early social networking sites in-
cluded Classmates.com (1995) which focused on connecting with former class mates in schools
and colleges, SixDegrees.com(1997-2001) which focused on the indirect relationships based on
the popular Six Degrees notion. Then came into market, an other popular social networking
website named “MySpace” which reported more visitors than “Google”. She also mentioned that
“Facebook”, a good competitor which grew rapidly in size even in exponential rate, overtook
MySpace. Later, websites like “Facebook” started supporting external add-on applications for
their platform.

The percentage of internet users who contacted various online groups is shown in in the figure
2.1.

2.2.3 Sociometry (SNA)

In short, Sociometry is a quantitative study of social relationships.
Research in Sociometry:

This section presents some of the research involved in the field of Sociometry including the rep-
resentation of Social Networks. In their paper, Jamali and Abolhassani (Jamali & Abolhassani
2006) discussed about some important properties of social networks in general. They explained
some of the conventional social network models used for representation of relationships in social
networks and also for their statistical analysis. The conventional models of social networks,
as discussed in their paper, are graphs and matrices used to represent the relationships and
statistical models for analysis. These were not always successful, there were some associated
problems. For example, statistical models had degeneracy and scalability problems. Handcock
(Handcock 2002) discussed the degeneracy problems in statistical models in his paper, where
as Hoff and others (Hoff, Raftery & Handcock 2002) discussed the scalability problems in their

CHAPTER 2. LITERATURE REVIEW

3‘\°fn zgojc 29% 2“.,},

8 _anlly
7o

25%T]
20%7]
15%7]
10%7]
5%71
0%

Percent of Internet Users

Figure 2.1: Types of Online Communities and percent of internet users by online groups to which
they belong (Source: Pew Internet & American Life Project, Jan.-Feb. 2001 (Survey, Internet
users, n=1,697. Margin of error is 4+ or — 3% (Project, P.I.A.L 2002))

papers. The graph and matrix models have shown readability problems with large number of
nodes and connections. Jamali and Abolhassani (Jamali & Abolhassani 2006) represented so-
cial networks using nodes and edges where nodes represent actors and edges joining the nodes
represent the relationships between two actors. Other important aspects in social network repre-
sentation (where importance is based on frequency of these definitions in literature) are outlined
in the figure 2.2.

During 1930s, sociometric analysts in US investigated how the feelings of well-being related
to the people’s social lives. Elizabeth and Christine (Churchill & Halverson 2005)found this
research closely associated with the sociogram devised by Jacob Moreno. A Sociogram is a
visual diagram which represents the people and the relationships between them using points and
lines where a point represents a person and a line joining two points represents the connection
between those people. They also stated that Kurt Lewin and Fritz Heider were among other
major players in this research. Kurt Lewin promoted mathematical models of group relations
and Fritz Heider focused on perceptions of people about their relationships.

Figure 2.3 is an example sociogram which depicts the structure of relationships between nodes
(which represent people) or entities A through G. In the figure 2.3, elements of a social network
are illustrated as a simple sociogram. The nodes in figure 2.3 are represented by circles and the
connections or relationships are represented by arrowed lines. It consists of both unidirectional
and bidirectional lines. Node A links two subgroups of linked nodes consisting of B, C and D
and E and F respectively. A single node G is also connected to A. Another interesting point

is that A connects to E but E is not connected to A. The lines are also called links or arcs or

CHAPTER 2. LITERATURE REVIEW

Name Definition/Description
Degree (of a node) Number of ties for an actor
Closeness (path length) Lengths of paths to other actors
Betweeness Lying between each other pairs of actors
Clique (hub/clusters) Actors who have all possible ties among themselves
N-Clique (hub/clusters with Actors are connected to every member of
diameter N) the group at a maximum distance of N
Clomponent (core) Parts of graph that are connected within but

disconnected with other components

Clut Points Nodes which if removed, the structure becomes

divided into un-connected systems

Block The divisions into which cutpoints divide a graph

Lambda Set Set of actors who if disconnected, would

most greatly disrupt the flow among all of the actors

Figure 2.2: Some properties of a Social Network. (Source: Representation of Social Networks
(Lam n.d.))

Figure 2.3: Elements of a social network, illustrated in a simple sociogram

edges or ties. The single nodes like G are also called singleton. B, C and D form a subgroup so
do the nodes E, A and F. If the relationship is defined as “sending wedding invitations to”, the

links from the network explain the following.
e A sends invitation to B, C, E, F, and G.
e A receives invitations from B, C, F and G.
e E and F invite each other
e B, C and D send and receive invitations among themselves.
e A does not receive an invitation from E.

Example analysis from the figure 2.3 can be that A is serving as potential connection source
between the members of two subgroups as it is spanning the boundary between them. From
the graph in figure 2.3 , a connectivity matrix can be visualised as in figure 2.4. In the matrix,
the cells are binary digits ‘0’and ‘1’. A ‘1’ in a cell indicates that there is a connection between
the nodes represented by the row and column of that particular cell and in the same way a
‘0’ indicates that there is no connection between the nodes. The directional link is interpreted
as follows — the row represents the ‘From’ node and the column represents the ‘To’ node. For
example, A is connected to E but E is not connected to A and hence row A and column E has
1 and row E and column A has 0. A node is supposed to be connected to itself and hence the

leading diagonal in the matrix is 1 (the cells like A-A | B-B are always 1)

CHAPTER 2. LITERATURE REVIEW

Figure 2.4: Connectivity matrix for entities A through G in Figure 2.3 (source — (Churchill &
Halverson 2005))

2.2.3.1 Why do these social Networks matter?

With any possible representation of social networks, the questions that arise are why should a
social network be represented in any model, what can be derived from it and will the derivations
be useful and so it is very important to understand or analyse what is already represented by a
given social network. The availability of data to analyse is directly or indirectly proportional to
some factors including the number of people using the social network systems and the amount
of their interactions. More availability of such data makes analysts interested in observing
and characterising the details about connections including their origin, timing period, the way
they are made and how they will be helpful. There are many researches done at the level
of interpersonal communications and interests. Wellman and Gulia (Wellman & Gulia 1999)
examined the social information flows for both kinds of ties or links, strong and weak. Kraut
and others(Cummings, Butler & Kraut 2002) examined how online social relations influenced the
psychological health of people. Hampton and Wellman (Hampton & Wellman 2003) examined
how these relationships and interactions affected face to face communications and interactions in
real life communities, Sunden (Sundén 2003) studied how people represent themselves through
constructed online identities, which is also called impression management.

Despite no business model being emerged by then, companies like LinkedIn, MySpace, Orkut,
Friendster and Tribe became increasingly interesting in social network concepts and were suc-

cessful in launching social networking websites. Social Network Analysis was also used
e To analyse the ways of communication & cooperation that people used

e For the identification of knowledge flows like the source of information or knowledge among

the people and who do they share this information or knowledge with.

SNA (Social Network Analysis) when applied in the context of a business, the informal com-
munication networks could be revealed and the source or the flow of information within the
organisation between the formal procedures and relationships could be identified. Elizabeth and
Christine (Churchill & Halverson 2005) observed that several consultancy firms offered SNA
based services and promised to improve productivity, efficiency and reduce costs by optimising

the information flow. In the context of research, the process of understanding the flow of informal

10

CHAPTER 2. LITERATURE REVIEW

networks in inter and intra organisations lead to a separate area for study called Organisational
Network Analysis (ONA). Cross and others (Cross, Nohria & Parker 2002) have contributed to
this area of study.

2.2.3.2 Attitude and Behaviour towards Social Networking Sites

Although there were enormous number of social networkers, their attitude towards Social net-
working sites was different and the reason to use the them was not the same. Some research
is done by OfCom, UK (Ofcom, Office of Communications 2008) in this area. According to
Ofcom’s qualitative research, social networkers could be differentiated into five groups based on
the difference in their attitude to the social networking sites and their behaviour while using

them. These groups are described as follows.

e Alpha Socialisers: The people who use the social networking sites very often for flirting,
meeting new people. Their main motive is being entertained. There were only minority of

people of these type at the time of research.

e Faithfuls: The people who used the social sites to maintain their old friendships generally
from their school or universities. According to the report, there were many people of this
kind.

o Attention Seekers: The people who used the social sites to seek the attention from
people and were so keen on obtaining comments from others about their profiles or pho-
tos uploaded or anything published about them. There were only some part of social

networkers of this type.

e Followers: The people who joined the social sites just because others were doing or to

keep up with the changing technologies or to keep up with their peers.

e Functionals: The people who joined the social sites for specific purpose. There were only

a minority of social networkers of this type according to the report.

While the majority of internet users were part of Social networking, there were people who were
not using the the sites for varied reasons. The report (Ofcom, Office of Communications 2008)
also classified the non users of social networking based on the reason for not using them as

follows:

e Concerned about safety: Many people were afraid of using the social sites because
they were afraid of publishing their personal details on the internet. They were concerned
about the safety of making their details available online although technically they would

not need to publish legitimate or correct details.

e Technically inexperienced: There were a portion of non users of social sites who were
not aware of using the technology and who lack the confidence in using computers and the

internet.

e Intellectual Rejecters: These type of people would not have any interest in using these

sites at all and see using them as just a waste of time.

11

CHAPTER 2. LITERATURE REVIEW

2.2.3.3 Consequences of using Social Networks

Although social networking was intended to keep up social relationships, personal and work
related collaborations, the websites have some negotiable pitfalls such as unwanted consequences
of the availability of sensitive personal information to the public. Inspite of the safety measures
taken by the websites, there were possibilites where users were confused over the privacy settings
and contacting with strangers online. The report (Ofcom, Office of Communications 2008) stated
that some users were annoyed by few activities including self-promotion and online bullying. The
report indicated that many users were very positive about using the social networking sites and
that there were only a few who reported negative experiences. The research suggested several

areas of potentially risky behaviour including:

e Privacy settings: Some users left their privacy settings as open by default. It stated
that 41% of children who were aged between 8 & 17 and 44% of adults aged between 18
& 24 left their profile visible to everyone.

e Giving out sensitive personal: Some users willingly gave out their sensitive personal
information like photographs to everyone. 25% of registered users posted sensitive personal

data like phone number, address and email address on their public profiles.

e Giving out reputationally damaging information: Some users posted reputation-
ally damaging information about others on their pages such as provoking photographs,

photographs of their teachers or bosses drinking or smoking.

e Contacting complete strangers online: Many users of all age groups added complete
strangers as their friends and share their personal information. 17% of adults contacted

complete strangers and 35% contacted friends of friends

Although the purpose of social networking is to increase their social networks by knowing new
people and communicating with them, it can still be a security risk. Inspite of the outlined risks

of security many people appeared unconcerned due to various reasons including
e Lack of awareness
e False assumptions that social sites would take care of privacy and security issues.
e Lack of knowledge about managing their privacy settings

e Not so easy availability and understandability of the privacy and safety measures on the

internet.

e Perception that social networking security and privacy concerns would not be so serious

as internet banking systems.

2.2.3.4 Web 2.0

Social networking websites are also part of the wider Web 2.0 context. OfCom (Ofcom, Office

of Communications 2008) defines web 2.0 as

“The specific technology that has enabled this growth in the number and popularity of
social networking sites is part of a wider online phenomenon, enabling self-expression,

communication and user interaction online, known as Web 2.0.”

12

CHAPTER 2. LITERATURE REVIEW

Though Web 2.0 is not unique to social networking, it has eased the development of several
interactive and collaborative applications including user generated content websites also called
UGC (example: YouTube and Picasa), file sharing websites and Massive Multiplayer Online
Role Playing Games (MMORPGs. Example: VirtualWorld, Second Life)

2.2.4 Popular Social Networking Softwares

The table 2.1 shows the list of popular websites, when they were founded and the active number
of users at 22 August 2007 as researched by Forbes (Forbes 2007)

Table 2.1: Popular social networking sites based on number of active users

Social Network Site | Founded In | Number of Active Users
Windows Live Spaces | December 2004 130 million
MySpace July 2003 115 million
Orkut January 2004 60 million
Friendster 2003 47 million
Classmates.com 1995 40 million
Facebook February 2004 34 million
Flickr February 2004 11 million

Inline with numerous media reports, the most used social networking websites as reported
by OfCom (Ofcom, Office of Communications 2008) were Facebook, MySpace and Bebo. The
report also indicates that about 62% of adults who use social networking sites are also a user of
Facebook, 50% used MySpace and 33% used Bebo.

2.3 Instant Messaging

2.3.1 Introduction to Instant Messaging:

Instant Messaging is a simple but most liked and used concept where users exchange text mes-
sages in real time using a software application. It is often called in short as “IM” or “IMing”
(also referred as IM in this report here onwards). Generally IM softwares allow features like
maintaining a contact list (or buddy list), sending and receiving messages from contacts in real
time and see the online status of the contacts. Instant Messaging softwares were designed for
both home and office use. Some high end IM applications also provide many features including

file transfer in real time, spell check and call in realtime.

2.3.1.1 Origin and Evolution of Instant Messaging

Most of the internet users use emails(short name for electronic mails) for communication, which
was developed by ARPAnet in 1972 (Project, P.I.A.L 2002). Early email systems were only
point to point which means that a person could only send an email to only one other person
and not more. Later Listservers were invented in 1975 which allow one to many postings. Jenny
Preece and others (Preece, Maloney-Krichmar & Abras 2003) in their report mentioned that the
first emoticon (short name for emotion-icon which is a short and brief graphical representation
of an emotion. Something like *:-)’ to indicate an emotion of being happy) was invented in 1979
by Kevin Mackenzie. The usage of such emoticons softened the impact of otherwise dry email

text by making it interesting to send and receive. It is also said that “ A picture is worth 1000

13

CHAPTER 2. LITERATURE REVIEW

words”. Later in mid 1980s, communication tools like email systems were improved by allowing
graphical user interfaces (GUTI).

As per the report (Preece, Maloney-Krichmar & Abras 2003) the next in the evolution were
online bulletin boards which were designed to work like physical bulletin boards. These boards
allow it’s users to post any messages and those messages were displayed in various ways. Thus
posted messages were threaded to mean that messages related to a topic were associated or
linked with each other. Threading messages allowed users to navigate from first message of the
thread to later messages and again backwards for example providing 'next’ and ’previous’ links.
Later systems appeared to offer many enhancements including allowing users to search on topics,
users who posted messages, date of posting messages, links to email, displaying user profiles and
web pages, two dimensional graphical representation of people involved called “avatars”. At this
stage the normal contact lists turned into online communities based on the scope of the system.
The communication tools like email, list servers, bulletin boards, Usenet news are asynchronous
communication technologies which means that the users communicate with their communication
partners even when both parties do not co-present in time.

The Synchronous communication systems include chat systems, instant messaging and tex-
ting systems which means that the communication partners have to be co-present. Generally
conversations were rapid and short. Texting systems were like instant messaging on phone lines.
The report (Preece, Maloney-Krichmar & Abras 2003) also stated that in 1991 (an year after
ARPAnet ceased in existence) the World-Wide-Web (WWW) was developed by Tim Berners
Lee and was released by CERN (European Organisation for Nuclear Research). WWW then
facilitated widespread usage of web sites. In the area of online communications, WWW eased

the development of several online communities and many forms of communication software.

2.3.2 IM at work

Real time communication and collaboration was possible using IM softwares at homes. But
designing effective real time collaboration tools for people at workplace was heart of research
in computer cooperative work (CSCW) says QhanHeese and others (Quan-Haase, Cothrel &
Wellman 2005) The security issues, the effective utilisation of IM software among the employees
were key issues in employing IM at work. Nardi and O’Day (Nardi & O’Day 1999) think that
CSCW could not be developed solely online.

“Successful development and deployment must take into account the social context
of use, and must understand the situations in which users switch among different

means of communication” says Nardi and O’ Day (Nardi & O’Day 1999)

Many researches (Handel & Herbsleb 2002, Herbsleb et al. 2002, Poe 2001) have shown that
in many organisations, employees use IM. IM systems were being used in either way with or
without email systems. Speed and ease added to the workplace communication by IM made it
so popular in workplace. It was also observed (Nardi, Whittaker & Bradner 2000, Handel &
Herbsleb 2002) that IM eliminates the time lost to “telephone tagging” or making fruitless trips
to absent coworker’s office as IM requires not more than an internet connection along with a

small application launched on the computer.

2.3.3 IM and Security

As mentioned in the section 2.3.1.1, IM systems have improved from providing real time text

message transfer to providing transfer of files. This feature posed a risk of carrying worms and

14

CHAPTER 2. LITERATURE REVIEW

other malware from one computer /network to another similar to what emails could do. Thus IM
systems provide an access point for backdoor trojan horses. They can also be used by hackers to
obtain backdoor access to otherwise safe computers/networks without any open port listening

to it and hence bypassing desktop and boundary firewalls as in figure 2.5

A Backdoor Attack

~ e -

o P T
Attacker’s Backdoor P e D,
Program on WVictim's i Y
Client i
z"-- "'\._x
(Internet |
3
~)

e
Attacker

Figure 2.5: A backdoor attack (source: (Rittinghouse & Ransome 2005))

Peer-to-peer file sharing which is another security threat that allows a directory or drive to
be shared is also allowed in IM. This feature allows all files on a computer to be shared and thus
leads to the spread of virus or malware affected files to other systems. Viruses are transfered to
other computers, bypassing the gateway anti-virus software. The text messages being transfered
can also be urls for pages that contain malicious code on the internet. Rittinghouse and Ransome
(Rittinghouse & Ransome 2005) mentioned that even the use of organisational IM systems like
IBM Lotus Sametime and Microsoft Office Live communications, the communications will be
safeguarded internally and hence the communications, once enter the public networks, are again
exposed to security threats.

However constant improvement in security features were made for major enterprise solutions
like IBM Sametime which is used in this project. So whatever choice has been made by a company
to employ an IM system, be it popular and free IM or corporate-focused and secure IM, and again
deploy suitable security layers such as antivirus software, firewalls and vulnerability management
on top of IM solution, it has to be aware of associated security risks.

Rittinghouse and Ransome (Rittinghouse & Ransome 2005) reiterated that architecture and
design of the IM should always reflect an effective security strategy and in simple words it’s
security strategy must employ the sophisticated techniques in establishing the connection with

IM service.

2.3.3.1 Using Firewalls

Improvements and steps taken against existing security risks to IM systems always results in
new security threats being identified. So out-of-the-box firewall configurations often would not

be sufficient for blocking unwanted access to the IM systems. Latest IM systems were designed

15

CHAPTER 2. LITERATURE REVIEW

keeping firewalls in mind and they employ many techniques to sneak past corporate firewalls for
reaching the IM servers as mentioned in the book (Rittinghouse & Ransome 2005).

Some companies block non trustable or non approved IM system usage in the internal net-
work. In order to do that, the IM clients must be prevented from reaching the IM server by
adding the servers (names or ip addresses) to the firewall block list for each of the IM services
to be blocked. The usage of firewalls is illustrated in figure 2.6.

Figure 2.6 illustrates the usage of perimeter firewalls in organisational networks which again

are connected by perimeter network.

Typical Enterprise Architecture with a Perimeter Firewall

Inlernal Network Perimater Nobwork Border Netwark

3§86

Border Border
Switch Rouler

-8

Internal Inlemal

i Router Swilch intemal
| Firerwall

|

i

‘:

:

i

I

{2 :
.
]

I

I

i

i

i

Swiich

Web Servers Penmeles

Firgwrall

Figure 2.6: An illustration of a typical firewall architecture in an enterprise (Source:(Rittinghouse
& Ransome 2005))

Perimeter firewalls are used for blocking non approved or non trusted IMs. Generally organ-
isations configure their perimeter firewalls so that all internet services are blocked other than
critical set of services like SMTP email, HTTP Web surfing and DNS. This led IM providers to
design their software so that the clients tunnel over the allowed set of internet services and thus

they slip past the firewalls.

2.3.3.2 Blocking and Proxying IM

As discussed in the section 2.3.3.1, IM services on the whole could be blocked by firewalls, so
that IM client can not be able to connect to the IM service provider or the IM server. But an
effective way to block the IM can be allowing the connection to happen, later intercepting the
connection and reject the user log-in packet. So from the end user perspective, it appears like a
normal failed log-in attempt but not that the connection was unsuccessful. Another way can be,
allowing the login to happen but intercepting or rejecting all other message packets and showing
a warning to the user that IM usage is not allowed. Rittinghouse and Ransome (Rittinghouse
& Ransome 2005) proposed using an application level proxy server for this purpose. The proxy
server can be configured based on the security policies determined by IT manager and this would
be an added advantage to organisations. The to and fro messages and files can also be scanned

for any malicious content or filter URLs using the proxy server.

16

CHAPTER 2. LITERATURE REVIEW

2.4 Social Networking and Organisational influence

2.4.1 Entrepreneur level influence

Many researches (Borch 1994, Hansen 1995, Larson & Starr 1993, Reynolds 1991, Starr &
MacMillan 1990) have shown that business decisions were always embedded by entrepreneurs in
social structures. A structural approach was used by Greve and Salaff (Greve & Salaff 2003)
to study the way entrepreneurs used their social relations to help launch any business. En-
trepreneurs consider any advice and resources they obtain from social relations, as different
contacts and resources are always a requirement to establish any business. The structural ap-
proach used by Greve and Salaff also implied that entrepreneurs used social relations, to obtain
any useful resources, in diverse cultural settings. They obtained and gained access to resources
like support, knowledge and distribution channels through their social networks and would in-
teract with other people and organisations, to widen the resource availability and try to sustain
their new firms.

Donald McDonald (McDonald 2003) stated that social networks are a way to visualise the in-
teractions in organisational settings. Their descriptive and analytical power made them popular

and useful in designing groupware systems.

2.4.2 Other Organisational benefits

Social networks also are used in many systems as a mechanism for recommending sources for
collaboration. Visualisation techniques are used to find specific people who served as most
common source for collaboration. An example of such systems is a ReferralWeb (Kautz, Selman
& Shah 1997). Co-authoring and co-citation relationships were mined to create a social network
and the visualisation of that network was used to find a subject expert. Such a social network
was also used to answer other queries like how far away each researcher was located and if any
one was in between them.

Some studies (Ackerman 1998, George Chin, Myers & Hoyt 2002, Ehrlich & Cash 1999) re-
garding collaborative behaviour found that any single person’s social network influences other
people’s collaborative behaviour and information seeking. In these studies, social networks
showed a broad and complex range of social and organisational interaction and hence demon-
strate the importance of social networks in workplace. Expert finding system is a type of
recommendation system which is designed to discover a person who can be treated as subject
experts in a specific problem domain. These were used to locate expertise in any unfamiliar part

of an organisation and they also provide alternatives in the key expert’s absence.

2.5 Conclusion

The concepts of SN and IM, their importance in an organisation and the behaviour of people
with the SN systems are discussed in this chapter. The very idea of the project, to integrate
both the systems, is also supported by the discussion in section 2.4.

Now that the need to integrate them is clear, the life cycle stages of the development of the
project are covered in the rest of the document. Development methodology used is explained in

chapter 3 which guides other stages.

17

Chapter 3

Development Methodology

3.1 Introduction

The concepts of SN and IM are discussed in chapter 2. The need to integrate both the systems,
based on existing research, is discussed in the sections 1.2 and 2.4. Having supported by the
research, the project life cycle started by choosing an appropriate development methodology
which is then developed in various stages.

The activities that are involved in a project or a system are defined using a development
methodology or a system methodology. The activities of developing and evolving systems, right
from the initial feasibility study to when the system is ready and fulfills the requirements laid,
are defined by the methodology employed. The continuity in the process of completing a project
is supported by use of a particular methodology. According to Keyes(Keyes 2003), in a corporate
environment, it is the methodology employed that assures the organisation, that the process of
developing and maintaining the system (project) is sustainable and repeatable. The development

methodology used for the project is discussed in this chapter.

3.2 Comparison of development methodologies

The following development methodologies are discussed in this section to identify the most

appropriate methodology for the project.
o Waterfall model
o Agile Methodology - Extreme Programming
e Rational Unified Process

The benefits, shortcomings and the suitability of these methodologies are discussed in this sec-

tion.

3.2.1 Waterfall Model

Waterfall model, also called as linear sequential model, is a sequential or systematic approach.

It suggests that the stages in software development have to be sequential.

18

CHAPTER 3. DEVELOPMENT METHODOLOGY

3.2.1.1 What is Waterfall model?

The figure 3.1 illustrates the model. Although this model is generally derided as old-fashioned,
when the requirements are well understood in advance, it can do reasonably well because of
it’s simplicity. The main activities or phases or stages of this model are Analysis, Design,

Implementation, Testing and Maintainance as shown in figure 3.1.

Requiremenis

Operation &

Maintainance

Figure 3.1: Waterfall Model

Bradac (Bradac, Perry & Votta 1993) analysed few real time projects which follow this
methodology and found that the each stage blocks the stages next to it and leads to the respective

teams to wait in case of dependencies.

3.2.1.2 Benefits

e It is very simple, and so would have less learning curve, and well structured.

e It is a systematic approach organised stepwise which provides much clarity.

3.2.1.3 Shortcomings

e The analysis and specification should be done at the starting stages of the projects and

never revisited, which makes it practically difficult for real time projects.

e A prototype of the product is obtained at later stages so this might not be what clients

want.

e The strict structure of stages require that future problems have to be anticipated at the

early stages itself, which might not be practically possible.

3.2.1.4 Why the project can not employ it?

Eventhough there are no teams to wait for other teams in case of any dependencies, the absolute

sequential model can not be employed for the project because of the constantly changing features

19

CHAPTER 3. DEVELOPMENT METHODOLOGY

(hence requirements) and development support of the products used (Sametime as well as Social

Networks). So some kind of incremental or iterative procedures are needed for this project.

3.2.2 Agile methodologies

According to Fowler(Fowler, M 2000), in the field of software engineering, the term ’Agile’ refers
to a philosophy of software development rather than a simple process or methodology . There

are many approaches in agile including “Extreme Programming”, “Scrum” and “Crystal”.

3.2.2.1 Description

The main focus of agile methodologies according to Abrahamsson and others(Abrahamsson et al.
2002) are listed as below

e Individuals and Interactions: The relationship between software developers is more
emphasised than the processes and tools. The team spirit, close team relationships and

close working environment are enhanced by the agile practices.

e Working Software: The working version of software is emphasised more than produc-
ing comprehensive documentation. Simple, efficient, technically advanced and reusable

software is demanded for producing frequent releases of the software.

e Customer Collaboration: The customer, developer relationships are given precedence
over contract negotiations. From a business point of view, the sofware is expected to deliver

business value from the day one and thus reducing the risks of contract non-fulfillment.

¢ Responding to Change: The software development team along with customer represen-
tatives should be informed about any changes or adjustments that might emerge during

the development process.

Agile methods are very deliberate and disciplined approach to software development. It brings
the whole team together by a set of simple practices and enables the team to know where the
project is and allows them to change the practices to ensure the productivity. Agile methods
stress on customer satisfaction and are designed so that the product is delivered to the customers
as and when they need. They emphasise team work. They encourage the team members to
complete the project as early as possible and also allow customers to give any new requirements
or alter the requirements even in the later stages of the development. The practices in agile

methods are team oriented and hence more suitable for team environments.
3.2.2.2 Benefits
e Fast delivery of the software.

o Customer satisfaction.

e Allows adoption of enhancements even at later stages.

3.2.2.3 Why the project can not employ it?

All Agile methodologies are team oriented. Apart from not having a team, an iterative approach
is still required by the project because of it’s ever changing requirements in the products it uses
as also mentioned in section 3.2.1.4. So iterative approach of agile methodologies is suitable
for the project. But it’s team work focused practices can not be implemented due to resource

constraints (both time and people working on it).

20

CHAPTER 3. DEVELOPMENT METHODOLOGY

3.2.3 Rational Unified Process

Rational Unified Process shortly called as RUP (and references as RUP here onwards in this
document) is both a process and a product. RUP is a process product. It is developed by
Rational Software and it comes with a suite of development tools. Kruchten (Kruchten 2003)
says that RUP is also a process framework which is adapted and often extended to suit the
organisational needs. Fowler (Fowler, M 2000)says that RUP provides a common set of practices
and development teams can choose those practices that suit their projects. RUP is use case
driven, iterative and architecture centric. Fowler (Fowler, M 2000)also says that RUP is adapted
in infinite number of variations ranging from Waterfall woth ’analysis iterations’ to picture perfect

agile.

3.2.3.1 RUP Architecture:

The two dimensional architecture of RUP is shown in the figure3.2. Time is represented by the
horizontal axis which shows the lifecycle of the process and workflows of the core processes are

represented by vertical axis.

Organization along Time

Phases N
Workflows Inception || Elaboration I Construction _i[Tmmitlon

Business Modeling h_.__
Requirements _//'H—?‘K"“‘h —igEEeae !

Organization

along Analysis and Design = _ B 2 o _._ =
Content ; i 1
Implamentation 1 -] S .
Tias _,_. i i
Dephoyment : — i

Configuration and

Change Management B e (o e i PRMRR L St
Progect Managemen! i o o o o ol ol

Enviropnment - i i R
v BT | |0 sl el vl
lterations

Figure 3.2: Process Structure of Rational Unified Process (source: Kruchten (Kruchten 2003))

The phases of RUP are described as below:

e Inception: The project is evaluated typically by stakeholders to decide if it is viable to
do the next phase.

e Elaboration: Use cases are identified in this phase and the software is developed in
iterations. At the end of this phase, a skeletal working system should be developed that

would act as a starting point for development.
e Construction: Functionality of the software is developed in this phase.

e Transition: Activities done at later stages are included, like deployment and training,

but may not be done iteratively.

CHAPTER 3. DEVELOPMENT METHODOLOGY

3.2.3.2 Reasons why RUP suits the project:

The support for SN applications might be changed very often and so do the requirements.

So an Iterative method is more suitable.

In RUP, integration is not one big task done at the end, instead, it is done progressively.

So the approach is a process of continuous integration.

The iterative approach in RUP lets the developers mitigate risks earlier as generally more
risks are discovered and addressed at integration time. So risks discovered in each iteration

are addressed in the same iteration.

Common parts are designed and then implemented partially in the iterative approach and
this eliminates the need for identifying all the commonality in the starting phase itself

before anything is designed.

RUP mainly consists of models, developed and maintained constantly, of the system being
developed. According to Kruchten(Kruchten 2003), the models help the architects and
developers to understand the problem and shape it’s solution. Models are created or
written using UML (Unified Modeling Language). But UML does not tell the developers
how to develop software. It just provides the required vocabulary but does not essentially
help in writing the book. RUP comes along with the UML to complement it’s processes
and modeling them. Hence it is a reasonably good approach to use RUP for developing

small or large softwares.

The approach of RUP is use case driven but not process driven and hence use cases defined

for the system become the basis for the development process at any stage.

3.2.4 Methodology Adopted

The RUP methodology is not employed as is(with it’s two dimensional approach) but is adapted

as required. The Business Modeling, Requirements, Analysis are done in non iterative manner.

Design and Implementation phases are done in iterative manner where each iteration adds a use

case and then tested. Essentially the adapted methodology resembles Waterfall model except

for Design and Implementation phases along with some testing done in iterations. For each SN

integration, the whole methodology is applied again which means that it is started from analysis

and optional design followed by iterative implementation, testing and evaluation phases.

22

CHAPTER 3. DEVELOPMENT METHODOLOGY

Design

~— Implementation __—

< Testing —

Figure 3.3: Development methodology used

3.3 Conclusion

After analysing the process, benefits and shortcomings of the waterfall, agile and RUP method-
ologies, this chapter discussed why they can not be adopted in the project as they are. As many
practices of RUP suit the project, they are adopted but not as they are.

The adopted methodology for this project is a hybrid form of waterfall and RUP method-
ologies as explained in the section 3.2.4. Havind decided on the methodology to be used, the

development life cycle is covered in the rest of the documents.

23

Chapter 4

Analysis

4.1 Introduction

The development methodology is explained in the chapter 3 and the project is analysed in this
chapter as a first phase of it’s life cycle. The requirements are first analysed and then a business
model is presented along with the system analysis model. These models form the basis for the
system design. The models are the UML diagrams created using Rational Rose and hence the

chapter is organised based on Rational Rose views.

4.2 Requirements Analysis

The requirements are finalised with the help of a survey conducted for a group of users.

4.2.1 Survey Design

For the requirements analysis, a survey is conducted with simple set of questions as to what is
expected in general for a product that integrates IM and SN systems and does it really interest
the people at work and at home. The survey was just user oriented and not technology oriented.
About 25 users at work and 25 users at home were chosen for the survey. They were asked a set

of questions that help in revealing the requirements of the project.

4.2.2 Survey Questions

List of questions asked is shown in the figure 4.1. There were two kinds of questions. One is
multiple choice questions and the other is descriptive.

Questions 1 through 5 were designed to get a rough estimate of type and amount of people
interested in using this software and thus to know if this product would be useful at all. Questions

6 through 8 were designed to know the preferences of users for the integration.

Questionl,2 These questions were designed to obtain a rough estimate of people, who would
have interest in this software. People who were already using or interested in using both

IM and SN systems, would be the parties interested to use this product.

Question3 This question was designed to know if the users would like to access both systems

in single interface.

24

CHAPTER 4. ANALYSIS

Questionnaire about integrating IM(Instant Messaging) and SN (Social
Network) systems into a single application

1. Do vou use any of the IM or SN svstems? Select relevant option.
[[Neither of the systems
[CIEither of the systems
[IBoth the systems
If using only one of those, would vou be interested in using the other system?
[Iyes
[(No
3. If already using or interested in using both the systems, would vou like to use
them in a single interface?
[ves
ONe
[[IJDoes not matter
4. Are you a home user or corporate user (use them at work)?
[JHeme
[C]Corporate
Based on the notes given in the document, what type{s) of user are yvou?

bt

Lh

Please answer the following questions if your answer is “Yes” for Question 3.

6. Would vou like to use them as a desktop application or as an Intemet application
and why?

7. What Social Networks do vou want to be integrated in to vour IM?

8. What features of SN would vou like to be integrated into IM as a must?

Figure 4.1: Questionnaire

Questiond This question was designed to help analyse the results of the questions 5,6 and 7, as
home users might have different preferences of how they would like the resulting integrated

software to be and corporate users might have different preferences.

Question5 This question was designed to know what type of users and thus know their attitude
towards Social Networks. These results help to analyse the usefulness of the software in

evaluation phase covered in chapter 8.

Question6 This question was designed to know the type of interface users prefer, either internet
application which can be accessed through browsers or desktop application which does not

need a browser.

Question7 This question was designed as an other way to know the popular sites used among

the sample users.

Question8 This question was designed to get the list of features that most people generally use.
There can be many features supported by different SNs but this question helps starting

the project with most wanted features and add any other features in future versions.

4.2.3 Survey Outcomes

Out of 50 sample users, 35 were both IM and SN users who also wanted to have a single desktop
interface for IM and SN systems. The reason as analysed is that some of the users at work do

not have access to many of the social networking sites. Many of the corporate IM users, who

25

CHAPTER 4. ANALYSIS

have access to SN sites, and most of the home users do not like to keep all the SN sites open and
constantly monitor for their friends, to see if they are online and that the desktop application is
easy and flexible to use than internet application. The interesting part is about which SN sites
they use. The results were charted as a bar diagram shown in figure 4.3. The top two sites were
Facebook and Bebo. 84% of the people use Facebook (Facebook and others), 72% among them
use Bebo (Bebo and others).

The percentage of SN users of each type, as categorised in section 2.2.3.2 , out of the sample
users are charted in picture 4.2. More percentage of users (both home and office) are Faithfuls
and Followers. Though this project does not interest all Followers (The people who joined the
social sites just because others were doing or to keep up with the changing technologies or to
keep up with their peers), it would interest some of the Followers. It would interest people who
want to use SNs for the sake of keeping up with others but not for keeping up with changing
technologies, as this integration might or might not support all the services that SNs support.

100 4

90

804

704

60

50

404 OHome Users
B Office Users

30+

Percentage of Users

204

1041

Alpha Faithfuls Attension Followers Functionals
Socialisers Seekers

Types of Users

Figure 4.2: Bar diagram to show the percentage of types of users

Majority of the users at work did not want all features of the SNs for integration but just

some of the common features like
e Online presence

e Maintaining friends list

Chatting

Sending and receiving files for collaboration
e Sending and receiving emails

Some of the home users wanted all possible features for integration.

The requirements gathered are represented as use cases and modelled in section 4.3.

4.3 Analysis Modelling

UML diagrams for the project are drawn using Rational Rose and so the diagrams are organised

by the views as laid out by Rational Rose. In Rational Rose, the model is constructed based on

26

CHAPTER 4. ANALYSIS

O Facebook
B Bebo

0O MySpace
0O Others

Percentage of SN users

SN Users

Figure 4.3: Bar diagram to show percentage of social network users

the type of project and the template used for this chapter is of Java.

4.3.1 Use Case View

In Rational Rose, business use case model and system use case model are organised in use Case

view as shown in figure 4.4.

[

Business Use-Case Mode

The Use-Case Model i
;T'-. traceable to (and derives

from) the Business
Model. The system (as
described in the Use
Case Model) provides

|

Use-Case Model

Figure 4.4: Use case view

4.3.1.1 Business Use case model:

In business use-case model, each business use case represents a business process from the view
of an external user without any insight into the application. It just represents what can be
achieved by the project. The business use case represented in the figure 4.5 depicts the business
user who is a user of both Instant Messaging system and Social Networking sites. The diagram

only presents some of the usecases for following reasons:

1. The IM related use cases provided by the project will depend on the IM system chosen at
later stages. However IBM Sametime is proposed in the Chapter 1 and it provides many

usecases of which three are shown in the diagram.

27

CHAPTER 4. ANALYSIS

2. The SN use cases provided by the project will depend on the social network which is being
integrated with IM. However common usecases like GetFriends, Chat with Friends are

presented in the diagram.

4.3.1.2 Use Case Model

The use case model in RUP presents a model which supports business processes and thus describe
the behaviour of the system. Figure 4.6 is the simplified use case model of the project. It is
simplified for the reasons given in the section 4.3.1.1. The actor in the use case model is termed
as “SNIMUser” and the name is self explanatory and means that the user named by it is a Social
Network and Instant Messaging user. This SNIMUser actor realises the “User” actor in Business

use case model.

4.3.2 Logical View - Analysis Model

This View presents the analysis models. Analysis model consists of the analysis classes that
describe an abstract realisation of all the system use cases using different kinds of diagrams
including sequential diagrams, class diagrams and activity diagrams. Key classes are identified
and the brief function of them is identified. Boundary classes, control classes and entities are
modelled and related in class diagrams. The analysis model then evolves into design model.

Figure 4.7 presents the analysis model structure of the project.

4.3.2.1 Preferences Module

For user friendly integration, the project provides some preferences that users can set as per their
requirement. For example, the project proposes to support the general preferences like if the
integration is needed for a social network, the IM group(group name) to which friends from that
particular social network can be added. Figure 4.8 presents the class diagram for preferences

module. The main classes as designed at this stage are

PreferenceVault: This class represents the place holder for preferences. All the preferences

either default (when user do not select any) or user set ones are stored here for later use.

PreferenceManager: This class manages the storage and retrieval of the preferences and hence

depicted as control class.

Preferences: This class represents the preference that is being set and stored or retrieved and

hence depicted as entity class.

PreferencePage: This class can be a delegate or the UT (User Interface) itself that is presented

to the user for setting the preferences and hence depicted as boundary class.

IPreferenceManager: This interface is exposed for the SN implementation module so that
it can implement it’s own logic of interpreting the preferences and/or provide customised

preferences that are relevant to the Social Network code that it manages.

4.3.2.2 Integration Module

This module provides the basic framework and interfaces required for the Implementation mod-
ule. Integration module is the generic and essential module to all social network implementations
where as Implementation module is specific to a single Social Network. The structure of this

module is shown in the figure 4.9.

28

IN]

[l
|

SpUsIy UM IEYD

[opou 9sed ST ssauISng :G'f oInSr

gouasald 189

<<=@PN2U[==

says Buryloman [BI20S SSa00y

SPEOD] Yim S 3|l SJEUS

==B3PNaUE= @

spualy 189
<<=@PN2U[==

@ ﬂ.ﬂmuj E_“V.

Zaepaul a)6uls YBnodyy sylomiap] a8
[eD0g pue GuiBESSaly JUBISU| LI0Y SS800Y

SREOD I 1D

@ ==3pN[aUE=

==@3PNRAUE==
wslsdis DuIDeSS8|Y JUBISU| SS820Y
==3PN[EaUE=

wasis
|1 Ul SEJUOD S1asn o) sabessal UBISU| puas

a

==@3PNRAUE==

29

CHAPTER 4. ANALYSIS

MNiosgen BROS B L] splalH 198

[opout ased as() :9°F omSBIq
SUDEIYNON PUBS

MIOMIBY

[BII0S WOy SMEIS S,0U8LH 18D

LR

0} SHI0MIEN [EID0S 40 151 9 3195

-

1s114ppng pieD

AIOMIBN [EID0T B UM SIEJRSUINY

{sidjay woug)

1BSMNING

o

JI0MIBU [BID0S B J0 SpUSLY
aunuo 0] safiessaw an puag

eyD

-

=D

dnoJsy B 0] SpUsLY ppY

O saIppng |1gD

{Erop

BEEQ-2EM) SSSUISNg Wouy

=ED

1850

N

30

CHAPTER 4. ANALYSIS

Freferences Module
is used by Integrator
Module

] —

Preferences Integration
Module N = Module
A

Social Metwork
Implementation is
arealisation of

Integrator Module

|

Social Metwork
Implementation

Figure 4.7: Analysis model structure

1. General Actions for supported Social Networks: This sub module contains the
UI required for the integration of IM and SN systems. This UI for Sametime can be a
menu in the toolbar. This generic actions can lead to different UI for each of the social
network that is integrated. Figure 4.10 depicts the class diagram for this sub module. IBM
Sametime provides some extension points which allow applications to hook into Sametime
UI as part of Eclipse framework. The plugins and extension points are explained in detail
in section 6.3. In the class diagram depicted in figure 4.10, “IM UI extension point”
represents the extension point provided by Sametime API. The application proposed by
the project(referred as the current application or this application here onwards in the
document) extends or defines this extension point to provide the UI for all SNs selected
for the integration as a list of menus for example where each list item can be a menu
for actions related to each of the SNs. “Generic Menu for Social Networks supported”
represents the class that extends the extension point “ IM Ul Extension Point”. This class
provides a means to display the Ul for actions organised by the list of Social Networks. In
simple implementations this “means” can be a list of menus each for one SN and that menu
provides menu items for that particular SN and thus, “UI for single SN” will be list item
or sub menu provided by the “Generic Menu”. This is an interface because this should be
implemented by the SNs that need to be integrated. Similarly, the interfaces like “Login”
and “Logout” depicted in the figure 4.10 will be the menu items which represent actions for
that particular SN. The list of actions provided at this level depends on the availability of
SNs API. Basically the design is to provide menus one for each SN that needs integration
and that menu provides the actions relevant to that SN. This is the design followed across

all the UI extension points used in the project.

2. Group and Person Actions: This sub module contains the UI for the actions as ex-

31

CHAPTER 4. ANALYSIS

O

|IPreference Manager

@ 1.n load/save O

1.n
PreferencePage PreferenceManage
1

Lses uses dizave

’ Q) |

FreferenceVault

Preferences

Figure 4.8: Class diagram for Preferences module

1

General Actions for
supported Social Metworks

e Intemal
Integration
sy

Group and F-
FPersaon Actions

Figure 4.9: Integration Module Structure

tensions to group or person objects of the IM. For Sametime, these can be context menu
actions for group and person objects(in buddylist) which can be seen on right clicking on
a group or person. Figure 4.11 is the class diagram for Group and Person Actions sub
module. In the figure 4.11, the “Group Action Extension Point” class is an extension point
provided by Sametime to add actions to groups. The applications that extend this exten-
sion point can add custom actions to the context menu of a group in the buddy list. The
“Generic Menu for an SN” is a menu inside a context menu of the groups, which provides
the relevant actions for that particular SN. Same is the design for Person actions. Person

actions are added to the context menu of a person in the buddy list.

3. Internal Integration: This module contains the relevant code to perform the main
integration. It is a set of classes and interfaces, which when used by the Implementation
module, manages the user actions, acts as middle layer between the Ul and SN client.
It receives the actions requests from UI which it then processes along with the data from

preferences, SN Registry and other entities to generate SN client requests. It again receives

32

CHAPTER 4. ANALYSIS

IMUI Extension Point

(from Integrilion Module) O
Login
==5uhsdribe== (fromAntegration Moduls) O

Logout

{from | ntegmiion Module)

1 ==provides== 0.n .
}_O — O

Ul for single Get Friends
Generic Menu for Social Metworks _ SM From Integmion Moduk)
supported {from Integrat...)
{from Integration Module)

O

Getlogged in user

{from Integration Module)

@)

Set Status Message

{from | ntegration ko duls)

Figure 4.10: Class Diagram for General Actions

the responses from SN client, matches these responses with the IM formats and then
presents them to the user. The figure 4.12 depicts the relations between the classes and

interfaces used in this module.

Activator: It is part of the plugin architecture discussed in sub-section 6.3. This class
activates the whole plugin. It’s only after the activation that the plugin responds to

all kinds of events.

SNCommunityListener: It is part of the Sametime which listens to the community
events and thus extending this provides an opportunity to react on the occurrence of

community events.

ManagerFactory: It is part of the Factory design pattern which is defined in sub-section
5.4.2.

SNManager: ManagerFactory creates and destroys the objects of this type. This can be
extended by the specific SN module. This handles all the activities needed for the

integration.
FriendsList: It stores the list of friends (contacts from an SN).

SNSettings: It contains all the settings required for communications with the SN. It’s

simplest implementation can be a file with all the properties set.

SNUser: It is a generic class that represents a user of SN. This class when extended in

the SN implementation module, represents the user of that particular SN.

SNUserManager: It manages the list of SNUser type objects. The simplest implemen-

tation is to map person objects(Sametime’s user) to corresponding SNUser objects.

33

CHAPTER 4. ANALYSIS

==provides==

ZT: L o
==5Uhscribe== | _/

Create relevant Group Actions

Group Action Extension Generic Menu for an SN
Point

{from Integration Medule)

{from Integration Module)

{from Integration Moduls)

==gubscribe==

Ak) .

Createrelevant Person Actions

Person Action Extension Generic Menu far any SN
Paint

P =gration Moduls)
{from Integration Module)

{from Integration Module)

{from Integration Module)

Figure 4.11: Class Diagram for Group and Person actions

4.3.2.3 Social Network Implementation Module(SN implementation module):

This module, as depicted in figure 4.13, realises the modules from Integration module. This
module contains the code for one particular SN. So for each SN that needs integration, the

relevant code must be in this structure.

1. Realisation of General Actions: This sub module, as the name says, provides the
realisation of the interfaces laid out by “General Actions” sub module 1 of Integration

module. The figure 4.14 is the class diagram for this module.

Specific Menu for a Social Network: This is the specific menu for one SN which

provides menu items for generic actions relevant to the corresponding SN.

Authentication Module: This class performs the authentication tasks for that specific

SN. This also uses the “LoginForm” to present an Ul for authentication credentials.

Specific SN Proxy Client: This class is a proxy for the SN specific client and commu-
nicates with the corresponding “SN API”.

2. Realisation of Group and Person Actions: This sub module, as the name says,
realises the interfaces laid out by “Group and Person Actions” sub module 2 of Integration
module. The figure 4.15 is the class diagram for this module. It represents the involved

classes and the relation between them.

SN relevant Group Menu Creator: This is the Ul that is presented to the user as
Group action menu for the corresponding SN. This class implements the “Create relevant
Group Actions” interface that is provided by the “Group and Person Actions” (sub section
2) module in Integration module. The relevant actions are passed down to “Specific SN

Manager” from “Social Network Proxy” module.

SN relevant Person Menu Creator: This is the Ul presented to the user as Person
action menu (the context menu for the person in buddy list). This class implements the
“Create relevant Person Actions” interface provided by the “Group and Person Actions”
(sub section 2) module in Integration module. The relevant actions are passed down to

“Specific SN Manager” from “Social Network Proxy” module.

34

CHAPTER 4. ANALYSIS

S[NPOW UOTYRISIIU] [BUIAU] 0] WeISerp sse[) :gI'f oInsr

{=ynpogy uonesBsqu) wesg)

{Enpopy wonEibsu| wouy) {snpopy woneibem | wey)
1517 spuald lapuey uang IUn Lo lauas AunwiuoeD pe
L z=SlUana sadedsip==
L
{=ynpogy vonelbeu | woag)
sbumes NS
L
L L
{3npopy donsibep | wouy) {znpoy vouEibsiu) wey) {=npopy uwon =B | wo g}
labeuepy p fiope 4 1abeuep JOIB NIy
l
uq b ==58T|[BNIU|==
l
==53]E|Ndpd==
{=np oy uonE1be | wio §) {=ynpogy uoneiBzsqu) ducay) L
i a " {3npoyy SSRISISIY W)
188 NS laBeuRp B0 NS e i Rl

fsibey Mg [NEpSIUaIaLal

35

CHAPTER 4. ANALYSIS

— —

Gm”%‘i[[‘ignpsers‘m Internal Int.egration General Actions for
(from Integration Mod ..} (from Integration Mod...) supported Social Metworks
(fram Integration Module)
A A A

Implements the
interfaces laid by
Internal Integration
Module

............

Realisation of Group & Social Metwork Realisation of
Person Actions | _________________ o Praxy e o e e General Actions

Figure 4.13: Social Network Implementation module structure

3. Social Network Proxy: This sub module contains the classes that support the code that
is required to act as a proxy for the “SN client” from “SN API”. The actions from the UI
are passed down to this module. This module is responsible for the actions to be processed
and interpreted and sent as requests to the SN. The figure 4.16 is the class diagram for
this module.

Specific SN User: This is the class that represents a SN specific user and this extends
the “SN User” class from Integration Module.

Specific User Manager: This class manages the SN specific users and maps with their
unique ids and Person objects(Sametime persons) for the use of all modules mainly SN

Manager. This class extends “SN User Manager” from Integration module.

Specific SN Manager: This class extends or generalises “SN Manager” from Integration
module and performs the correlation tasks as described for “SN Manager” but for a specific
SN.

Specific SN Proxy Client: This class acts as a proxy to the actual SN specific client
available from “SN APT”.

SN API: This package is not developed as part of this project but is used as part of the

library. This package provides the actual SN specific client and it’s supporting classes.

4.3.2.4 Use case traceabilities:

This section presents the use case realisations for the use cases laid out in section 4.3.1.2 and the
sub diagrams to explain some of the important use cases. The figure 4.17 shows the use cases

that realise the use cases from use case model.

36

ANALYSIS

CHAPTER 4.

S[NPOJA[SUOI}DY [BIDUDL) JO

(A WomEN [ED0S W)

us1D fxoid NS Jwaads

(fx01d Hlomsp [Bl20S c.,_o._b.ﬂm.

IdY NS

L |

wio4uibo

8[Npal UoREIRUBLINY

<

{snpogy uonesbsy

{znpoyy vos e Beg | wang)

[E L

abes

1asn ulpafbo) 189

TRITTTY)

puslid e

o veneiBzu) woug)

Sall snelS 185

{ampoyy vonE Begu | wou

NS 316uls Jokn

uorjesijeay J0J weiselp sse[) :FI'y 2InSiq

JIOMIBN [EID0S B 10} nuaj Jynadsg

{=ne oy wamBew | way)
papoddns
SyIoMIBN [BID0S 10} NUSY JLBUAS

O

{={npoy

i uenEifs

noboT

O

u| won)

{=npopy uot= B

uifo

0

+=53pINDId== b

==a8(Upsgns==

ey won s woiy)

Lod varsusxg i

37

CHAPTER 4. ANALYSIS

SM AP

O o o..._._=fffrom Social Netwark Proxy)

s =)

Create relevant Group Actions Specific SN Proxy Client

- ; " {from Social Nets)
{from Integration Module) SN relevant Group Menu Creator {from Social Network Froscy)

Specific SM Manager

(from Sogal Metwerk Praxy)

O

Specific User Manager

o | Q

) {from Social Network Proxy)
Create relevant Person Aciions : .

SM relevant Person Menu Creator

{from Intagration Moduls) :

Specific SN User
{from Social Natwork Praxy)

Figure 4.15: Class diagram for Realisation of Group and Person Actions module

Table 4.1: Type of use cases

IM feature SN feature Application
Send Mails Send Live Messages to Friends Select Social Networks to integrate
Call Buddies Get Friends from a Social Network Get Online Presence of Friends
Add friends to a group Send Notifications Authorise the Social Network Application
Chat

The use cases can be grouped into three based on which product offers the features they
describe, if it is IM feature or SN feature or that is offered by the application (project) or related
to the integration of SN and IM. Among the use cases presented in the figure 4.17 , the table
4.1 shows the classified use cases. This section presents the detailed diagrams for atleast one of
the use cases in each type (types shown in the table 4.1). From here onwards, the application
or software developed as part of the project is referred as “Application” and the social Network

application is referred as “SN application” or just “social network application” itself.

1. Use case - Authorise the Social Network application

Brief Description: This use case allows the user to authorise the social network applica-
tion (Any Facebook application must be authorised by its owner before it can be connected
to the Facebook. This plugin also uses a Facebook application created specifically for the
purpose of the project and the application page at Facebook is shown in Appendix D).

Events: The events involved in this use case are clearly explained using a sequence diagram

as in figure 4.18

(a) User clicks the corresponding menu item to login.
(b) The application opens the login form.
(c) User enters the login credentials.

)

(d) The application sends the credentials to the social network and gets the session in-

formation.

38

CHAPTER 4. ANALYSIS

Friends List Specific SN Friends List

O

SM Settings
1 {from Intagration Moduk)
0.n /ﬁ\“ ==communicate== 1 1
0.n 1 U

SM User SM User Manager SN Manager
(frem Intzgypon Modue) {from Integy’yion Module) {from Integyfion Module) @
pecific SN Proxy Client

Specific BN User Specific User Manager Specific SN Manager v

(from Integration Wodule)

SN API

Figure 4.16: Class diagram for Social Network Proxy module

Preconditions:

(a) The social network application must be configured properly. It should be created
at the SN website and thus should have the application details like api-key and api-
secret, which are required for the communications with SN and must be stored in the

configuration file.

(b) The user currently trying to login must be the user of the SN.

Postconditions: After the application is authorised by an authentic SN user, any of the

startup tasks can be executed.

The figure 4.19 shows the activity diagram for this use case along with post login activities
in general. The application owner or creator creates the application at the SN website. The
Implementation module must know the settings or details of the application like api key
and api_secret as already mentioned in Preconditions of this usecase and should store
those values in the configuration file. The post login actions or startup tasks referred in
postconditions of the use case are shown in this activity diagram and they differ from SN
to SN but in general, they can be the tasks like Loading friends form SN and add them to
the IM buddy list, Get the status of all friends in a separate thread if getting friends does
not include this information and track the session time out . This application being only
client side desktop application, it may or may not be able to listen to the events sent by

the server. In such cases, the session time out must have to be simulated.

. Use Case - Send Notifications

Brief Description: This is an example of a feature offered by a social network. This

allows users to send notifications to other user(s) of the SN application

Events:

39

ANALYSIS

CHAPTER 4.

SOIYI[IqeaDRI], 98D 9s() :LT°F 2InSI

uoneadde
AJOMIER [BIDOS SUL aSUOUINY
SUCIEIUNOR pUAS -
SpUsLL 0 aJussald suluo 185 i W ’
P — T - - n -
/ !

==S8ZI|EQl==

21eIBa Ul 0) SyI0M]aN [BID0S 128|38

HIOMIBU [BDOS B LIOY SPUSLIL1RD e . ==ESzERl== fsss=g-3n wou) fezse-an wey)
P . ; _ SUONEIWION PUSS HI0MIEN [EID0S B YUt SIE B LINY
5 . SSE———— (zagen-55n woy)l
- - IO

[BI30S WOJ SNBIS 8 pUaNS 18D

T O
(s=sE0-35 Wwoy)
a1e16au
0 SxJomian] [BRDOS 40 IS] UL PaeS
==58Z||Eals=
(oo =sEg-2=n wag)
asn ||
(zssen-a5 woiyl (s=eEg-35n woy)

MIOMISN [BI00S B LIOY SPUSLS 18D 15114ppng 11339

(sase0-35) woy)

EUD

{=ssn-26 woy)
YloMaU [EID0S B J0 Spualy
aunuo o] safessall amm puasg

(s3sE0-25 woy)

dnols B 0] SpUaLL PPy {ssse s wouy)

salppn E { -)
<=gaEEals= O 1PN |20 (sase-sagy woy)
S|IEWT pusg
1EUD
< S8Z||E8l==

\x
r T
spualy o) sabessap s puss N ; 4 .
o - - nols e 0} spuald ppy <<SaTIEAl=>
- - . - - . L =S8TIEAlss ==8H|Edl==
" 4 saippng |IeQ
- v Y B s|ieyy pusg
__ P L
8 7 - A
— 4, 4

40

CHAPTER 4. ANALYSIS

ased asn uoryesrjdde SIomjoN [RIDOS oY) SSLIOYINY,, 10] welSerp souenbag 91§ 2Insig

_—
(si1ElaguInejuIb o)

WRADINS

SJUSIDoNS

uaissas

}---

uo|ssas

UBID fxoid

PR SED SEL FBTUEN]

(siejaguine)uibo)

El
S T E]

TBSNAING 195N UN0Jubo] LOoJuibg]

5l

[

|

Ielaquibomoys

]

1 (spelaquibouinal

BINpow

TONEINUS Uiy | SNPOUINE

s|ielaquiboman

NG J0Dads - IDUS

(uibol

41

CHAPTER 4. ANALYSIS

Application Owner Application user

Create Application on Social Networksite

Set
Preferences

FPopulate Setfings for
the Social Netwark

This Part need notbe executed
each time userfries to login
but just once by the creator of
the application

Check Preferences i
integraliog is required

Integration Mot Meeded Infegration Needed

@ Open Login Soeenand
Enter the Credentials
Unsuccessiul Auteniicatian Sticcessti
-

authentication

Start Refreshstatus Start Timeout
Task Task

Load Friends
and add to IM

®

Figure 4.19: Activity diagram for login use case and post login activities

Users trigger the action relevant to Send Notifications by selecting the corresponding
UL

Application processes the action and presents the users with a form or window which

asks for the required data before sending the notifications.
Users enter the required data.

Application wraps the data into format that SN client requires and sends the request
to the client.

SN client sends the request to the server.
Server sends the response to the SN client.
SN client receives it and forwards to the application.

Application interprets the response and if there is any error, shows the relevant reason
of failure to the users.

In case of users not having relevant permissions for the “Send Notifications” action,
and if the SN allows a way to ask them if they want to grant permissions, then the

application shows Grant Permissions dialog to the users.

42

CHAPTER 4. ANALYSIS

(j) Users response is then processed.
(k) After the user has granted permission in the last step, they can initiate the action
again.
The sequence diagram in figure 4.20 depicts the events described above.
Preconditions: The user must have authorised the application by logging in.
Postconditions: If no errors occurred at server, the notifications will be sent, if there is

any error, the user will be notified.

. Use case - Call buddies

Brief Description: This feature is offered by the Sametime IM used for the project. It
allows the users to call the contacts in the IM’s buddy list.

Events:

(a) User starts the action by selecting the Ul relevant to calling buddies. One of the user

interfaces is the context menu for buddies (person objects) in case of ST.

(b) The call is initiated and user can talk to the callee.
SNIM Uiser selects Call actiion

Are Telephony $ervices available

not available available

Does user have SUT capability

C >

Mo

yes

Extracts Phone
number fram Person

i Call is initiated :

®

Figure 4.21: Activity diagram for “Call buddies” use case

Preconditions: The user must be logged into ST and also into the SN application.

Postconditions: Call will be initiated in case of no errors and in case of errors, ST notifies

the user about the error occurred.

43

ANALYSIS

CHAPTER 4.

ased 9sn SUOIIROYIJON PUSS,, 10 wreiserp sousnbag :0g F oImSr

! nusL juensjal Spajas E
! ' U0 ISS LB JIUELE ! ' H
103U0ISSILLIB Y
B 8pooUolELLYUDDFSAEUE
D 3pOnUOeWIYIODPUSS
: apOoUO JELLILUOD ~
H ' , : H <
; " : " : =
: UONEILNONPUSS : m '
j M UuonEIUNOMNPUAS
UONEIYRONPUSS :
m : i : UONEIWIONPUSS m :
1 %81 UoIEI o pIaIuE
m : | MOPUIAUCHEILGONUBHD :
(SUOSI9 4P3II319S JUOLEI O PUSS _H_
! nusw juensjsl spajas |

GOy

NESIUERUEE]

HUBINDNG

USID MoId NS

3IPa05 JUsIp AXold NG

TB0EUER oY

UG HESI GRS NS JUi0ads - ISDEUEMNSICHEIMON PUSS | UDNEJLNON PUSS O [FRSMNING - 1asn

- [MUONEIRoN

CHAPTER 4. ANALYSIS

4. Use case - Add Friends to a group

Brief Description: This feature is part of the application and is used as part of the
integration of IM and SN. This allows user to add friends of the SN user to a group of IM
or ST in this case. This use case is initiated from the “Get Friends” interface from figure
4.10 and also as a startup task “Load friends and add to IM” shown in figure 4.19.

Events:

(a) User starts the action either by logging in or from the general actions UL

(b) The figure 4.22 depicts the events in this use case in form of a sequential diagram.

This diagram shows the general action as the starting point of the use case.

(¢) The application responds to this user’s action by running a thread that gets the friends

of logged in user.
(d) It interprets the response and returns the friends in form of SN users.
(e) It creates the contacts in a format that IM understands and maps them to SN users.

(f) It gets the preferences related to the group name to store the contacts that IM un-

derstands (referred as IM contacts or IM contact objects here onwards).

(g) It adds the IM contacts which represent the friends of logged in SN user to the IM
group.

Preconditions: The user must be logged in to IM. The user should also authorise SN
application but if has not already, then the application uses the login use case depicted in

4.18 to allow the user to authorise the application.

Postconditions: The friends of logged in user are obtained and are added as IM contacts

to a group.

4.4 Conclusion

The survey conducted in section 4.2.1 helped in framing the requirements of the software. The
survey outcomings as discussed in the section 4.2.3 provided the starting point for the devel-
opment of the software. It explained that majority of the corporate and home users would be
interested in using an integrated solution for IM and SN systems as a desktop utility. The fea-
tures that majority of users were interested in were also outlined in the section 4.2.3. Hence
the analysis models(discussed in section 4.3) focused on those features for the first version of
the software. They can be revisited for any improvements using another development cycle as
outlined in the methodology(in section 3.2.4). The section 4.3 provided the business and sys-
tem use cases and explained them using different UML diagrams. Now that the analysis of the
project is done, the models developed in this phase can be used for design phase which is covered

in the chapter 5.

45

ased asn ,dnois e 0} SpuUsLy PPY,, 10] WrISRIP aouanbag gz oInsI |

|._._._._.
—1----

dnosgo | spusu{ppE

oo o= LYSIS

sweudhogungs

JETRTITLES

JETRE]

jRigdnomoycieE

.
H
\
SUDSERYSpU3S

SUOSIE || DUTEIES S 520015

—]

suosE Mo JneE=Eed

e ndad

SIS NS TYSPUSLI4SLINSE

=

spusldEsed

—
E

{lspuauquins

P
(lepuzni=b

DESY} SPUSIY PET| UM

=pUS1Y pEC| :

LT SETEEN '

H nuspy spes| ,

—
—+

JOSID f0id NS I spu=iid = :w_.__,__

BT ey eyl = IV U = V=T =TT - JUETONS e
e EEPRET SOEURy J=5 Sy =0E, ¢ SIS T0=0s, | ISOOeJUSI U= NG Sio=0s | 5l spUsijus NS ogo=ag © S o ATl

/ O O O

46

Chapter 5

Design

5.1 Introduction

The analysis models provided in chapter 4, explain the features and behaviour of the system.
Having created the analysis models, the next phase would be to create design models which
explain the structure and components of the system.

The software architecture in relation to the existing Sametime connect architecture will be
explained in this chapter. The design models of the software based on the analysis models will

also be explained. Along with the design modules, the design patterns used are also covered.

5.2 Architecture

The main architecture of the project is illustrated in figure 5.1. As the picture illustrates, the
plugin(s) developed as part the project sits in the Sametime Connect client (the desktop client
of IBM Lotus Sametime) and so it becomes part of the client, when installed, and communicates
with Sametime server through the connect client or otherwise called as Sametime client or ST
client in short. The plugin(s) that will be designed in this chapter are shown in the box named
Sametime Social Architecture in the figure 5.1. The plugins and other components in this box
are explained here in this section.

SN Integrator Plugin is the plugin that provides common functionality and interfaces
required for each of the Social Network implementation modules represented by “SN Impl Plugin”.
It extends the extension points provided by Sametime for integrating with it and leaves the
implementation to the implementation modules.

SN Impl Plugin SN Impl Plugin;, SN Impl Pluginy and SN Impl Plugin, in the figure
5.1 represent the implementation modules for social networks (SN7, SNy ... SN,,) which contain
the respective libraries (SN library;, SN librarys ... SN library, - either readily available or
as developed as required). The libraries connect and communicate with the respective Social
network servers (SN Server;, SN Servers ... SN Server,) which process the requests made
and supply the data requested. The implementation plugins use the framework laid out by the

integrator plugin to provide the necessary data, related to the SN it represents, for integration.

47

CHAPTER 5. DESIGN

A A

SN Server; SN Server; SN Servery
=
=
g
o
=
=
2
= Sametime Sobal Architecture
2
2
SN library; SN library, SN library,
SN Impl Plugin; SN Impl Plugin, SN Impl Plugin,
SN Integrator Plugin
Community Services : : ha:y Chat Window People Telephony T 'Eer-.rice
RTC - Bu
Senvices Sic 2 C cis _ Message Bus _ Invitations Loc ation Alerts Capabilities
7
o
& =
) Login = Chat Motification Capabilities File Transfer
z
= Gither Protocols:
a= (Future)
eb Services Logging Search
J9 JCL Desktop Runtime Environment
Y

Figure 5.1: Architecture of the project - Sametime Social

5.3 Logical View - Design model

This section presents the design model of the project. This model in RUP is adapted to model
the implementation environment. It thus serves as an abstraction of the source code. It also
is considered as a “blueprint” for the structure and details of source code. It is a hierarchy of
packages which inturn consists of classes. The classes on design model are abstractions of classes
in the actual source code. The figure 5.2 shows the structure of the design model created. It
shows the implementation packages for three SNs but similar is the structure for all SNs. This
section explains the design for one of the implementation packages (Facebook implementation)
and the same can be applied for the implementation package of any SN.

Sametime Connect Client: This package consists of the SDK for the Sametime client.
The project uses this SDK for integrating SN into the ST.

Common API: This package relates to analysis model package “Integration module” which
is shown in the figure 4.7. It consists of classes that are required for plugin architecture and the
integration framework classes or interfaces that can be implemented for each SN to be integrated.

Facebook implementation: This package consists of classes needed for the integration

48

CHAPTER 5. DESIGN

]

Facebook
implementation | _______ =

Facebook library Platform

Sametime Connect

Client SDK | «2-- -~] Implementation | _________=l |eeeees -

Facehook

Common APl [£-77 Bebo Beho Library Bebo Platform

MySpace

MySpace Libra
Implementation R0 v

MySpace
Platfomm

Figure 5.2: Architectural View

of a single SN with ST. It implements the framework laid out by Common API package and
extends the basic functionality it provides. This package provides the support to the SN, for
which it is developed, by running from the ST environment hooking up with ST client through
Common API.

Facebook Library: This is the library required to integrate Facebook with ST. It used to
be supplied by Facebook directly but they stopped supporting it in May, 2008 and suggested
few alternative libraries. It is not part of the project but a library it needs.

Facebook Platform: This is not part of the project but just shown for clarity of design

model structure.

5.3.1 Common API

This package consists of the API that implementation packages need to implement for integration

of corresponding SNs. These classes are organised into four packages as shown in figure 5.3.

1 1

Plugin related Basic Plugin Actions Package Actions for
Classes & Package e L oeees 1 Extension Points
support

S

[- []
Managers User Package
Package e e e

User related
classes

Figure 5.3: Package structure of Common API

1. Basic Plugin Package: This package consists of classes related to plugin life cycle as

shown in figure 5.4

AbstractUIPlugin is a class from Eclipse framework on which ST is developed. This is

an abstract class when extended provides lifecycle methods for the plugin.

49

CHAPTER 5. DESIGN

Activator class
controls the
plugin life cycle

PluginActivator is a class designed to be the Activator for the plugin and it extends
AbstractUIPlugin.

CommunityListener is an interface from Sametime SDK which listens to community

events like community login event and community status event.

SNCommunityListener is an abstract class provided for implementation packages if

they have any functionality to perform on community events.

==Interface==
ST.communityListener

<=abstract==

arg.eclipse.ui.plugin.AbstractUJIPlugin So=ghstract== handleCommunityLoginEvent()
%==abstract=> handleCommunitySericeEvent(}
%==abstract== handleCommunityLifeCycleEvent()
%=<abstract=> handleCommunityStatusEvent()

£y

<=ahstract==

PluginActivator SMCommunityListener

l%«List:: supportedSMMgrs : SocialManager

............... %handleCommunitySenviceEvent()
Sstart() %handleCommunityLifeCycleEvent()
Pstop() i
‘S %handleCommunityStatusEvent)
getDefault() @==apstract=> handleCommunityLoginEvent()

Figure 5.4: Classes in Basic Plugin Package

2. Managers Package: This package consists of classes that manage other classes. The

figure 5.5 shows the classes that come into this package.

==zahstract==
SocialManager

:Iogin(}
M Fact ==initializes=> logout()
e A e] ‘hanmEEUdd\fListEuem(} O

N . SgetContactlist()
getSocialManag... SgetSNMamel)

%®getlserianager() BuddyListListener
Sinit()

LgetRegistry()
Sqgetinstance()

Gets the class
details of Social

Managers from a
config file

Figure 5.5: Classes in Managers Package

ManagerFactory is a factory class that instantiates manager classes for SNs. Section

5.4.2 explains the factory classes.

SocialManager is an abstract class which provides base for social networks to extend. It
will be a singleton class when extended. It provides methods for accessing other classes
which are part of implementation including User manager and Contact list and also contain
the name of social network it manages. It also implements BuddyListListener from Same-
time SDK. This listener listens to the buddy list events (Nielson, Juergensen, Menashes,
Patton & Schejter 2002).

50

CHAPTER 5. DESIGN

3. User Package: This package consists of classes that manage users. This package provides
the interfaces required for the corresponding implementation classes. The figure shows the

classes that belong to this package.

ShUser

Epfirsthame - String
&psecondMame : String

SMUserManager

%<=abstract=> getUser()
%<=abstract= putlser()

Ygetrlame()

Q

==ghstract==
SMFriendsList

%{dListbb friends : Person

Y==apstract== getContactList()
%<<=abstract== isFriend()

Y==abstract== opname()

Y==abstract== loadCaontactslob()
Y==abstract== refreshStatus OfContacts()

Figure 5.6: Classes in User Package

SNUser is the class that represents generic social network user. The class that extends
it shall represent the user of specific SN that the class is packaged for. This class acts as
a simple bean with fields or properties of person as it’s attributes and the corresponding
getters and setters as it’s operations. The attributes of the class depend on the social
network. The implementation class includes the attributes that the SN allows to use.

Similar is the case with operations.

SNFriendsList is the abstract class that represents generic friends list. The class that
extends it shall represent the friends list or contact list for the user in that SN that the
class is packaged for. This class typically consists of the list of friends of the logged in
user and some operations or methods that access this list, users in the list as well as the
methods that load the users into the list, refreshing contacts. This class is an aggregate of
SNUser class. The figure shows that it is an aggregate by reference because SNUser class

is an abstract class and can not be instantiated as is.

4. Actions Package: This package consists of the classes responsible for Ul actions. They
associate themselves with the extension points provided by Eclipse framework and act as
delegate classes for the Ul actions. These classes are designed to provide a menu of list of
SNs configured for integration where ever possible. When user selects a menu item, the
action is delegated to corresponding SN’s menu manager. Figure 5.7 shows the classes that
belong to it.

StatusChangeAction is a class from ST SDK. This is an action class for actions that

appear on the status toolbar in the ST’s main window, above the buddy list, at the end

o1

CHAPTER 5. DESIGN

ST StatusChangeAction ;
jface MenuManager
%gethenul)
FillMenul)
SMActions
) initlenu()
%populateMenui) ==abstract=
‘FLIH(} SHVi i
; iewActonMenuManager
jface IMenuCreator Sgetienu() SR B ED
®gefToolictonMenu()
SgefloolActionimage()

ST.GroupAction ST.GroupActionDelegate

O

jface IMenuListener

®getSelectedGroups()

==abstract== S rabaah
SNGroupAction SMNGroupActionDelegate
SsetactivePart()

%<<abstract== getMenuCreator() ;
%<<abstract=> isEnabled() :ge”magwesc”pmr“‘
%<<abstract== getMenu() run()

%=<abstract==filMenu()

Figure 5.7: Classes in Actions Package

of current location as shown by red rectangle in figure 5.8.

SNActions extends “StatusChangeAction” and implements jface.IMenuCreator. “Sta-
tusChangeAction” delegates the action to this class. This class is designed to display
a menu of a list of SNs configured for integration. It uses the factory method from “Man-
agers Package” described in section 2 to get the list of SNs and then populates the menu.

And the sub menus are populated using the implementation packages.

SNViewActionMenuManager is a menu manager template class. It provides methods

for providing the menu items relevant to an SN which can not be determined at this level.

GroupActionDelegate is a class from ST SDK. It provides a means for providing extra
functionality in the context menu of a group. When a user right clicks on a Group in buddy
list, a pop-up menu appears and if an application wants to provide it’s own menu item in
that pop-up then, it needs to extend this class. It needs instances of “GroupAction” class
to be added. It acts as a delegate to any actions added through the parent application and

delegates the action to corresponding Group actions.

GroupAction is a class from ST SDK. It represents a Group action. This is the class

that provides the actual action to the group’s context menu.

SNGroupAction extends “GroupAction” to represent group actions for the current ap-

92

CHAPTER 5. DESIGN

plication.

%, | Type to find name

G- G~ - | EBset m-,-'geographiclacation..l:l
: o
R . o - [

&) Contacts

Figure 5.8: Sametime Connect - Status toolbar

5.3.2 Facebook Implementation

This package consists of classes that provide the integration of Facebook with ST. Majority of
classes are designed to extend or implement the classes and interfaces in Common API package.
The classes in this package are organised in different sub-packages each providing a specific type

of function. The figure 5.9shows the structure of this package.

]]
Facebook

Actions Facebaook LI
‘\?ﬂ""-«. A
[Facebook
Base Package K= Managers
i
T A
Facebook User = Facebook
Preferences

Figure 5.9: Structure of Facebook Implementation

1. Facebook Managers: This package consists of manager classes which implement the

classes from section 2. The figure 5.10 shows the classes it contains.

33

CHAPTER 5. DESIGN

==ahstract=»
SocialManager
{from Managers Package)
Slogin)
Sogout)
‘handIeEluddw_istEwntE}
‘getContadList(} ==interface==
‘geENNam el ST.BuddyListListener
@getUserManager()
Linit()
. 4]
S ==Thread==
rz' LoadContactsOfLoggedinPerson
@loadFriends()
’ %addToBuddyList()
FacebookMgr
& session

%sendEmailMofificati..

%sendnotification()

SsetlyStatusText()

, % getContactList()
==TimerTask== ‘getCIlent(}
TimeOutTask | theTimeQutTask handleBuddyListEv._.
%oetinstance()
-dient
FacebookClientWrapper
{from Bass Package)
+gettings $getFbUser)
$getFblUsers()
FacebookSettings $getonlineStatus()

(from Baze Packags)
@conﬂgFile - String
: Ebapi_key - String
==TimerTask== &api_secret : String
RefreshStatusTask &isDeskiop : Boolez..
%-Iogin_url TURL
&permissionsURL :...

“heRefreshSfatusTask

®gad()
SgetApiKey()
SgetApiSecret()
get oginURL(Y

Figure 5.10: Classes in Facebook Managers package

FacebookMgr is a class that extends “SocialManager” class from Managers Package. It
provides the methods related to Facebook features. It maintains the references to other
manager classes, the client proxy class, settings class and some helper tasks which in-
clude RefreshStatusTask and TimeOutTask. It also implements the BuddyListListener for
handling the buddy list events.

RefreshStatusTask is a timer task which is designed to execute periodically. This task,
when run, makes a request to Facebook to return the status of the friends of the logged
in user. This is needed because, this application being a pure desktop client application,
there is no way for it to listen to any server events and hence the functionality is simulated

using timer task.

TimeOutTask is a timer task designed to execute periodically as with RefreshStatusTask.
The period is obtained from preferences. This task is used to simulate Facebook session

time out.

LoadContactsOfLoggedInPerson is a thread that runs shortly after the user logs in.

o4

CHAPTER 5. DESIGN

It loads the friends of the logged in user by requesting Facebook, interpreting the results
and creating SNUser objects. It then populates the SNUSerManager.The delay is used to

avoid Ul freeze soon after user is logged in and thus the loading process is done in the

background.

FacebookMar

%sessiun

%sendEmail Noffication()

$sendMofification(s +fblgr %create Loginltem()

WcethyStatus Text() %createLogoutttem() — [————————— =
¥getContactList) %create EditStatusitemn()

BgetClient() %create AddMettemi)

®handleBud dyListEvent() %create GetFriendstem()

Ygetinstance()
%getienuManagen)

==abstract==
ShViewActionMenulManager
(from Actons Package)

®getToolActionMenul)
SgetToolActionImagel)

FacebookMenulgr

FhEditstatusDialog
{from Facebook Ul)

Figure 5.11: More classes in Facebook Managers Package

FacebookMenuMgr is a class that extends “SNViewActionMenuManager” from Com-
mon API package to provide common actions for Facebook including login, logout and

change status.

. Facebook Actions: This package consists of classes that are related to user actions. The
classes extend or implement the action classes and interfaces designed in Common API’s

Actions package shown in figure 5.7. Figure shows the classes in this package.

FbGroupMenuCreator is a class that creates the group actions. A group action is
a menu item seen in the context menu of groups in the ST buddy list. The figure 5.13
shows an example Group action called “Add Contact” outlined in red for the group “Work”.
Similarly this class is designed to create group actions relevant to Facebook. The actions
“SendNotificationEmailAction”, “SendNotification Action” and “SendLiveMessageAction” as
shown in figure 5.12 are designed at this point. But for better accessibility, there will be one
single group action for each SN and so in this package, the group action will be “Facebook”

which will be a menu of actions each for supported feature.

FbGroupAction is a class that is a group action itself. It extends SNGroupAction (an
abstract class provided by Common API). It consists the menu creator which returns the

group features provided by Facebook.

%)

CHAPTER 5. DESIGN

<<abstract=>
SMGroupActon
{from Actions Package)

<<abstract=>
SMGroupActionDelegate

{from Actions Package)

S<<apstract== getMenuCreator()

®<<abstract== isEnabled()
S<<apstract== getMenu()
®<=ahstract== filMenu()

SsetictivePart()
%getimageDescriptor()
$run()

FhGroupAction

4

%gethenu()

groupAction FbGroupActionDelegate

Sfillenu()
%getMenuCreator()
%isEnabled()

ST LiveMameActionDelegate

SendMaotificationEmailAction

%run()

\

SendMotificationAction

FbhGroupMenuCreator

FbPersonAction

ChatDialog
{from Facebook UIY

Srun()

SendLiveMessageAction

/
\1’

Srun()

Figure 5.12: Classes in Facebook Actions package

FbGroupActionDelegate is a class that creates the group action and returns to the

runtime while displaying the group context menu.

-r' IBM Lotus Sametime Connect - Suser12@emerald.adteck
File Edit View Tools Help

% Type a name o

B-@Q - -~ | & computer + 5 Home A

QB-¢DE&G-E
&) Contacts
= 22 Work (1121

Add Subgroup...
Rename Group...
Chat

@ Call

q_lTﬂ Instant Meeting
Available Toals...

Send 3

Figure 5.13: Example for ST Group Action

ST.LiveNameActionDelegate is a class that allows application to add actions to live

names. Live names in ST are the contacts in buddy list and they are so called because of

the inline status notification of contacts. Users can see the actions, added using this class,

in the context menu of the contacts(live names or persons), in the buddy list. The figure

96

CHAPTER 5. DESIGN

5.14 shows an example of person action or livename action called “Chat” outlined in red.

FbPersonAction is a class that extends the ST’s person action interface “LiveNameAc-

tionDelegate” for providing person actions relevant to Facebook.

SendNotificationEmailAction is a class that represents both a person action and a
group action, when run, sends the email notification to the person in case of person action

and to the group in case of group action.

SendNotificationAction is a class that represents both person and group actions, when
run, sends a notification to the person in case of person action and to the people in group

in case of group action.

SendLiveMessageAction as with the actions above, this class, when run, sends a live

message to the relevant people. But it needs the receiver(s) to be online.

<! IBM Lotus Sametime Connect - Suser12@emerald.adtech...
File Edit View Tools Help

% Type a name or phone number
@-Q-Q-a- | &R Computer - 5 Home
QB-@dEE-B

&) Contacts
= 88 work (1/3)
Ol SUT Useri2| @ SUT User12
£) chat 144 / Navan, Meath,
5
S8 cal B Home

(8] Instant Mesting

Available Tools...
Send 4

Alert Me When Available
Alert Me When...

Privacy Lists...

Figure 5.14: Example for ST Person Action

3. Facebook UI Package: This package consists of classes related to any custom UI created
for Facebook. Figure 5.15 shows the classes of this package.

jface.Dialog

‘ﬂpen(} \

MotificationWindow

ChatDialog

FbEditStatusDialog FoGrantPermissionDialog

FbLoginDialog

Figure 5.15: Classes in Facebook UI

All the UT designed at this stage are windows or dialog boxes for various purposes. All of

these dialogs extend jface.Dialog from Eclipse framework.

57

CHAPTER 5. DESIGN

ChatDialog is used to exchange live messages with online Facebook contacts.
FbEditStatusDialog is used to change the status text of the logged user.
FbLoginDialog is used for authorising the SN application using Facebook credentials as

named as login process in the context of this application.

FbGrantPermissionDialog is used for granting any missing permissions. The SN appli-
cation should have user permissions for certain tasks like email permission to send emails
to a Facebook contact.

NotificationWindow is used to send notifications or notification emails to Facebook

contacts.

. Base Package: This package consists of classes that are used generally by all packages.
Figure 5.16 shows the classes that come into this package.

]

Facebook library

(from Design Model)

Facebook Constants
_l%F'REF_IS_INTEGR&TION_NEEDED
& PREF_GROUP_NANME B
@PREF_CONNECTI OM_TIMEOUT -
Q}DEFAULT_GROUF‘_NAI‘-AE ’
FacebookClientWrapper
®geff bUsen)
FacebookUtil BgetfF bUsers()
SgeffriendsOf)
QcreateContactid() *getonlineStatus()
BextractContadid()
%isFace bookUser(
Facebook3ettings
& configFile : String
= =<eMum== &wapi_key : String
FacehookChatstatus %api_gecret: String
_I%chatstatus (String %isDesmnp - Boolean
login_url : URL
er . Loads from
EupermissionsURL: URL| Config file
Blpad()
Lgetipikey()
SgetapiSecret()
BisDesktopApp()
BgetloginURL()
‘getF‘ermissinnsURL(}

Figure 5.16: Classes in Base Package

FacebookConstants is designed as a placeholder for any constants used in the project.

The constants shown in the figure 5.16 as attributes of this class are preference constants.

FacebookUtil is designed as the utility class for Facebook implementation package. It
consists of commonly used methods in the project which might include creating recognis-
able contact ids for Facebook contacts. The word “recognisable” signifies that application
should be able to identify the contacts using the contact id because there can be certain
features which should only be available to Facebook contacts. The application should also
be able to extract the id of the users that Facebook provides so that Facebook recognises
them.

98

CHAPTER 5. DESIGN

FacebookSettings is a class that wraps up all the parameters required for the integration.

It loads the parameters from a file.

FacebookClientWrapper is a class that acts as proxy to the Facebook client from Face-
book library. It delegates all the requests to the client from the API after wrapping all the
parameters required for it to process the requests. It also helps in changing the formats of

objects between Facebook and ST.

. Facebook User Package: This package consists of the classes related to Facebook users

(user objects). The figure 5.17 shows the classes that come under this package.

=<abstract=>
SMFriendsList

{from User Packags)

ShUser

SMUserManager

&==List=+ friends : Person

$<=abstract== getContactList()
$=<abstract== isFriend()

{from User Packags)

&firsthlame : String

{from User Package)

&secondiame : String

Soabstract== getlser()

==Interfaces==
ST.PersonListener

-
¢
-

4.
‘qqa bstract== opname() ‘getName[} ==absiract=> putUser()
®==apstract== loadContactsJob()
%==abstract== refreshStatus OfContacts()
FacebookUserMgr
FhFriendsList l%personr-ﬂap -Map
Facebooklser &userilap : Map
Qresetc ontadlist(} Q}proﬂIeFieIds . FacebookAPILProfileField ‘getUser(}
userLoggedOut()] SgetPerson()
disFriend) FaadField) ®handlePersonEvent()
@getill Contactds() Pgetrield() ®hasUser()
getContactList() 3 ®hasPerzon()
®rosetlUsers()
-profileFields
4oadCdontadslob P ——
ProfileField
L q;ghriag‘:j b {from Facebook library)
padtontadso EyfieldMame : String
%run()

%populatePersons()
%refreshStatusOfContacts()

Figure 5.17: Classes in Facebook User Package

FacebookUser is a class that represents a Facebook user. It does not have any knowledge
of ST. The attributes or properties of the Facebook user are maintained using an enum

class called “ ProfileField” which is provided by Facebook library.

FacebookUserMgr is a class that manages the Facebook user objects and the ST version
of users called “Person” objects. It also maps between the two formats. It also implements
“PersonListener” from ST to listen to Person events to maintain the consistent list of person

objects and Facebook user objects in case of deletions of contacts in the buddy list.

FbFriendsList is a class that extends “SNFriendsList” class from “Common API” package.
It contains the list of friends of logged in user as references to “SNUser” type objects. It

acts as a simple bean for the friends list.

LoadContactsJob is a thread, when run, loads the friends of the logged in user and

converts the Facebook users into ST persons. It also refreshes the status of friends.

99

CHAPTER 5. DESIGN

6. Facebook Preferences: This package consists of classes related to preferences. It allows
users to set some preferences for Facebook. The figure 5.18 shows the classes that come

under this package.

=<|nterface== jface FieldEditorPreferencePage
eclipse lWorkbenchFage
SperformOK])
b SpropertyChanged()
eclipse AbstractPreferencelnitialiser
FacebookPreferences
Freferencelnitialiser
Sinit()
initialiseDefaultPreferences() ScreateFieldEditors()
SpeformoK)

Figure 5.18: Classes in Facebook Preferences Package

FacebookPreferences is a class that creates a preference page for Facebook in ST prefer-
ences window. It extends “FieldEditorPreferencePage” from jface to manage any changed

preferences and implements “IWorkbenchPage” from Eclipse to create a preference page.

Preferencelnitialiser is a class that extends “AbstractPreferencelnitialiser” (from Eclipse
framework) to support preference initialisation. This class typically provides the default

values for the preferences which are used when user does not set any preferences.

5.4 Design Patterns:

This section describes the design patterns used in this project directly. The software used while
implementating this project might have many other design patterns followed but they are not
covered here. For example, the programming languages might have used design patterns includ-
ing Iterators and Composite and SN libraries might have used Proxy pattern for communication

with the respective server.

5.4.1 Singleton

This is one of the commonly used creational patterns. Creational patterns are those which are
used while creating objects in OO (Object Oriented) applications.

Brief Description: This design pattern ensures that a class has only one instance. Certain
pieces of software need some classes to have exactly one instance like single printer spooler in a
printer network, a single database connection in an application. Such classes are called singleton
classes. A singleton class itself is responsible for not allowing more than one instance of itself to
be created. It also provides a way to access the single instance. This is called Singleton pattern.

In this project, the Manager class shown in figure 5.10 is an example of Singleton class.

Example code for a Singleton Class is in the figure

60

CHAPTER 5. DESIGN

public class ConsoleLogger {
private static ConsolelLogger clogger:

ffPrivate constructor is used to avold other

/fclasses from instantiating this singleton clas:

private ConsoleLogger(){
}

//public method to get the instance of this singleton
public static Consolelogger getInstance () {
if({clLogger == null){
cLogger = new ConsoleLogger ()
}
retorn cLogger:

'Other methods

public void log(String msg) {
//Code to log the message
System.ocut.println(msg):;

Figure 5.19: Singleton Pattern Example

5.4.2 Factory Method

Factory Method is another creational design pattern.

Brief Description: In some scenarios, an object might not know which class of a known
class hierarchy it should instantiate. It might only know the class hierarchy but not the exact
subclass among a set of subclasses of the common parent class. The reason might vary from
situation to situation. Some times the decision might depend on the configuration settings or
sometimes the state of application. In such cases, this design pattern is used. It recommends
encapsulating the selection criteria to be implemented in a designated method and calls it the
factory method. Thus the factory method selects an appropriate class from a known class
hierarchy based on the implemented selection criteria, instantiates it and returns the instance
of the parent class type. As it returns the object, of required class as parent class type, the
application object, which calls this method for the instance, does not need to know about the
exact class in class hierarchy. In this application, the ManagerFactory class shown in figure 5.5
is used to create SocialManagers based on the configuration file. A simple implementation of
this factory pattern decides whether to use local file logger or send the log messages to a remote
system based on a configuration file. The figures 5.20 and 5.21 show a simple example of how

this can be implemented.

61

CHAPTER 5. DESIGN

//Buperclass
public clas=s Logger {

public wvoid log(String msg) {
SFAhny default implementation like System.Cut

J{ L subclass for Logger
public class FileLogger extends Logger {

public wvoid log (String msg) {

SFffile logger implementation
/S To print log message to a file

f/Another subclasz= of Logger
public class RemoteLogger extends Logger {

public void log(String msg) {
S/fImplementation of remote logging.

/fCclass that uses factory method to get the appropriate logger instance.

/It need not know which type of logger to use.

public class ExampleFactoryMethod {
public static void main(String[] args) {
LoggerFactory 1lf = new LoggerFactory():

Logger logger = 1f.getLogger():
_logger.log("Test log message");

Figure 5.20: Class Hierarchy that factory method knows

62

CHAPTER 5. DESIGN

public class LoggerFactory {

//Read configuration file
public String getLoggerTypeToUse () {
ffCreate Properties object to hold the configuration file's contents
Properties prop = new Properties():
try {
prop.load(ClassLoader.getSystemBesourceldsStream ("logger.conf™))
retuorn prop.getProperty ("Logger to use™);
} catch (ICException e)
'y TODD Auto-—-generated catch block

AT

e.printStackTrace():
}
retorn nmll;

//Factory method that implements the selection logic and

JSfreturns the instantiated object at runtime

public Logger getLogger () {
String loggerType = getlLoggerTypeTolse ()
if({loggerType!=null && loggerType.equalsIgnoreCase ("remote™)) {
retorn new RemotelLogger():
}
retnrn new FileLogger():

¥
S fClas= that uses factory method to get the appropriate logger instance.
f It need not know which type of logger to use.

public class ExampleClass

public static void main(String[] args)
LoggerFactory 1lf = new LoggerFactorv():
Logger logger = 1f.getLogger():
_logger.log("Test log message™):

Figure 5.21: Sample code for Factory Method and an application object that uses it

5.5 Conclusion

The architecture of the project was explained in relation to the Sametime connect architecture.
Design models of this project were created based on the analysis models from chapter 4 and the
architecture explained in section 5.1. The models were UML diagrams created using Rational
Rose and most of them were class diagrams. This chapter also presented the brief idea of where
would the UI, developed as part of the project, be seen in the Sametime Connect client. The
what and why of the design patterns used were also explained along with sample code. The
models created in this chapter would be developed to create a working version of the product

using appropriate software and this is covered in the chapter 6.

63

Chapter 6

Implementation

6.1 Introduction

The design models developed in the chapter 5 were used in the implementation phase of the
software, to develop the classes required. Hence the implemented software could be organised
based on the modules created in the design phase. Implementation phase now should comprise
of activities including selecting appropriate softwares and implementing the design models to
form the workable software. These activities are covered in this chapter along with any issues
faced during implementation and how they were overcome. The result of this phase would be a
testable software. This phase was done in iterations each iteration to implement one use case.

This phase again can be repeated for each SN that has to be integrated.

6.2 Choice of Softwares

This section presents some of the decisions made for choosing a social network to integrate with
IBM Sametime.

6.2.1 Choice of IM

The choice of IM is already made as mentioned in chapter 1 to use IBM Lotus Sametime. The

choice is also supported by some points mentioned in the listing below

1. IBM Lotus Sametime provides extensible development environment by making use of

Eclipse framework. This framework is explained in detail in section 6.3.

2. It is an award winning solution (IBM Lotus Sametime n.d.) for communication and col-

laboration.
3. It is an enterprise solution which also allows the public IMs through Gateways.
4. Tt allows telephoning the contacts added.
5. It provides rich user experience.

6. It provides good security.

64

CHAPTER 6. IMPLEMENTATION

6.2.2 Choice of Social Network

There are many social networks to choose from. The idea is to provide integration to any
social network regardless of what type of SDK they provide. The design modelled in chapter 5
is generic for all social networks and the implementation differs based on the technology of the
SDK the corresponding server supports. Thus the technical details are left to the implementation
modules. So the implementation is started with one SN and the implementation for other SNs
will be planned as time permits. Adding an implementation module for another SN can be done
as a new iteration or completely as a new version for the software.

Many social networks do not provide any information about the development support. It was
not a straightforward research to find out about the development support in case of many SNs
except a few including Facebook, Bebo, Myspace, Friendster and Orkut. The following listing

briefly presents some research done while choosing initial SN for implementation.

6.2.2.1 Facebook

1. The initial motivation was the small questionnaire, filled by a some SN users, in the
Requirements phase outlined in section 4.2.1. It showed that most of the corporate and

home users use Facebook.

2. Facebook also claims that there are about 120 million active users (Facebook Press Room
n.d.) as on November 2008.

3. Tt provides development support in wide range of technologies including REST (R Epresentational

State Transfer), PHP, Python, FBML(Facebook Markup Language), FQL(Facebook
Query Language) and Ruby. REST is helpful to use in desktop application.

4. There are many open source libraries available though Facebook has stopped official sup-

port for Java, so there would be no need to implement a library anew.

6.2.2.2 Bebo

1. Bebo provides development support in Java, PHP and Ruby. Java can be used in desktop

applications.
2. There is no official information on how many active users are there.

3. Some of the API only assume the users who are members of the application being imple-
mented while processing the requests. For example API related to getting friends of a user
returns only the friends who are also the members of the current application (which sends

the request).

6.2.2.3 Orkut

It provides development support only in OpenSocial 0.7. OpenSocial 0.7 only supports online
applications (either run on OpenSocial’s sandbox or a custom one). So it does not suit the
development of desktop application. OpenSocial 0.8 supports desktop applications and the API

of this version is not yet available .

65

CHAPTER 6. IMPLEMENTATION

6.2.2.4 Hi5

It provides OpenSocial 0.8 support which allows REST API and thus supports the development
of desktop applications. But, the API is still in Beta as of September (Hi5 2008). It provides a

separate Sandbox, betasandbox.hi5.com, to run Hi5 applications .

6.2.2.5 Plaxo, MySpace

They provide REST API but there is no official library. Hence a custom client library has to be
implemented.

So as a proof of concept for the integration of social networks through a common API,
Facebook is chosen as a starting point to integrate with Sametime. Rest of this chapter presents

a walk-through of the development stage of the project.

6.2.3 Software

The softwares used for development and testing of this project are outlined in the table 6.1. It

lists the type of software used, it’s name and version and brief reason why used it and how.

Table 6.1: Softwares used in the project

Software type Software name Software Version | Why and Where
. . The system used to develop the
Operating System | Windows XP SP2 software and test it
Operating System | Windows 2000 SP4 Used only for testing
Operating System | Ubuntu (Linux) 8.0.4 Used only for testing
IDE Eclipse SDK 399 For developmegt of plugins .(both
integrator and implementation)
Java Compiler Java SDK 5.0 Usesi for development and
testing
. Runtime recommended by
Java Runtime J9 JCL Desktop 6.2 Sametime SDK
Product Source Sametime Internal API 8.0.1 Useq for. developing a sametime
application
Product Sametime Connect Client | 8.0.1 Used to run the application
Library Facebook Client library 1.8.0 beta and final Used to deve'lop Facebook
implementation module

Latest Facebook library available at the time of implementation was 1.8.0 beta but by the
time implementation finished it was 1.8.0 final. So the application was verified with both the
versions. At the time of documentation of the project, the latest version was 2.0.3 with which the
application was not tested. 1.8.0 final version of the library is available at Google code website
(Google Code 2008).

6.3 Plugins and Extension points

Eclipse platform is a framework used to build any sort of IDE. This is the framework used by
Sametime Connect client. So the same framework is used for the development of the project,
Sametime Social. Eclipse IDE is built based on plugin architecture. A plugin, in Eclipse, is a
basic unit of function or component. The Eclipse platform itself is composed of plugins and so
are the tools that extend it. A plugin is packaged with everything required to run the component

for which it is built. It also consists of a manifest file called plugin.zml. The details including

66

CHAPTER 6. IMPLEMENTATION

interconnections with other plugins, it’s dependencies and visibility of it’s classes to other plugins
are contained in this file.

A plugin will be able to expose parts of it’s functionality to other plugins, as well as, use
functionality exposed by other plugins. These requirements will also be declared in the man-
ifest file. The declarations pertaining to the functionality exposed to other plugins are called
“Extension Points” and the declarations pertaining to using the functionality exposed by other
plugins are called “Extensions”. When the Eclipse application is run, all the available plugins
are discovered by the platform and the declarations in the manifest files are processed and the
plugins are linked together. A plugin, by default, is activated when the code in it has to be run;
but this can be configured to be activated at the time of application launch. A plugin, when
activated, will be provided it’s own class loader. This class loader enforces the visibility, of the

classes and functionality, as declared in the manifest file.

6.4 Integrator Module

This is the plugin that integrates social networks with Sametime connect client and thus pro-
vides users a single interface to access both Instant messaging and Social Network systems. It
provides the common framework for the integration which is then used and implemented by the
implementation modules. This section explains how this plugin works. This plugin is spread

across different packages depending on the type of functionality it provides.

6.4.1 com.dit.st.sn.integration

This package contains the classes that are required as a plugin and required to be at the plugin

level.

Activator is a class that every plugin must contain and it controls the life cycle of the plu-
gin. On start of the plugin (when plugin is loaded by the runtime), it initiates all social
managers. But the list of social networks to initialise is not known at this time and so a
separate ManagerFactory is used which returns the social managers for the SNs that need

integration.

SNCommunityListener is an abstract class that provides a way for the implementation mod-
ules to listen to the community events including CommunityLifeCycleEvent, Community-
LoginEvent, CommunityServiceEvent and CommunityStatusEvent. These events are ex-
plained in detail in the toolkit (Ott 2008)

6.4.2 com.dit.st.sn.integration.manager

This package contains the classes that manage other parts of the plugin and are explained in

this section.

ManagerFactory is a class that manages the instances of the social managers that are config-
ured for integration. Each social manager manages the requests, responses and supporting
objects related to one SN. ManagerFactory reads the list of social managers and the loca-
tion of manager classes from a configuration file. The file (SNList.conf) used in the project

contains the entries for Facebook and Bebo as shown in the figure 6.1.

After reading from the file, it instantiates each of the social managers using reflection and

maintains them. The code that does this work is shown in the figure 6.2

67

CHAPTER 6. IMPLEMENTATION

Contents of a configuration file that ManagerFactory class loads

List of Social Network managers ready for integration

Format used is <SN name> = <SN Manager class location>
Facebook = com.dit.st.sn.integration.Facebook.impl.FacebookManager

Bebo = com.dit.st.sn.integration.Bebo.impl.BeboManager

Figure 6.1: Sample contents of SNList.conf used by ManagerFactory

snMgrClassNames = loadMgrClassNames () ;

Set zet = snMgrClasslames.entrySet():

Iterator i = zet.iteratoxr():

while(i.hasNext()){
Map.Entry entry = (Map.Entrv)i.next();
String socialManagerClassName =(5tring) entry.getWValue () ;
Clas=s cl = Class.forName(=socialManagerClassName) ;
java.lang.reflect.Constructor constr = cl.getConstructor (clParam);
snMgr = (SocialManager) constr.newlnstance (objParam):
snMgrs.put (snMgr . getSHName () , snMgr) ;-

Figure 6.2: Code that reads the SNList.conf file and instantiates the SN managers

6.4.3 com.dit.st.sn.actions

This package contains the classes that extend the extension points of sametime connect client.

These classes are later used by implementation modules.

SNActions extends the class called StatusChangeAction which allows it to display a Ul com-
ponent at the location shown in figure 5.8. StatusChangeAction is available from the
toolkit. This class also creates a menu with a submenu for each of the SN. The submenus
are created by the SN implementation modules. For the menu to appear at the status
tool bar, the plugin has to contribute to the extension point, org.eclipse.ui.viewActions, as

shown in the figure 6.3.

<extension

point="org.eclipse.ui.viewhctions">
<viewContribution

id="com.dit.st.=sn.i

targetID="com.ibm.collaboration.realtime.imhub™>
<action
class="com.dit.st.sn.integration.actions.SNActions"™

icon="images r-friends-blue.gif"”
id="com.dit.st.sn.integration.actions.SNactions"®

style="push"

tooltip="Common actions for Social Networks",/>
i
</viewContribution>
</extension>

Figure 6.3: Code that contributes to extension point, org.eclipse.ui.viewActions

68

CHAPTER 6. IMPLEMENTATION

It shows the menu as an icon(the image - images/My-friends-blue.gif , the relevant code is
shown in figure 6.3). It generates the submenus at runtime depending on the available SN

implementation modules. This code is shown in the figure 6.4.

Collection<SocialManager’> snMgrs = Actiwvator.getDefault() .getLoadedSNMgrs () :
if | snMgrs!=nunll && snMgrs.size()>0){

snltr = snMgrs.iterator():
while (snItr.hasNext()) {
anMgr = (SocialManager)snltr.next():

if (znMgr'!'=nmll) {
mi = new MenuItem(menul2,SWI.CASCADE) ;
mi.zetText (anMgr.getSHNamea ()) ;
mi.setMenu (znMgr.getMenuMgr () .getTooclhctionMenu (mi)) ;
mi.setImage (snMgr.getMenuMgr () .getToolActionImage ()) ;

Figure 6.4: Code that populates menu in the status toolbar

SNGroupActionDelegate extends the ST class GroupActionDelegate in order to add a new
group menu to the group’s context menu in ST buddylist. For this reason, it contributes to
the extension point called org.eclipse.ui.popupMenus and to the object, com.ibm.collaboration.
realtime.livenames.GroupSelection, as shown in figure 6.5. The application after contribut-
ing to the relevant extension point, should also be able to handle the group events (like

events generated when user selects the group menus). For this, it should provide a delegate

class that extends com.ibm.collaboration.realtime.people.internal.livenames. GroupActionDelegate.

SNGroupActionDelegate serves this purpose and handles the group events. This class pop-
ulates the menu whose menu items are the SNs configured for integration. The code that
provides this functionality is similar to code shown in figure 6.4. Each such menu item is
in turn a menu for the group actions available for that particular SN and is implemented

in class, SNGroupAction .

<extension
point="org.eclipse.ul.popupMenus™>
<objectConctribution
adaptable="false"

id="com.dit.=st.sn.integration.
objectClass="com.ibm.collaboration.realtime.livenames.GroupSelection™
<action
class="com.dit.stC.sn.integration
id="com.dit.st.=sn.integration.actions.SNGrouphctionDelegate™
label="SN Group Actions"
menubarPath="additions"
=ztyle = "pulldown",/>
</objectContribution:
</extensiony

Figure 6.5: Code that contributes to extension point for adding actions to Groups

SNGroupAction creates a group action menu which is relevant to a particular SN. Such menu

will be displayed inside the generic menu created by SNGroupActionDelegate. This ab-

69

CHAPTER 6. IMPLEMENTATION

stract class is to be implemented by the implementation modules for adding relevant group

actions.

6.5 Implementation Module for Facebook

com.dit.st.sn.integration.facebook.*

These packages consists of classes related to Facebook implementation. These packages collec-
tively form an implementation module for Facebook. This module implements the integration
module discussed thus far in this chapter. The implementation modules for different Social net-
works are pluggable. Addition or removal of each implementation module just adds or removes
the integration of the SN, it represents, with ST. This section shows the important parts of
Facebook implementation. For Facebook implementation, this project uses REST API provided
by Facebook platform because this project is designed to be pure client implementation.

Configuring an implementation module involves only two steps enlisted below :

e Implement the module using the framework laid down by integrator module and based on

the technology planned to use for communicating with SN server.

e Provide the location of SocialManager to the integrator module in the file SNList.conf as

shown in figure 6.1.

FacebookManager is a class that manages the functionality and coordinates the objects of the
Facebook implementation (of the integrator module). When plugin is loaded, the integrator
module instantiates all the configured SNs. In initiation phase, a SocialManager loads
the FacebookSettings which contains the information related to the Facebook application
created at the Facebook website. The information required for creating a proxy client
to make further Facebook requests on behalf of the Facebook application are populated
in the settings.conf file. The mandatory properties are shown in figure 6.6. Then it
initialises FacebookMenuManager which displays the Facebook related common actions in
the ST status toolbar and FacebookUserManager which maintains the Facebook users and
corresponding ST objects . It also listens to the BuddyListListener to handle buddy list
events for example, on expanding a collapsed group (which causes a buddy list event),

refreshes the status of the group members.

api key = I ——

secret = ——

login _url = http://www.facebook.com/ login.php?v=1.0&askipcookie=1
grant permission url = http://www.facebook.com/authorize.php?v=1.0
desktop = 1

Figure 6.6: Sample Settings.conf for Facebook

On login action, this class starts three tasks to simulate client-server event handling mech-
anism. After a user logs into the Facebook application, Facebook manager starts an asyn-
chronous task that loads all the friends of the logged in user. It is implemented asyn-
chronously to avoid any delays caused by the requests and responses involved in getting
the friends list. Batch API is used to get the user information of the friends list to increase

the processing speed. Second task is a timer task which runs periodically given the period.

70

CHAPTER 6. IMPLEMENTATION

This task simulates session timing out. Users set the session timeout period and it is sent
to Facebook as session timeout parameter while logging in. So the timer task informs the
users that their session has timed out at the server. Users will be transparent to this task
and tries to relogin. Third task is also a timer task whose period is again implemented
as a user preference and this task refreshes the status of all the friends of the user. The
general implementation in case of non desktop applications would be that the client regis-
ters with relevant events and will get the user status change events from the server. This
task simulates this functionality except that it is done periodically but not as soon as the
status change happens. In case of smaller refresh periods, the lapse between actual status
change and when it is visible in ST narrows down but at the cost of more traffic. The code
that does this is shown in the figure 6.7 . All these tasks are stopped when user logs out

of Facebook as well as ST.

'/ Refresh status of the contacts regularly

TimerTask tt = new TimerTask()

e
BLUwerrl

public void runi()
ContactList cl = getContactlList():
if (cl '= nunll)
cl.refreshStatus0fContacta () ;

+
}
¥
if (refreshStatusTimerjok == nnll)
refreshStatusTimerjok = new Timer();
} /f 3 minutes in milliseconds

refreshStatusTimerjob.schedule (tt, new Date(), 3 * &0 * 1000);

Figure 6.7: Timer task that refreshes status of Facebook users

FacebookManager also maintains the list of user properties to retrieve from Facebook. In
Facebook terminology, the user properties are called ProfileFields. At the time of creation
of user’s friends list, it gets the user fields from Facebook and creates Facebook users and
then create ST users and stores them in user manager. This is done using the code shown

in figure 6.8.

FacebookUserManager manages all the user related objects in both Facebook format and
ST format and provides mapping between them. It supplies the users in either Facebook
format or ST format as requested and caches the logged in user. It also clears all the users
on receiving user log out event or community log out event and then gets populated when
the user logs in again. It does so to facilitate users to login with different Facebook accounts
or login from a different client, which is not an uncommon scenario. Doing so will also
make the application analogous to Sametime connect client. It makes the list consistent
to what is displayed in the client by listening to PersonEvent which is dispatched on any
changes in buddy list. For example, if a person is removed from ST buddy list, the user

manager also removes the person and the corresponding Facebook object from it’s memory.

FacebookContactList maintains the logged in user’s friends list as an array of user ids (in

71

CHAPTER 6. IMPLEMENTATION

String email = user.getField (ProfileField.PROXTIED EMATL);
if (email == nunll)
email = user.getField (ProfileField.FIRST NAME)
+ Meszages.user name seperator //SNON-HL5-1%
+ user.getField (ProfileField.LAST NAME)
+ Messages.email tail string: //$NON-NLS5-1%

person = PeopleUtil.getPerson(FacebookUtil.createlontactId (userId),
CommunityUtil. getCommunityvMgr() .getDefaultCommunity () .getId()):

String name = user.getField (ProfileField.FIRST NAME) + " " //ENON-NL5-1%
+ user.getField (ProfileField.LAST NAME);

person.setDisplayName (name) ;

DirectoryInfo dirInfo = person.getDirectoryInfol):;

if (dirInfo == nmll || dirInfo.get5ize() == 0)

dirInfo = new DirectoryvInfolmpl ()

person.setDirectoryInfo(dirInfo);

dirInfo.put (DirectoryInfo.NAME, name);

dirInfo.put (DirectoryInfo.lOMPANY, user
.getField (ProfileField. WORK HISTORY)) ;

dirInfo.put (Directorylnfo.MAIT ADDRESS, email);

dirInfo.put (DirectoryInfo. IMAGE PATH, user
.getField (ProfileField.PI{)) ;

if (refreshStatus)
S5tring status = client.getOnlineStatus(user);

(() person) D FacebookUtil

.convertFhStatusToSTStatus (status)) ;

((D) person)

(. (user.getField (ProfileField.MESSAGE)) ;
getUserMgr () .putPerson (userId, person);
O (peTson, trUe) ;

—. getPeopleService () .addPersonlistener (getUserMgr ()) :

Figure 6.8: Code that creates ST person objects using user id

the format that Sametime recognises). It is responsible for getting friends of the logged in
user and populates the user manager with corresponding ST person objects. It also resets
the status of all Facebook contacts to ’Offline’ when user logs out. As it knows the friends
of the logged in user, Facebook manager’s timer task that refreshes the status of friends

uses this class to do so.

FacebookUser is a simple class that stores the set of user properties or attributes and serves
them as required. It acts like a simple Java bean. Each user attribute is stored as a
ProfileField class supplied by the Facebook API. Facebook gives out many attributes for a
user which are all not supported by ST and at the same time, Facebook does not support
or expose all attributes that Sametime supports. Attributes including company name,
email address, user image and status are supported by both ST and Facebook. Name and
telephone number are supported by Sametime but not Facebook. Attributes including first
name, last name, age, address and work history are supported by Facebook but not ST. So
last name and first name are concatenated to get name attribute. Email address is not ex-
posed for the Facebook users but for some users, who granted email permission to the Face-
book application, Facebook generates some proxied email addresses to use while sending

email notifications. This is discussed in section 6.7. But just to show where email address

72

CHAPTER 6. IMPLEMENTATION

appears in business card, a mock email address is created for all users, except for those who

have proxied email addresses, using the format <firstname>.<lastname>@facebook.com

FacebookClientWrapper is a proxy class for the Facebook client supplied in the Facebook
library. It contains methods that are not provided but required by the application. It
utilises the client functionality where sufficient and extends it as required. So it also acts
as a decorator to the supplied client. It mainly parses and interprets the responses sent
by Facebook platform. This class along with Facebook library acts as a bridge between
sametime and Facebook. Facebook identifies users using their user ids also called UIDs
(unique id) and stores them as Java "long’ type literals and user attributes as ProfileFields
which is of type ’enumeration constant ’ in Java. There is a constant in enumeration,
ProfileField, which represents a single user attribute. So Facebook requires these (UID
and/or ProfileFields) values to get any user related data. This class thus uses Facebook
language to retrieve required information. For example, when FacebookContactList wants
to load the friends of logged in user, then it sends the UID of logged user from user manager
and the client wrapper uses the code in figure 6.9 to get the list of UIDs of friends of the
logged in user.The method getFriendsAsList() parses the response and returns the list of
UIDs. The client wrapper then requests for the user details as another batch request. The

response format for each user is shown in figure 6.10. The actual batch response includes

try {
beginBatch()
friends geti():
Document doc =(Document) { (List) executeBatch(trme)).get(0):
if (doc!=null) {
doc.normalizeDocument ()
stripEmptyTextNodes (doc) ;
friends = getFriendsislist(doc, friends):

retorn friends;
} catch (FacebookException e)
Iy Auto-generated catch block
friend=s = null;
MeszsageDialog. openError(Display.gs
Messages.gensric srror title,Messages.srror get friends+

; f/SHON-NL5-15 //SHON-NL5-25

tDefault() .gethctiveShell (),
1=
)

e.getlocalizedMessage |
e.printStackIrace () ;
} catch (ICException &)

Figure 6.9: Code that gets the friends of logged in user

the user information for all the friends. So a recursive function is used to parse this batch

response and thus create Facebook user objects (of type FacebookUser).

The client wrapper also gets the online status of multiple users in one go using a batch
request. But this time, it uses FQL instead of REST API. The corresponding method takes
in an array of ST user objects (of type Person) and uses a list of user ids that Facebook
understands in a query to get the online status. Relevant code that does this function is
shown in the figure 6.11 along with the response format of online status of a user. The
figure also shows how the status is extracted from the xml response sent by Facebook and
sets the status to the ST user objects. This class also provides other overloaded methods

for getting user information.

73

CHAPTER 6. IMPLEMENTATION

“user=
<uid> W uid>
<pic=http:/profile ak facebook com/v223 /282 NN jpe-/pic=
<proxied_email xsimil="true">
<last_name> SN 1ast name>
=work_history list="true">
<work_info>
<location>
<city= (- city>
=state>l<'state>
<country= MR =/ country> </location=
<company_name--/company_name>
<position>Software Engineer</'position>
=description =G, < d escription=
<start_datc- D= start_date>
<end_date>
=/work_info=
</work_history>=
<status=
=message~had a tiring dav <'message>
<time=1228517699<time>
<status_id={ - status_id>
</status=

<first_name={P=/first_name>

<fuser>

Figure 6.10: Response format for user information

FacebookMenuManager extends SNViewActionMenuManager which is a menu manager used
to populate the actions in status tool bar of ST connect client. This class provides the menu
related to Facebook and is displayed as shown in the figure 6.12. In this implementation,
it provides options to login, logout, add logged in user to the buddy list, get friends of the
logged in user and edit Facebook status message. When users are not logged in, it disables
all other options except login and when they log out, it enables all options except login. It
communicates with FacebookManager to know if user is logged in and FacebookManager

checks the session information and returns the login state of the user.

<JIBM Lotus Sametime Connect =JoJ&d
File Edit View Tools Help
Q1
@-@-@- - |;'r) Set my geographic location...
B - & -3 B raccbock b Login to Facehook
&) Contacts 8

Figure 6.12: Facebook Menu in Status tool bar

FacebookGroupAction extends SNGroupAction to provide a menu for Facebook group ac-
tions. Facebook group actions are those actions that can be executed on a group of
Facebook users. In this implementation, this menu provides options to refresh contacts,

send notifications and send emails to the group of Facebook users. The group in this con-

74

CHAPTER 6. IMPLEMENTATION

text is a ST group which holds Facebook users saved as ST user objects. It uses a jface
IMenuCreator to create a menu for all relevant actions. The group actions implemented

in this module are
e Refresh Status of Facebook users
e Send Notification
e Send Notification Email

The generic and facebook group actions are shown in the figure 6.13.

27 Farahaal Cantacke (00261
Add Contact...

Add Subgroup. ..

Rename Group...

& Call

Send 3

Remove from Contact List

Show Server Communities »

Social Networking 2 Fzcebook » Refresh Status of Facebook contacts
Send Motifications
Show Online Only Send Motification Email

Figure 6.13: Cascading Group Actions

FacebookPersonAction extends SNPersonAction to provide a menu for Facebook person ac-
tions. Facebook person actions analogous to Facebook group actions are those actions that
can be executed on a live name (a ST user shown in the buddy list. User names added
in the buddy list are called live names because they show the status of the person visually
by highlighting the name along with a status icon). The corresponding UI is seen as menu
or a menu item in the context menu of a live name. In this implementation, this class
provides a menu for Facebook whose menu items are the actions that can be executed for
the Facebook user that the live name represents. The person actions implemented in this

module are

e Facebook Chat
e Refresh status of the person
e Send Notification

e Send Notification Email

The generic and facebook person actions are shown in the figure 6.14.

75

CHAPTER 6. IMPLEMENTATION

Charanya Srinivasan
Ciar =~

core < Chat

Dha Call

Dha @J Instant Meeting

Eme Available Toals. ..

Fare
Garl
Guri Alert Me When Available
Himi Alert Me When...

Send 3

Man Remove Aler
Mo Privacy Lists...
M
Naru Refresh Perzon Info
Pa” Edit Nickname...
3 Business Card
Pau .
Remove from Contact List
Pau
Prar O Chat History
Raje
) Add to Sametime Phonebook
Raj
Sodal Networking P B racsbook * Send Email Notification
a 5"'— Refresh Status of the person

Vishnu Vardhan Send Notification
B yunus Mohammed Facebook Chat

Figure 6.14: Cascading LiveName context menu

Facebook chat opens an SWT browser which links to the Facebook chat interface. The reason
for not using ST chat interface is explained in the section 6.7. Figure 6.15 shows how this Ul
looks like.

I
I Chat page m
Chat Settings | Help
1#® ‘You are Online.
Satish Meda Go Offline
Current Conversations
Clear Chat History
e Satish Meda x
! Shruthi 17:41am
Hi Online Friends (1)
Satish 12:42am Satish Meda ™
Hello Shruthi

0l

Figure 6.15: Facebook Chat

FacebookPreferences manages the user preferences for Facebook. This class extends class,
FieldEditorPreferencePage and implements interface, IWorkbenchPreferencePage from Eclipse
to provide a preferences page in ST preferences and manage them. The preferences used

are

76

CHAPTER 6. IMPLEMENTATION

A Boolean! preference which allows users to select a check box if they need integration of
Facebook into ST.

e A String? preference which allows users to select a name for the group in buddy list to
hold the Facebook contacts.

o A Integer? preference which allows users to set the time period for refreshing status of
contacts. The necessity of this preference is explained in the section 6.7. This preference

needs time in minutes and will be in effect only from the next user login.

e Another Integer preference which allows users to set the time period for session or con-
nection time out. The necessity of this preference is explained in the section 6.7. This

preference also needs time in minutes and will be in effect only from the next user login.

Eclipse uses a preference store to store all the preferences set by the user (or default values
if user did not change them), which are then retrieved as required in the application. The

code that creates the preference fields is shown in the figure 6.16.

i
*

oM

m
w

o H o0 o
H oo m

H O o 0

M Hh
Ls}

W
ot

public void createFieldEditors()

addField (
new BooleanFieldEditor(
FacebookConstants. PREF FACEBOOK INTEG
Messages.pref fb intg,
getFieldEditorParent ()}):

il
]
&
]
i
[8]
=
=}
=
=
|
=]
=]
|
]
-

addField (
new StringFieldEditor(
FacebookConstants. FREF FACEBOOK GROUPNAME
Messages.pref fb group names, //SHNON-NLS-1
getFieldEditorParent ()}) !

r

addField(
new StringFieldEditor|(
FacebookConstants. PREF_CONNECTICN TIMEOUT,
Messages.pref b connection timeout, //SNON-
getFieldEditorParent())):

addField (
new StringFieldEditox |

getFieldEditorParent ()})

Figure 6.16: Facebook Preference Field Editors

Figure 6.17 shows how the preference page looks like.

IBoolean: A data type which takes either “true” or “false” as values
2String: A data type which takes any charanters as values
3Integer: A data type which takes numbers as values

7

CHAPTER 6. IMPLEMENTATION

< Preferences

Accounts Enter the preferences for Facebook Integration

+- Auto-Status Changes
W i ion.
Chat History Please check the box if you need Facebook Integration
Chat Window Facebook Group Mame Facebook Contacts
Contact List

Facebook Connection Time out (Enter in minutes). Applies after next login 1440

Emoticon Palettes

Time period for status refresh job (Enter in minutes). Applies after nextlogin | 1

'Language
Motifications

Server Communities
Spell Checking

Figure 6.17: Facebook Preferences

6.6 Localisation

Localisation is done using message bundling mechanism of Eclipse framework. Eclipse provides
a method to easily localise strings. It requires a class to extend org.eclipse.osgi.util. NLS class
and the subclass should initialise the strings on class load. This subclass contains all the mes-
sages as class variables and these variables are given values in language specific properties files
using the format <key> = <walue>. The subclass of NLS is named as Messages.java for the
project which contains all the strings used in Facebook implementation module and the mes-
sages.properties has the string literals. In real time project scenario, the translation team takes
the messages.properties file and translates all the strings into different languages and puts them
in different files which are named after the locale. For example, french strings will be placed
in messages fr.properties and english strings in messages _en.properties. Figure 6.18 shows the
sample entries of messages.properties. Strings in plugin.xml are also localised and the corre-
sponding entries are placed in files named as plugin _en.properties based on the locale and the

strings are referred as % <key> where as entry in properties file looks like <key> = <walue>.

8

type filter text FacebookPreferences Sl

CHAPTER 6. IMPLEMENTATION

Messages.java

public final class Messages extends HNLS

private static final String BUNDLE NAME =
"com.dit.st.=sn.integration.Facebook.5trings.messages"; //SHON-NL5-1%

/Group Action Strings

5

resh statuos:

public static String action re
poblic static S5tring ssnd notl
public static S5tring san_notif;

s]

Smalil;

[
|

S iView Action Strings
public static S5tring ad
public static S5tring edit t
public static String g=t fri=nds:
public static S5tring 1

public static S5tring 1

static
initializeMessages (BUNDLE NAME, Messages.class);
H

messages.properties

Group Actions

Ls]

action refresh status=Refresh Status of Facebook contacts
send notif=S5end Hotifications
send notif email=S5end Hotification Email

#View Actions

add me=Add Logged in user

edit_my status_msg=Edit Facebook Status Message
get_friends=Get Contact List

logout=Logout of Facebook

login=Login to Facebook

Figure 6.18: Sample entries in Messages.java and corresponding values in messages.properties

6.7 Some Challenges faced

This section covers discussion around some issues faced and how they were resolved in devel-
opment phase. The issues were related to the incompatibilities between the requirements and
relevant support provided from Facebook library and API. Some of the issues were also resolved
by changing the open source library used. So the source package is used but not just the jar
files.

e Posting requests using the client library

For any Facebook request, the REST client from Facebook client library sends HTTP
(Hyper Text Transfer Protocol) Post requests through a java.net. HttpURLConnection to
Facebook. It then parses the document to log the response, returns the same document to

the application, then the application parses and interprets the response.

o Problem: But it uses org.apache.commons.io.input.AutoCloselnputStream which
closes automatically once the end of file is reached. So the client throws a premature

end of file exception whose stack trace is shown here. So no responses are parsed.

79

CHAPTER 6. IMPLEMENTATION

Premature end of file.

org.xml.sax.SAXParseException: Premature end of file.

at org.apache.xerces.parsers.DOMParser.parse (Unknown Source)

at org.apache.xerces.jaxp.DocumentBuilderImpl.parse (Unknown Source)

at javax.xml.parsers.DocumentBuilder.parse (Unknown Source)

at

com. facebook.api.FacebookRestClient.callMethod (FacebookRestClient.java:
266)

at

com. facebook.api.FacebookRestClient.callMethod (FacebookRestClient.java:
224)

at

com. facebook.api.FacebookRestClient.auth createToken (FacebookRestClient
.java:1069)

o Solution: The REST client is changed to use org.apache.commons.httpclient. HttpClient
and org.apache.commons.httpclient.methods.PostMethod. Once the method is exe-
cuted, response is read as xml instead of parsing the stream directly. The old and

new code is shown in the figure 6.19 as shown in a difference merge tool.

e Recognising ST person objects as Facebook users

When ST person objects are added to the ST buddy list, there should be someway of
recognising a user as Facebook user in order to display Facebook relevant person actions
in the context menu of a livename. A livename is a term used to refer ST person in buddy
list because it is designed to style the appearance of name and the status icon based on
the online status of the corresponding user. One way of achieving this is to set some
data in person object that can be retrieved for analysis at later stages. Data like type of
the user or SNname that the user belongs to serves the purpose. Data can be set using
person.setData(“key”,value”) method call. So by using person.setData(“type”, “Facebook”)
and again person.getData(“type”), the application should be able to recognise the person

object involved as a Facebook user.

o Problem: Once the client is restarted, the data stored using person.setData() is lost.
On investigation, it is found that ST does not save the data set on person objects
into the local cache nor does it save remotely. It is only stored in the memory. So
person.getData(“type”) does not suffice the purpose. So the application should explic-
itly store it locally and use it at later stages. But as storing locally means, making it
mandatory for users to use a single computer always. So this is not analogous to ST

which allows user to login from any computer.

o Solution: ST uses contact id along with community id as an attribute to uniquely
identify a person object. Making use of this design, the application now creates it’s
own contact id and provides to ST, where the created contact id is made up of a static
string to recognise as Facebook user and the UID of the corresponding Facebook user
which is provided by Facebook platform itself. For example, if a Facebook user has
a UID of 12345678, then the contact id used while creating ST person object will
be “SNFB-UID12345678”. When resolving Facebook users from ST person objects,
the contact id is parsed for the static Facebook identifier string “SNFB-UID”, and if
found, the rest of the contact id string is used as UID to get the Facebook user from
user manager. The UID field is not explicitly given as an enum constant in enum
type, ProfileField, and so is added to it.

80

CHAPTER 6. IMPLEMENTATION

e Chat with Facebook users (stored as ST users) as with actual ST users

Chat is the feature around which Instant Messaging systems are built. This feature of
an IM system, allows two online users to send/receive messages to each other almost in
realtime. The requirements gathered from the survey mentioned in section 4.2.1 include
the chat feature as most wanted feature for the users surveyed. The ideal scenario would
be to double click on the live names which opens a chat interface as with actual ST users.
But the problem with this approach is that, chat interface opens up a connection with
the community server for sending and receiving chat messages, so it requires the users
at both ends of a chat to be members of the community which is not the case. Hence
it is not possible to provide that level of integration. A transcript of chat with an IBM
expert in this area of ST is provided in Appendix-A. Another alternative is to use the
Facebook - LiveMessage API. This API needs some javascripts to register an event for

chat functionality

o Problem: The Facebook API requires a JSON object of the form { “message”:“abcd”
}. There was a bug in the client library which returns an error code - 0 but error
message - success. This error code was not defined in the error code list in the Face-
book developers wiki (Facebook Developers Wiki 2008a). Hence a bug was reported
at their website (Google Code 2008, Google Code: Issues 2008).

o Solution: Asthe API can not be used until it is fixed, a workaround was implemented
which suffices the purpose. The workaround is using the Facebook’s Chat interface
embedded in an Eclipse browser (which gives an impression that the window is part
of ST platform). But a drawback of this workaround is that when the Facebook chat
interface is opened, it shows all online friends and allows chatting with them where as
the context of using this feature is to chat with the person with whom the action(chat
action) is invoked. If this feature is moved to the group’s context menu instead of live
name context menu, then from user point of view, that would mean that the action
allows user to start a multi person chat with the group members which is not the

intention.

e Sending Emails

As part of IM system, the application should allow users to send emails to their friends.
For sending an email, the application should know email addresses of the recipients. Unlike
other attributes of a user, email address is not provided by Facebook. Eventhough, there
is a place holder in ST Person object, Facebook does not send email addresses of it’s users
to other users because of it’s privacy policy. So it uses proxied email addresses which are
generated for application/user pair. But it needs users at both ends to grant permissions

to the Facebook application.

o Problem: Facebook APT allows sending emails to users via the Facebook application.
So users at both ends must grant the application required permission(an extended
permission called “email”). So when user A tries to send an email to user B, the
request first goes to the application, then it checks if user A has granted it email
permission, if yes then it checks if user B has granted it the “email permission”; if yes
then it sends the email. However if user A and/or user B have not granted the “email
permission”, then it throws an error to user A. If user A has granted the permission

but not user B then it sends a grant permission request to user B. But in case of

81

CHAPTER 6. IMPLEMENTATION

desktop applications, there is no way to send a grant permission request to other

users.

o Solution: Not complete but partial solution has been implemented. When user A
tries to send an email but did not grant email-permission to the Facebook application
then Facebook throws a permission error. Now the application presents a grant per-
missions dialog to user A and when it is granted, it tries to send the email to user B.
If user B has not granted the “email permission”, then user A will be informed about
that. Now user A has granted “email permission” to the Facebook application. When
the same situation happens to user B as well, then they will be able to send emails to
each other. Unfortunately, this is not the real solution, this is the only possible way
for desktop application unless Facebook provides new API to send grant permission
requests to other users. An enum constant named PROXIED EMAIL in enum type,

ProfileField, whose value is “proxied _email”, is added in the Facebook client library.

e Status of a Facebook user

There are two concepts of status of a user in Facebook. One is the online status and the
other is the status message set by the user. The online status is the availability status of
the user which is similar to an IM system and the status message is the message set by
the user to let the profile visitors know what the user is doing. Besides using the status
message field for setting the actual status message, SN users use it to set their favourite
captions or any announcements to all the friends or wishing the friends on a common event.
But ST has only one status which is availability or online status. So mapping between
Facebook status and ST status is not straightforward as setting other user attributes like
user name, company name. The application is responsible for matching between ST and
Facebook status. It uses a Java enum type to hold the Facebook online statuses (“active”,
“offline”, “idle” , “error”) and then uses an utility method that converts Facebook status to
ST status using the mapping shown in the table 6.2. Although ST provides many more

statuses, Facebook provides only those shown in the table 6.2.

Table 6.2: Online status mapping between ST and Facebook

Facebook status | ST status

active STATUS AVAILABLE
offline STATUS OFFLINE
idle STATUS AWAY

error STATUS UNKNOWN

ST also provides a way to set some status message to the ST person objects. Although in
ST, there are predefined strings to set based on the online status, it also provides a way
to set a user defined status message. Using person.setStatusText() sets the status message

and can be seen on the business card of the user that the object person represents.

o Problem: The Facebook client library used does not provide an enum constant, in

ProfileField enum type, for status message.

o Solution: A new enum constant is added in the enum type, ProfileField (available in
the client library source package), named Message whose value is “message”. This is
a child attribute of the status tag in the xml sent by Facebook as shown in the figure
6.10.

82

CHAPTER 6. IMPLEMENTATION

¢ When to Refresh Status of the contacts?

In an IM system, IM client changes the status of a live name when the status of the
corresponding user changes. This is achieved using the event handling mechanism. Server

sends the status change events to the client and the client updates the status.

o Problem: But this application being a pure desktop one and is only connected to
the Facebook server by REST API, no callbacks can be used to get any events. So

the problem is how to refresh the status of Facebook users.

o Solution: Status of the Facebook users, added as ST users, in the connect client can
be refreshed periodically and users are allowed to set the period in preferences. The
lower the period, the accurate the status. But performance is a considerable factor.
So a default value of 3 minutes is used and users are allowed to refresh the status when
ever they need by providing a group action. Although this is not an ideal solution, it is
a reasonable solution considering the fact that users would not constantly monitor the
status and if they want accurate status, they can always refresh the status manually.
The application runs a daemon thread after login action, to refresh the status of the

logged in user’s friends.

e Session timeout

This issue is similar to the issue of refreshing status of contacts. Generally, in a web
application, when user session times out, requests made after timeout are not processed
at the server and a time out error is thrown. Even in Sametime Social, requests made
after session timeout, are not processed and the user is thrown an error. To avoid sending
requests after session times out, a daemon thread is run which simulates the time out
operation and once the session times out, user is warned about it and is asked to login.
This avoids sending and receiving requests which are not at all processed at the server.
Users are also allowed to set the session timeout period as a Facebook preference. This
session timeout period is sent to Facebook while creating a client, and is also saved locally
for use by the daemon thread. But the parameter sent at creation time did not seem to

have an effect so the application sets this value explicitly after the session is created.

6.8 Conclusion

The design models created in chapter 5 were used in this chapter to create the software. A
working and fully functional plugin was created in this chapter. All functionalities, represented as
use cases in chapter 4, were provided by this plugin when installed in a Sametime Connect Client.
This plugin, in this first version, has provided integration with Facebook but has also provided
the framework which could be used for integration of more SNs. Some important decisions made
in development phase, significant code snippets from the plugin and some challenges faced while
implementation were also covered in this chapter. Having developed the software, the next phase

would be to test it, which is covered in chapter?7.

83

CHAPTER 6. IMPLEMENTATION

for (imnt i 0; i < people.length; i++)

id=[i] = new Long(FacebookUtil
.extractUidFromContactId(((PersonImpl) people[i])
.getContactId())):
H
try

MyLonghrray uidirray = new MyLonghrray(ids);
String uidsArray = ulidArray.toString():;
beginBatch ()

fgl guery ("SELECT uid,online presence FROM user WHERE uwid in "
+ uidsArray + " AND online presence"):; fSNON-NLS5-1% [

List batchBResponse = executeBatch(true):

Document doc = (Document) batchBResponse.get (0):

NON-NL5-2%

doc.normalizeDocument () ;
stripEmptyTextNodes (dog) ;

Hodelist nl = doc.getElementsByTagName (TAG USER); //SHON-NL5-1%
int length = nl.getLengthi):
List<Long>» uidlList = new ArravList<Long> (Arrays.sslList(ids)):

for (int i = 0; i <« length; i++)
extractitatusForUser(nl.item(i), wuwidList):
Resnonse format for online status of single user

<user=
=uid>12863 3834 5<md=
<online_presence>offline</onlne_presence>
<status=
<message™is Just passing time.<'message>
<time>1 2235319484 < time>
<ztatus id=38338TE2077<status id>
=/status>
<user>
Code that extracts status from facebook response
if (doc.getlodeName () .egualsIgnoreCase (TA5 USER)) { //FMCOH-NL3-1%
HodeList children = (doc.getChildNodes{()):
for (int i = 0; i < children.getLength(); i++)

if (children.item(i) .getNodeName () .equalsIgnoreCase |
ProfileField.UID.fieldName ()))
uid = children.item(i) .getTextContent () ;
if (pids.contains(new Long(uid)))
Hode n = children.item{++1);

if (n.getMHodeName () .equal=sIgnoreCase (
TAG CNLINE PRESENCE))} { //$MOM-NL5-15
status = n.getTextContent();
H
n = children.item(++1i)}.:/,/ Goes to <status>
if (n.getNodelName () .equalsIignoreCase (TAG STATUS))

HodeList statusTag = n.getChildNodes()
for (int j = 0; j < statusTag.getLengthi):; j++)

if (statusTag.item(j) .getNodeName ()

.equalsIgnoreCase (
ProfileField.MESSAGE
.fieldWame (}}) { //SNON-NL5-1
status_msg = statusTag.item(])
.getTextContent ()

H
H
H
Ferson person = IfkMgr.getlUserMgr() .getPerson(uid) ;
if (person != nuoll)

((D) oerson) @D (FacebookUtil

convertFbStatusToSTStatus (status)) ;

() rcrcon) G (ccatus_meg)

Figure 6.11: Code that gets tHdonline status of a list of users

\TION

sysonbal 150 posuey) :G1°9 oIn3I

! {ymeasaacandurasbruucs UIngsI

! {)e=alhga=sb- {)Butaacoata=aIIng) =2atame {jmesaicandanga=h uuoo
! () 1osuuoo "Uuuoo
1 ania) andinoogiss uuoo

3poJ PIO t
f{)aoearyowgautTad -xa

£ Leuny, Juriutad-izz-w=asig
} { ¥= uoradsoxgroocacig) UoqeEs

i

:{ .ISod.)poulsplssnbayglas tuuoo
} &11
i

! InosWUTIpESI "STY1) ANOSUTIPEIH13s "Uuod
} { T- =i anoswrIp=sI -sTU1)} IT
i

:{ ImoswWT1 "ETYL) INO3WTI103UU0)13E " UI0d
P { T- =i anoswTa "ETY3) IT

2 {)ucTaosuuoousdo - TIigdiaalas (UOTIo=aUuoyTINdI1y) = uuco ucTlosuucyTHndaayg

STURMEI UINTST

apoo map {
f{jucTassuuogesesTI 1804
} ArTEuTI {
2 {)soexryoeigautad-=
} (= uoctad=soxdgI) yzaeEo |
!{)=zoexr¥oeigqurtad-a
} (=2 uotadsoxygdiag) yosaeo |
{
! | Tugmer) ssuocdeagasied J/f
{TugMEI)UTAuUTId2n0 "Ua1eAC
() butaaceyipogasucdesgizbraenod = TuRMEd
EpE3I pPIUEaI1E UYITM ovTdayg 000l S/
} (oge »> spog=ssucdsal 3% Q7 =< =poo=sucde=a) IT
! {22cd) poylaf=AnosXa qUuaTI1e0d = spodasucdsad QuT
} Aaa
few = TWmgmel BUuTIAC
{

{anTea TASY) Isasumisgppe-1sod
:{)butaacoa- () =anteal=E-AIius = anTesa BuTIag
:({)butaacoa- () Asyaab~Aiqus = Ay DurIag

} ({)a=schiaus-smeaed : AIjus Axjuy-dey) I0I

S {)EUTI1S0] " TIQI=AI=E) POUISHN1ED MaU = 150d poUl=Hlscd

I{)auatTydaayg msu = quaTToascd aquatTodaag

85

Chapter 7

Testing

7.1 Introduction

The fully functional software was resulted at the end of implementation phase, which is described
in the chapter 6. This software has to be tested to make it error free. Testing for the project is
based on the guidelines provided by the IEEE standard 829 (IEEE Standard for Software and
System Test Documentation 2008). Testing is an important phase in software development life
cycle because, software is generally prone to a lot of bugs which would have not been anticipated
at the time of development. So an important framework is required to perform testing of a
product. The standard provides a common framework for all the activities, tasks and processes
that support the software life cycle. It recommends to define the test tasks, and the required
inputs and outputs to run the test. It also recommends to define the master test plan and level
test plans along with the related test documentation to include the test design, test case, test

procedure and test reports.

7.2 Testing

Although the guidelines provided by IEEE 829 are very formal and suit for real time corporate
projects, the essence of the standard can be adapted to small sized projects. The section 7.2.1

presents the Master test plan of the project.

7.2.1 Test Plan

The main objective of the master test plan is to do the system testing for the project and deliver
the functional system free of bugs. Test cases are planned to execute in each logical module
from the user’s perspective. For example in an application that integrates ST and SN through
a common API, the logical modules from user’s perspective can be authentication module, chat
module, email module, common Ul irrespective of number of SNs used and preferences module.
The test cases planned would cover all these modules. Section 7.2.2 presents the test cases
executed for the project based on IEEE 829 test case format. The application delivered only

supports Facebook in this version, so test cases are also based on ST and Facebook.

86

CHAPTER 7. TESTING

7.2.2 Test cases

Here are some of the test cases executed to test the application functionality and usability. The
test cases are categorised as follows based on the context of the application where a particular
feature applies. Each test case is discussed and executed against the application developed and
is documented in this section. All test cases have the following common prerequisites and the

special prerequisites that apply only for the test cases are mentioned in test case descriptions.
1. Sametime connect client should be launched.
2. Facebook application is created at Facebook platform.

3. This software is installed and configured properly.

7.2.2.1 Authentication Test Cases

Test cases related to authentication module of the application are discussed and executed in this
section. The scenarios related to login and logout are thus discussed here as follows.
1. User cant logout before logging in

Description: A Facebook user should be allowed to login and then logout but not the

other way.
Prerequisites: None

Steps to execute:

(a) Click on “Social Networks Actions” on status toolbar.
(b) Select the appropriate social network menu. For example select ‘Facebook’ from the
pull down menu.

Expected Result:

(a) As user is not logged in, “Login” menu option should be enabled and others disabled.

(b) Clicking on the Login menu option, the user should be able to login to the Facebook

using valid user credentials.

(c) After user successfully logs in, login menu item should be disabled and others enabled.
Actual Result:

(a) Login option enabled initially.

(b) Clicking on the Login menu item, user is presented with login dialog. When correct
user credentials are entered, user is informed about the success of login and allowed

to return to the application.

(c¢) After successfully logged in and closed the login dialog, the login menu changes dis-
abling login menu item and enabling other menu items which are valid only after user

is logged in.
Result: Pass

2. User relogin after login, re-logout after logout

Description: Once User is logged in, there is no need to login again. But in case the

user logs in again, the user should be informed about the action. Similarly user logout

87

CHAPTER 7. TESTING

action does not need to be repeated and the user should be informed about any repetitive

logouts.
Prerequisites: None
Steps to follow:
(a) The ST user who also have Facebook account logs in successfully into Facebook using
application’s login UL
(b) The same user tries to login to Facebook again.
(¢) User logs out successfully
(d) The same user tries to logout again.
Expected Result:
(a) User should not be allowed to login for the second time or when tries to login, should
be informed about a live session.
(b) Similarly when users try to logout for the second time, either they should not be
allowed to logout or be informed about the invalid action.

Actual Result:

(a) User logs in successfully using the application’s login UI
(

)
b) Same user tries to login for the second time, but login Ul is disabled.
(c) User logs out successfully

)

(d) When user tries to logout again, logout menu item is disabled.
Result: Pass

. Login using invalid credentials

Description: Invalid credentials should not authorise Facebook application and so user

should not any get Facebook services.
Prerequisites: None

Steps to execute:

(a) Click on the SN Actions>Facebook>Login menu item in status tool bar.
(b) Enter wrong credentials
(¢) Try to refresh the status of the Facebook group members or any action that needs
Facebook user session (which needs user to be logged in successfully)
Expected Result:

User should not be allowed to perform any actions that need a session or inform user of

absent session or allow user to login again.
Actual Result:
Result: Pass

88

CHAPTER 7. TESTING

7.2.2.2 Status Test Cases

1. Status change of Facebook users reflects in the contact list

Description: The status changes of Facebook users in the website should be reflected in

the buddy list of Sametime Connect client.

Prerequisite: User should be logged into both Sametime and Facebook.

Steps to Execute: The steps to execute this test case is outlined in the table 7.1. The

table shows the verification points for the test case along with the expected and actual

result. The status to check includes the online presence as well as the status message.

Online presence is checked visually by seeing the status icon in livename and the status

message is checked in the business card.

Table 7.1: Test case 4-Status change reflection

Verification Points

Expected Result

Actual Result

Real time Status Reflection

e Change the status of a user
in Facebook website.

e The user status should be
changed in the connect
client almost at realtime

The status is not changed
immediately. But this is
explained in the section 6.7

Refresh Status from the UI

The UI for refreshing the status
of the contacts is designed at two
locations of the connect client.

e In context menu of a
Facebook group

e In context menu of a
Facebook livename as part
of refreshing person
information

e User selects Refresh Status
menu option from the
context menu of a Facebook
group and it refreshes the
status of all members of the
group successfully.

e User selects Refresh status
menu option from context
menu of a Facebook live
name and it refreshes the
status of the selected
person successfully.

Refresh Status Daemon thread

e Status of the contacts is
refreshed periodically and
the period is set as a
preference.

e Status is refreshed
automatically and
periodically where the
period is taken from
preferences.

2. Change the Status message of logged in user

Description: Users should be able to change their status message from the application’s

UL

Prerequisites: User should be logged in both ST and Facebook though the application’s

UL

Steps to execute:

e Click on the Edit my status message menu item in status tool bar.

89

CHAPTER 7. TESTING

e Enter the new status message in the Edit Status dialog.
Expected Result:

e Status message is changed in the Facebook website.

e The new status message is also shown in the business card.

Actual Result:
New status message is reflected in the Facebook website as well as in the buddy list.

Result: Pass

7.2.2.3 Preference Test cases

1. Session times out using the timeout value in preference page

Description: As already explained in section 6.7, session timeout preference value is sent
to the server. So session should time out after this amount of time. This scenario is checked

in this test case.
Prerequisites: User should be logged in.

Steps to execute:

e User enters the preference related to session timeout in Facebook preferences page.

e Observe if session times out after the amount of time saved in preferences.
Expected Result:

e Session times out after the amount of time saved in preferences.
e All Facebook menus should be disabled except Login menu item.
Actual Result:
e A dialog pops up after a period of time, specified by session time out preference,
warning user about the session timeout.
e After session times out, all Facebook menus are disabled. They are enabled only after

user logs in again.

Result: Pass

7.2.2.4 Test cases about integration

1. Populating friends list and user fields properly

Description: The main point of integrating SN and ST is to have one interface for both
systems. So it is required to add all the friends in SN to the ST. The added list should
also have as much information related to the users as possible. The supported attributes
as mentioned in section 6.5 are name, company name, email address for those users with

proxied email addresses and user image.
Prerequisites: User should be logged in.

Steps to execute:

e Select the Get Contact List menu item from the Facebook menu in the status tool

bar.

90

CHAPTER 7. TESTING

e Check the buddy list.
Expected Result:

e All the friends of the logged in user should have been added to the buddylist in a

group named by the Facebook Group name preference value.

e When hovered over each live name in this group, the business card should contain

correct attributes.
Actual Result:

e Buddy list contains all the friends of logged in user.

e Business card contains all attributes of user mentioned in the description of this test

case.
Result: Pass

. Send Emails to the friends
Description: Users should be able to send emails to their friends through the ST interface.

Prerequisites: User should be logged in and have atleast one friend added to the buddy
list.

91

CHAPTER 7. TESTING

"}J[Nsal pajoadxo se aureg

“JUAS [reuIo oY} 198 pInoys
JOATOO9I U0} ‘uotssiutiod pojuris

9ART] I9ATODSI PUR I9PULS [10q I

1 JNOQR IOPULS 9} WLIOJUI P[NOYS
uoryeoridde oy} uey) ‘uorssruriod

pojueIS jou 9ARY SIDAISIAI JT

"S$900% JURIS 0} WO} MO[[R
PINOYS puUe 1 JMO0qe WY} ULIOJUT
pmoys 3 ‘uoryesrjdde yooqaor] 03

$S900® POYURIS JOU 9ARY SIOPULS J]

puos
pue juejuod [rewo o) odAT,
nuaw
1X0JU0D S,0WRU OAI] UI
NUOW puag WOIJ ST ST
Surpues jo Aem Iayjouy

10
TMUIW JX0JU0D S MR JAI]

oY} WOIJ W) NUIW IDULD

UODIYON PUag Y)Y 199[9G

[rews [euosiod puag

“Hnsadx ﬁ@powQN@ Se omreg

“JUeS [reUIo 9} 198 pInoys
JOATOORI UOT[) ‘UOoIssTuLIod pojuris

OART IoATI9JAI pUR JIapuas Yjoq JT

91 JNOQR JOPULS 9} WLIOJUI P[NOYS
uoryeoridde o) uoy) ‘uorssrurrod

pajueIS Jou 9ARY SIOAISIAI J]
"SS000® JURIS 0) WA} MO[[e
PINOYS pue 31 JNOge WaT} WLIOJUT

pmoys 1 ‘uoryesrjdde yooqaoe] 0}

§S900® POJURIS JOU SARY SIOPULS J] ©

puoes
pue juejuoo [rews oY) odAT,
muaw Jx03u09 s,dnois ur
NUOW pudg WOIJ ST S|TRUD
SUIPULS JO Aem ISjOoUy

10
‘dnoid jjooqooeq
977} JO NUSW JXIUO0D
oY} WO WY NUIW 2DULD

U0YDIY1ION PUIG O} 1D9[OS

[reure dnoixr) pusg

sy [enOY

Jmsoy pojdadxy

9Inoaxa o9 sdoyg

SIUIOJ UOIYedYLIdDA

: Pass

Result

3. Send Notifications to the friends

Description: Users should be able to send notifications to their friends through the ST

interface.

Prerequisites: User should be logged in and have atleast one friend added to the buddy

list.

92

CHAPTER 7. TESTING

poloadxe se aweg

*JU9S UOTYedPII0U Y} 308 PInoys
I9ATOO0I UST[} ‘uolsstuLiad pojuelld

9ART] I9ATODSI PUR I9PULS 1[30q I

"1 JNOge I9PUaS d1[} ULIOJUI PINOYS

uoryeoridde o) uoy) ‘uorssruriod

pojueIS jou oAy SIOAISIAI JT

"$S900® JURIS 0) WS} MO[[R
PINOYS pue I1 JNOgR WL} ULIOJUL
pmoys 3 ‘uoryesrjdde yooqaoe] 0}

§S900® POJURIS JOU 9ART SIOPULS J]

puos pue jueu0d
uoryeoyrjou o) odAT,
TMUSW JX0JU0D S,0MWeU
QAI[9} WOJIJ WO NUSW

UOWDILIION PURG 9 19[S

uoryesyIou Teuosiod puag

.GQPOQQN@ Se omreg

“JUSS UOTPROYIIOU dY} 198 P[noys
IOATOORI UOT[) ‘UOIssTuLIod pojuris

9ART IoATI9J9I pUR JI9puas Yjoq JT

91 JNOQR JOPULS 9} WLIOJUI P[NOYS
uoryeoridde o) uoy) ‘uorssrurrod

pajueIS jou 9ARY SIOAISIAI J]

"$S900% JURIS 0] WA} MO[[R
PINOYS pue 11 JNOgR W) ULIOJUT
pmoys 1 ‘uoryesrjdde yooqaoe] 0}

§S900® POJURIZ JOU 9ART SIOPULS J]

pues pue Juaju0od
uoryeoyrjou o) odAT,
*dnoi3

j00QqaoR,] 93} JO NuUOW

1X9)UO0D 97} WOIJ WY NUSU

u0YDIYIPON PUIS 9Y) 109[0G e

uorjeoyriou dnoir) pueg

sy [enOY

Jmsoy pojdadxy

9Inoaxa oy sdojlg

SJUIOJ UOIJedYLIdA

: Pass

Result

iends

th fr

ing wi

4. Chatt

Description: Users should be able to chat with their online friends

Prerequisites: User should be logged in. User should have atleast one online friend.

.
.

Steps to execute

93

CHAPTER 7. TESTING

e Select the Facebook Chat menu item from the live name’s context menu.

e Start chatting.
Expected Result:

e Able to exchange instant messages with the friend selected.
Actual Result:

e See all online friends.

e When one friend is selected, able to exchange instant messages.

Result: Pass . Though not completely as expected. This is explained in section 6.7.

7.3 Conclusion

The software created in chapter 6 is tested using the guidelines provided by IEEE standard 829.
The guidelines are briefly discussed in the section 7.1. A test plan is created and is implemented
as described in section 7.2.1. The test cases were executed as explained in the section 7.2.2 and
ensured that the software is error free and satisfy the requirements of the project.

Now that the software is created and tested, it has to be evaluated to know how well it works

and this is covered in the chapter 8.

94

Chapter 8

Evaluation

8.1 Introduction

In any undertaking, evaluation would be the first and important step, so is the case with software.
Evaluation of software quality determines the position of the software in the market and hence
an important step in the software life cycle. Delivering a quality software is fundamental for it’s
success. But defining quality is a subjective matter. It is not necessary that all stakeholders
agree on what they think is good quality. ISO (International Standards Organisation) (ISO
1986)defines quality as

“Quality is the totality of features and characteristics of a product or service that

bear on it’s ability to satisfy specified or implied needs”
IEEE defines quality as

“Quality is the degree to which a system, component, or process meets specified

requirements and customer or user needs or expectations”

Both the definitions focus on customer satisfaction with the software product.

8.2 ISO/IEC 9126

ISO/IEC 9126 is a standard developed by ISO and the International Electrical technical Commis-
sion (IEC) for Software Engineering — Product Quality. Punter and others (Punter, Van Solingen
& Trienekens 1997) presented the intensions of the ISO/IEC 9126 standard as

e To provide a specification and evaluation model for the quality of software products.

e To address user needs of a software product explicitly, by allowing a common language for

user requirement specification, which is easily understandable by it’s stake holders
e To evaluate software product quality based on observation but not opinion
e To make a quality evaluation reproducible.

The standard is published in four parts. First part (ISO/IEC 2001) identifies the software quality
through six characteristics which are further divided in to sub-characteristics. Part 2 (ISO/IEC
2002a)describes the external metrics to measure the characteristics and sub-characteristics iden-
tified in part 1; part 3 (ISO/IEC 2002b) the internal metrics and part 4 (ISO/IEC 2002¢) defines

95

CHAPTER 8. EVALUATION

the quality-in-use attributes. The standard (ISO/IEC 2001) states that the quality of the product
can be evaluated by measuring the internal attributes or external attributes (measuring external
behaviour) which are dependant on internal attributes or quality-in-use attributes which are
again dependant on external behaviour. The characteristics and sub-characteristics identified by

the standard are summarised in the table 8.1.

Table 8.1: Characteristics and their explanation from ISO 9126(source: (Chua & Dyson 2004))

Characteristic Sub-characteristic Explanation

Functionality Suttabality Can software perform the tasks required?
Accurateness Is the result as expected?
Interoperability Can the system interact with another system?
Security Does the software prevent unauthorised access?

Reliability Maturity Have most of the faults in the software been elimnated over

time?
Fault tolerance Is the software capable of handling errors?
Recoverability Can the software resume working and restore lost data after
failure?

Usability Understandability Does the user comprehend how to use the system easily?
Learnability Can the vser learn to use the system easily?
Operability Can the user use the system without much effort?
Attractiveness Does the interface look good?

Efficiency Time Behaviour How quickly does the system respond?
Resource Utilisation ~ Does the system utilise resources efficiently?

Mamtamnability Analysability Can faults be easily diagnosed?
Changeability Can the software be easily modified?
Stability Can the software continue functioning if changes are made?
Testability Can the software be tested easily?

Portability Adaptability Can the software be moved to other environments?
Installability Can the software be installed easily?
Conformance Does the software comply with portability standards?
Replaceability Can the software easily replace other software?

All characteristics Compliance Does the software comply with laws or regulations?

8.3 Evaluation of Sametime Social

The evaluation for this product is done based on the format used by Chua and Dyson (Chua &
Dyson 2004).

8.3.1 Evaluation Methodology

After completion, the project was given for use to a subset of people selected for the survey in
requirements phase. The sample users chosen for evaluation were both ST and Facebook users.
These users were categorised based on the attributes and behaviour (discussed in section 2.2.3.2)
and charted using a bar diagram as shown in figure 8.1. From the bar diagram, it is evident
that of the sample users, there were no Alpha Socialisers, Attention Seekers and Functionals.
So feedback was collected from the Faithfuls and Followers and used for evaluating the project.
Faithfuls in this context, as defined in section 2.2.3.2, would use this software to maintain
their old relationships and thus wanted features that are relevant to that purpose (features like
maintaining friends list, chatting , telephoning and sharing files with them). Followers on the
other hand would use it for the sake of keep up with others and the technologies, thus wanted
both basic and advanced features (including posting comments on walls, access other Facebook

applications and control Facebook settings).

96

CHAPTER 8. EVALUATION

50~
45
40+
359
@
w
g 301 oAlpha Socialisers
@ 25 m Faithfuls
= OAttension Seekers
5 204 OFollowers
o .
5 H Functional
o 154
10+
5_
0_

Types of Users Selected for Evaluation Phase

Figure 8.1: Bar Diagram to show types of users selected for feedback

The quality characteristics and sub-characteristics identified by the ISO 9126 standard form
the basis for evaluation. But from naive user point of view, all characteristics are not easily
assessable but “Functionality”, “Reliability”, “Usability”, sub-charateristic of “Efficiency” - “Time
Behaviour” , “Maintainability” except for its sub-characteristic - “Analysability”, “Adaptibility”

and Installability” sub-characteristics of “Portability” are assessed.

8.3.2 Results

The results are summarised in a matrix shown in table 8.2. Columns and sub-columns of the
matrix are the characteristics and corresponding sub-characterstics. Rows are the key features of
the product. An asterisk in the table cell means that the feature of that row satisfies the require-
ments of the sub-characteristic of that column. Numbers indicate the points in the explanation

given in this section for not satisfying the requirements.

1. The features do not perform ideally. Section 6.7 explains how these issues are handled in
the project.The term “User Integration” is used to indicate how well the Facebook users
are integrated into ST. As explained in the section 6.5, all attributes of Facebook user do
not have a match in Sametime. So all possible attributes are considered for integration.
The term “Status Integration” is used to indicate how well the status of users in Facebook
is mapped with that of corresponding ST users (corresponding ST users mean the ST user
objects created and added to represent a Facebook user). The mapping is successful but
the status is not refreshed in real time as expected. Chatting with Facebook users, who
are added to ST, is not same as chatting with actual ST users which is also explained in

section 6.7.

2. Chat feature for Facebook users, added as ST users, in this product allows the users to
chat with any of their online friends where as they should be allowed to chat with the user

for which the action is invoked.

3. ST also allows the users to change the preferences when offline. So authenticity can not

be guaranteed.

97

CHAPTER 8. EVALUATION

Table 8.2: Evaluation of Sametime Social using ISO 9126

>
-
Z =
op .Q
E Z > o iy
) g = > 0 g =
— ~+~2 o o=
Q o - — =] S e
5 B 2 = 2 = <
et = B < 3 = +
< =] — 3o & < o
0 é 9 2 O
< w =) & > &
=
=
> D — —
= S > | @ @ = .
2 | 2 S1E| = . g S| & >
&8 o = e~ T I T S < S =1k
> = < 5} o) =1 — = o @ 2 > | g =
Z18l8 sl cs|lE8|lB % |22 nla|l’|2
Blelg|lE|ElE |||l | |s|lm|D|=|2|8]S
s | Bl |lE| 2|l =538 |8 |8l g|%|=|=|=&
s|lg|Bl2|l€| =23 |=|&8|¢2|= s | 28L& =
= et 3} = =} 9 & v} 2, + E < n 0
= Q = > = [}) = = = = D a =
a|l<| 8 | n|la2 | m|lg|lp|R|0o|d|B|O|a|&|8|<
Authentication O O O * *LA3 | F R |8 [10 | 11| F | F | O*
Preferences [* | * | 3 | * * [% | k| k[k| * | k[11] * | * | %
User Integration | 1 | * | * | * | * * L O R TV I O o I
Status Integration | 1 | * | * | * | * * KRR R LR LI0] K 11|12 K|
Chat 1 2 * * 4 * * 6 * * * * * 11| 12| * *
Email T * L5 | * * * *19 11k * *
Notifications O O O O * O R T R R S T I R

4. Any changes or bug fixes in chat feature are not considered for incorporation in the project

because of time constraints. The section 6.7 discusses the problem regarding chat feature.

5. Sending emails is allowed in Facebook applications, only when the sender and the recipient

have granted email permission to the Facebook application.

6. Both the chat UI and the method to launch it are different for actual ST users and Facebook

users added as ST users. This creates confusion for the user.

7. Emailing contacts is not implemented as expected due to the non availability of emails of

Facebook users. This is discussed in section 6.7.
8. Facebook needs it’s own login form to be used for log in. So it does not match the ST UL

9. The UI used for Notifications, email notifications are not styled properly but a basic dialog

is used due to time constraints. So not very attractive.

10. The time of execution for these features depend on the network speed and the number of

users.

11. If Facebook changes the API, the Facebook implementation module might need some

changes which might affect the stability of the product but not necessarily.
12. For easy testing of chat and email feature, some test users are required.

13. Users confuse logging into the Facebook application with logging into Facebook. The
authentication mechanism provided for Facebook in this plugin is actually for authorising

the Facebook application but not for authenticating the user with Facebook platform.

98

CHAPTER 8. EVALUATION

8.4 Conclusion

Fully working and tested software is evaluated in this section. The evaluation is done using
ISO/IEC 9126 standard, which is briefly explained in section 8.2. The sample users chosen for
evaluation was a subset of users selected for a survey in requirements phase. The selected set
of users were both ST and Facebook users and hence they were aware of both the systems.
The feedback from them is used to evaluate the product against the characteristics and sub-
charateristics provided by ISO/IEC 9126 standard. At the end of this phase, the software is
functional, tested and evaluated.

From the evaluation, it is discovered that the software contains some flaws, of which some were
critical for user satisfaction and some were minor. The explanation in such cases was provided
in the section 8.3.2. The improvements, that can be made to cover the flaws discovered, are
listed in the chapter 9.

99

Chapter 9

Conclusions & Future Work

9.1 Conclusions

The software delivered, as part of this thesis, is a Sametime plugin developed using Eclipse.
This plugin is developed to use with Sametime 8.0.1 client. The project started with a literature
review which supported the objective of the project, to integrate IM and SN systems. A suitable
development methodology was then identified and explained. Requirements of the project were
analysed using a small survey conducted with a set of questions framed, whose intention was to
reveal the extent of interest that home and work users express about the idea of the project.
This phase helped to develop the project’s business and system analysis models.

Due to time constraints, it was decided to develop implementation module for one social
network (Facebook) and so the design modules for Facebook were developed and implemented
along with the integration framework. Thus developed software was tested based on the guide-
lines provided by the IEEE standard 829. The test cases were framed to test the functionality
of the software and determine if the requirements were met. A subset of sample users (who are
both ST and Facebook users) selected for the requirements survey were asked to use the plugin
developed and their feedback was collected to evaluate the software. ISO/IEC 9126 standard was
followed for evaluation. During testing, some flaws were discovered and were also surfaced from
user feedbacks. Some of these were analysed as critical for user satisfaction. This list include the
Facebook user status was not refreshed in realtime, chat interface for Facebook users was not
same as ST users. There were also some minor flaws including some Facebook user attributes
being dropped while integration and at the same time some ST person attributes were not used.

The reasons for these flaws not being fixed were also explained.

9.1.1 Success of the software

The success of the software when analysed using the aims and objectives as described in section

1.3 is as below

e Objectives of the project:

o To integrate enterprise messaging and collaboration with social networks: The plugin
is tested for the integration between Sametime which is an enterprise messaging sys-

tem and Facebook which is a social networking system. So this objective is attained.

o To deliver the solution as a desktop tool: Sametime is a desktop tool and the software

is a Sametime plugin so this objective is also attained.

100

CHAPTER 9. CONCLUSIONS & FUTURE WORK

e Aims of the project:

o To use an instant messaging system for communications in organisational network:

IBM Sametime is used which is an enterprise Instant Messaging system.

o To provide uniform interface for compatible social networks: The integration module
provides a common framework which can be implemented for different Social Net-

works.

o The UI (User Interface) to pretend as the UI of Organisational instant messaging
system for social network contact lists: The Ul of Sametime is used for all Social
Networks and so it appears to be same for both organisational contacts and social

network contact lists.

o To provide as many services of social networks as possible; this is limited by the scope
of API (Application Programming Interfaces) exposed by social networks which is an
external constraint: The features interested to the sample users (home and work
users selected for the survey in requirements phase) were implemented in the plugin

developed due to time constraints.

As per the above discussion, the project is a success also as per the feedback from the evaluation

survey.

9.2 Future Work

The evaluation results help the process of improving the product and the improvements are

summarised in this section.

e Using a server component

As the call back mechanism is not possible for a pure client project as this, other possibil-
ities to install a server component, that takes care of call back mechanisms for Facebook,
can be explored. The server component should be responsible for registering the events
with Facebook and when it receives any event notifications, it should notify the clients
about them. This is useful to solve the problems related to automatic status updates and

automatic session management.

e Using Ontologies

To avoid implementation of each of the social network, for integration, one more level of
commonality can be introduced. This level is to implement a common ontology in the
common APT and do all the integration in the common APT itself. But this again requires
the implementation modules to conform the ontology of the social network to the common
ontology. This approach proposes a totally new architecture for the project so is not exactly

an improvement.

e Ul improvements

o Preference pages can be more organised. A common preference page for the project
which contains the set of preference pages, one for each implementation module in-
stalled.

101

CHAPTER 9. CONCLUSIONS & FUTURE WORK

o Current implementation for the container of users from one SN is a group in buddy
list. But in case of performing any group actions, the users moved from one group to
another will not be tracked. So the application should actually parse all members of
all groups in buddy list, for the users of that particular SN (which might not be an

effective solution). Another way is to get users from user manager of that SN.
e Feature improvements

o The application should also allow a way to browse and add friends of friends which

is one of the main features of social networks.

o The application adds all the friends of the user as a flat list to a single group, dedicated
for that SN. But it can add the user’s friends in the same hierarchy as they are stored

in the SN website.

102

Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002), ‘Agile software development

methods’, Review and analysis .

Ackerman, M. S. (1998), ‘Augmenting organizational memory: a field study of answer garden’,
ACM Trans. Inf. Syst. 16(3), 203-224.

Booch, G. (1998), ‘Leaving Kansas’, IEEE Software, 15(1), 32-35.

Borch, O. (1994), ‘The process of relational contracting: developing trust-based strategic al-

liances among small business enterprises’, Advances in Strategic Management 10, 113-135.

Bradac, M., Perry, D. & Votta, L. (1993), ‘Prototyping a process monitoring experiment’, Soft-
ware Engineering, 1993. Proceedings., 15th International Conference on pp. 155-165.

Burt, R. (1992), Structural Holes: The Social Structure of Competition.

Chua, B. & Dyson, L. (2004), Applying the ISO 9126 model to the evaluation of an e-learning sys-
tem, in ‘Beyond the Comfort Zone: Proceedings of the 21 st ASCILITE Conference’, pp. 184—
190.

Churchill, E. & Halverson, C. (2005), ‘Guest editor’s introduction: Social networks and social
networking’, Internet Computing, IEEE 9(5), 14-19.

Cross, R., Borgatti, S. & Parker, A. (2002), ‘Making Invisible Work Visible: Using Social
Network Analysis to Support Strategic Collaboration’, CALIFORNIA MANAGEMENT RE-
VIEW 44(2), 25-46.

Cross, R., Nohria, N. & Parker, A. (2002), ‘Six Myths About Informal Networks-and How To
Overcome Them’, MIT Sloan Management Review 43(3), 67-76.

Cummings, J. N., Butler, B. & Kraut, R. (2002), ‘The quality of online social relationships’,
Commun. ACM 45(7), 103-108.

Ehrlich, K. & Cash, D. (1999), ‘The Invisible World of Intermediaries: A Cautionary Tale’,
Computer Supported Cooperative Work 8(1-2), 147-167.

Facebook Developers Wiki (2008a), ‘Error codes - facebook developers wiki’, viewed 14 October
2008, http://wiki.developers.facebook.com/index.php/Error code.

Facebook Developers Wiki (2008b), ‘Using batching api’, viewed 20 September 2008,
http://wiki.developers.facebook.com/index.php/Using batching API.

Facebook Press Room (n.d.), ‘Facebook statistics’, viewed 10 November 2008,
http://www.facebook.com/press/info.php?statistics.

103

BIBLIOGRAPHY

Forbes (2007), ‘Popular social networks based on the number of active users’,
viewed 1 November 2008, http://www.forbes.com/2007/08/22/social-nets-marketing-oped-
cx_eke 0823social slide 2.html.

Fowler, M (2000), ‘The new methodology’, viewed 12 September 2008,
http://martinfowler.com/articles/newMethodology.html.

George Chin, J., Myers, J. & Hoyt, D. (2002), ‘Social networks in the virtual science laboratory’,
Commun. ACM 45(8), 87-92.

Google Code (2008), ‘Revision 460: /tags/release-1.8.0/facebook-java-api’, viewed 30 November
2008, http://facebook-java-api.googlecode.com/svn/tags/release-1.8.0/facebook-java-api/.

Google Code (n.d.a), ‘Hosting opensocial apps’, viewed 1 October 2008,
http://code.google.com/apis/opensocial /container.html.

Google Code (n.d.b), ‘Who39;s using it?’, viewed 1 October 2008,
http://code.google.com/apis/opensocial /whoisusingit.html.

Google Code: Issues (2008), ‘Issue 124 - facebook-java-api’, viewed 24 October 2008,
http://code.google.com /p/facebook-java-api/issues/detail?7id=124.

Greve, A. & Salaff, J. (2003), ‘Social Networks and Entrepreneurship’, Entrepreneurship Theory
and Practice 28(1), 1-22.

Hampton, K. & Wellman, B. (2003), ‘Neighboring in Netville: How the Internet Supports Com-
munity and Social Capital in a Wired Suburb’, City and Community 2(4), 277-311.

Handcock, M. (2002), Assessing degeneracy in statistical models of social networks, in ‘Workshop
on Dynamic Social Network Analysis, Washington, DC, November’.

Handel, M. & Herbsleb, J. D. (2002), What is chat doing in the workplace?, in ‘CSCW ’02:
Proceedings of the 2002 ACM conference on Computer supported cooperative work’, ACM,
New York, NY, USA, pp. 1-10.

Hansen, E. (1995), ‘Entrepreneurial network and new organization growth’, Entrepreneurship
Theory & Practice 19(4), 7-19.

Herbsleb, J. D., Atkins, D. L., Boyer, D. G., Handel, M. & Finholt, T. A. (2002), Introducing in-
stant messaging and chat in the workplace, in ‘CHI '02: Proceedings of the SIGCHI conference
on Human factors in computing systems’, ACM, New York, NY, USA, pp. 171-178.

Hi5 (2008), ‘Opensocial 0.8 in beta on hi5’, viewed 26 September 2008,
http://www.hibnetworks.com/developer/2008,/08 /opensocial08inbetaontheh.html.

Hoff, P., Raftery, A. & Handcock, M. (2002), ‘Latent Space Approaches to Social Network
Analysis’, Journal of the American Statistical Association 97(460), 1090-1098.

IBM Lotus Sametime (n.d.), ‘Ibm software - ibm lotus sametime’, viewed 3 December 2008,

http://www-01.ibm.com /software/lotus/sametime.

IBM Press room (2006), ‘Ibm ships lotus sametime 7.5, delivering the first uni-
fied platform for business collaboration’, viewed 30 November 2008, http://www-
03.ibm.com /press,/us/en/pressrelease/20259.wss.

104

BIBLIOGRAPHY

IBM Sametime Features (n.d.), ‘Ibm lotus sametime - features and benefits’, viewed 10 November

2008, http://www-306.ibm.com/software /lotus/products/sametime/features.html.

IEEEFE Standard for Software and System Test Documentation (2008), IEEE Std 829-2008 pp. 1—-
118.

ISO (1986), ‘ISO 8402 quality vocabulary, ISO copyright office, geneva, switzerland’.

ISO/IEC (2001), ‘ISO/TEC 9126-1 software engineering - product quality - part 1: Quality
model, ISO copyright office, geneva, switzerland’.

ISO/IEC (2002a), ‘ISO/IEC 9126-2 software engineering - product quality - part2: External

metrics, ISO copyright office, geneva, switzerland’.

ISO/IEC (2002b), ‘ISO/IEC 9126-3 software engineering - product quality - part3: Internal

metrics, ISO copyright office, geneva, switzerland’.

ISO/IEC (2002¢), ‘ISO/IEC 9126-4 software engineering - product quality - part4: Quality in

use metrics, ISO copyright office, geneva, switzerland’.

Jamali, M. & Abolhassani, H. (2006), Different aspects of social network analysis, in ‘WI ’06:
Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence’,
IEEE Computer Society, Washington, DC, USA, pp. 66-72.

Kautz, H., Selman, B. & Shah, M. (1997), ‘Referral web: combining social networks and collab-
orative filtering’, Commun. ACM 40(3), 63-65.

Keyes, J. (2003), Software Engineering Handbook, Auerbach Pub.

Kruchten, P. (2003), The Rational Unified Process: An Introduction, Addison-Wesley Profes-

sional.
Lam, S. (n.d.), Representation of Online Social Networks, Master’s thesis.

Larson, A. & Starr, J. (1993), ‘A network model of organizational formation’, Entrepreneurship
Theory & Practice 17(2), 5-15.

McDonald, D. W. (2003), Recommending collaboration with social networks: a comparative
evaluation, in ‘CHI ’03: Proceedings of the SIGCHI conference on Human factors in computing
systems’, ACM, New York, NY, USA, pp. 593-600.

Mitchell-Wong, J., Kowalczyk, R., Roshelova, A., Joy, B. & Tsai, H. (2007), ‘Opensocial: From
social networks to social ecosystem’, Digital EcoSystems and Technologies Conference, 2007.
DEST ’07. Inaugural IEEE-IES pp. 361-366.

Nardi, B. A., Whittaker, S. & Bradner, E. (2000), Interaction and outeraction: instant messaging
in action, in ‘CSCW ’00: Proceedings of the 2000 ACM conference on Computer supported
cooperative work’, ACM, New York, NY, USA, pp. 79-88.

Nardi, B. & O’Day, V. (1999), Information Ecologies: Using Technology With Heart, MIT Press.

Nielson, S., Juergensen, V., Menashes, R., Patton, T. & Schejter, M. (2002),
‘Working with the sametime client toolkits’, viewed 17 October 2008,
http:/ /www.redbooks.ibm.com/abstracts/sg246666.html?Open.

105

BIBLIOGRAPHY

Ofcom, Office of Communications (2008), ‘Social networking, a quantitative and qual-
itative research report into attitudes, behaviours and use’, viewed 13 October 2008,

http://www.ofcom.org.uk /advice/media_ literacy /medlitpub/medlitpubrss/socialnetworking /report.pdf.

Ott, L. (2008), ‘A tour of the ibm lotus sametime v7.5 toolkits’, viewed 10 November 2008,
http://www.ibm.com/developerworks /lotus/library /sametime75toolkits/.

Poe, R. (2001), ‘Instant messaging goes to work’, Business2. 0, July .

Preece, J., Maloney-Krichmar, D. & Abras, C. (2003), ‘History of Emergence of Online Com-

munities’, Encyclopedia of Community. Berkshire Publishing Group, Sage .

Project, P.ILA.L (2002), ‘Getting serious online: As americans gain experience, they
use the web more at work, write e-mail with more significant content, perform
more online transactions, and pursue more serious activity’, viewed 11 October 2008,

http://www.pewinternet.org/reports/poc.asp?Report=>55.

Punter, T., Van Solingen, R. & Trienekens, J. (1997), Software Product Evaluation, in ‘Pro-
ceedings of 4th European Conference on Evaluation of Information Technology (EVIT’97),
Delft’.

Quan-Haase, A., Cothrel, J. & Wellman, B. (2005), ‘Instant Messaging for Collaboration: A
Case Study of a High-Tech Firm’, Journal of Computer-Mediated Communication 10(4).

Reynolds, P. (1991), ‘Sociology and Entrepreneurship: Concepts and Contributions’, En-
trepreneurship Theory and Practice 16(2), 47-70.

Rittinghouse, J. & Ransome, J. (2005), IM Instant Messaging Security, Digital Press,Newton,
MA, USA.

Rosenthal, E. (1997), ‘Social networks and team performance’, Team Performance Management
3(4), 288.

Smyth, P. (2003), Statistical modeling of graph and network data, in ‘IJCAI Workshop on
Learning Statistical Models from Relational Data’.

Starr, J. & MacMillan, I. (1990), ‘Resource cooptation via social contracting: Resource acquisi-

tion strategies for new ventures’, Strategic Management Journal 11(4), 79-92.
Sundén, J. (2003), Material virtualities: approaching online textual embodiment, P. Lang.

Van Laere, K. & Heene, A. (2003), ‘Social networks as a source of competitive advantage for the
firm’, The Journal of Workplace Learning 15(6), 248-258.

Weaver, A. & Morrison, B. (2008), ‘Social networking’, Computer 41(2), 97-100.

Wellman, B. & Gulia, M. (1999), ‘Net-Surfers Don’t Ride Alone: Virtual Communities as Com-
munities’, Networks in the Global Village: Life in Contemporary Communities pp. 331-66.

Wells, D. (2001), ‘Extreme Programming: A Gentle Introduction’; viewed 20 September 2008,

http://www. extremeprogramming. org.

106

Appendix-A

Figure 1is a transcript of chat with Jason Simoneau (IBM), ST expert in SDK area.

Shruthi Meda i was trying to use 5T chat application to chat with facebook users
4 and i added person objects wrapping up the required fields
“ now when i double dick on the person object, i get this error

) Sametime =)

Please try again later or contact your system administrator. Reason:

\:\i‘) There was an error opening a chat session with Shruthi Meda.
0x80000006

i wonder if it is some missing connection

A

Jason Simoneau hmmm - what do you mean you are adding person objects wrapping up the required fields?
Shruthi Meda to represent facebook contacts
“ i create contact Id using their facebook id, the name etc
Jason Simoneau ok. I'mnot sure this is possible
4 So when you double-click an a user, you are dicking a Sametime livename. So the dient is going to
4 jniiate a chat with what it thinks is Sametime user - over the Sametime server
what are you expecting to happen when you double-dick that person object with the facebook info?
Shruthi Meda 50 i was wondering if i could simulate ST chat system for chatting with facebook users as well
i just tried double dicking just to see if it says if anyting is missing to achieve this
4 and if the reason code indicated means anything useful
Jason Simoneau ok I see - unfortunately we aren't setup to accomodate this right now. Chatting with facebook users will not
* work throuah Sametime. It would reaguire a new. facebook™ community implementation and also a “facebook™
4 implementation of the RTC API which is a large, non-trivial undertaking. This is all out of the scope of the SDK, and something which
4 we unfortunately cannot support.

Iy

A

Figure 1: Chat with Jason Simoneau

107

Appendix-B

The survey questions used for requirements analysis is shown in the figure 3 and the notes shown

in figure 2 to assist users in finding what types of SN users they are.

INotes Before filling the questionnaire:

According to Ofcom's qualitative research, social networkers could be differentiated into
five groups based on the difference in their attitude to the social networking sites and
their behaviour while using them. These groups are described as follows.

» Alpha Socialisers: The people who use the social networking sites very often for
flirting, meeting new people. Their main motive is being entertained.

» Faithfuls: The people who used the social sites to maintain their old friendships
generally from their school or universities.

» Attention Seekers: The people who used the social sites to seek the attention from
people and were so keen on obtaining comments from others about their profiles or
photos uploaded or anvthing published about them.

» Followers: The people who joined the social sites just because others were doing or to
keep up with the changing technologies or to keep up with their peers.

* Functionals: The people who joined the social sites for specific purpose.

While the majority of internet users were part of Social networking, there were people
who were not using the the sites for varied reasons. The report also classified the non-
users of social networking based on the reason for not using them as follows:

* Concerned about safety: Manv people were afraid of using the social sites because
thev were afraid of publishing their personal details on the intemet. Thev were concemed
about the safetv of making their details available online although technically they would
not need to publish legitimate or correct details.

* Technically inexperienced: There were a portion of non users of social sites who were
not aware of using the technology and who lack the confidence in using computers and
the intemet.

* Intellectual Rejecters: These type of people would not have anv interest in using these

sites at all and see using them as just a waste of time.

Figure 2: Notes given as part of survey

108

BIBLIOGRAPHY

Questionnaire about integrating IM(Instant Messaging) and SN (Social
Network) systems into a single application

1. Do vou use any of the IM or SN systems? Select relevant option.
[CINeither of the systems
[lEither of the systems
[IBoth the systems
If using only one of those, would vou be interested in using the other system?
[IYes
[INo
3. If already using or interested in using both the systems, would vou like to use
them in a single interface?
[Jves
[INo
[[]Does not matter
4 Are vou a home user or corporate user (use them at work)?
[JHome
[]Corporate
Based on the notes given in the document, what tvpe(s) of user are vou?

[

LA

Please answer the following questions if your answer is “Yes” for Question 3.

6. Would vou like to use them as a desktop application or as an Intemet application
and why?

7. What Social Networks do vou want to be integrated in to vour IM?

8 What features of SN would vou like to be integrated into IM as a must?

Figure 3: Questionnaire used for requirements analysis

109

Appendix-C

Facebook Java toolkit license is shown in the figure 4.

Copyright (c) 2007 Facebook, Inc.
A11 rights reserved.

Bedistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

I
I
I
I
I
I
I
| 1. Redistributions of source code must retain the above copyright

| notice, this list of conditions and the following disclaimer.

| Redistributions in binary form must reproduce the above copyright

| notice, this list of conditions and the following disclaimer in the
| documentation and/or other materials provided with the distribution.
I

I

I

I

I

I

I

I

I

I

I

%)

THIZ SOFTWARE IS5 PROVIDED BY THE AUTHOR " "AS I5"' RND LNY EXPRESS OR
IMPLIED WARBRANTIES, INCLUDING, BUT NCT LIMITED TC, THE IMPLIED WARRANTIES
COF MERCHRNTABILITY RND FITHNESS FOR & PRRTICULRR PURPCSE LRE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTARL, SPECIAL, EXEMPLRARY, OR CCONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TC, PROCUREMENT OF SUBSTITUTE GOCDS OR SERVICES; LOSS OF USE,
DATR, OR PROFITS:; OR EUSINESS INTERRUPTICN) HOWEVER CAUSED AND CON ANY
THECRY OF LIABILITY, WHETHER IN CONTIRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR CTHERWISE) ARISING IN ANY WAY CUT OF THE USE OF
THIS SOFIWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMRGE.

| For help with this library, contact developers-help@facebook.com

Figure 4: Facebook Java toolkit license

110

Appendix-D

Facebook application created for the purpose of this project is shown in the figure 5.

ﬁ My Applications | + Apply for an Application Key |

e Sametime Integration
irectory Status: Not Submitted

Cr you have completed your application, you may submit it to cur

progu ry.
Monthly Active Users About Page Fans Total Users
API Key Advertise
L Create Feed Template
Secret DataStoreAdmin
A :

Edit About Page

Application ID Edit Settings
15906012942 Reset Secret Key
Contact Email Stats
A Translations
Support Email View About Page
]
Callback URL
Base domain
FBML fiframe
iframe
Dev Mode?
Off
Application Type
Desktop
Private Install?
Mo
Sample Code

Get started quiddy with some example code!

Delete Application

Figure 5: Facebook application details page

111

Appendix-E

The mail thread with a facebook developer regarding facebook chat problem.
LiveMessage.Send problem 1nbox | x

@ Shruthi Meda to andrhahn

Hi Andrhahn,
Sorry for a private mail but i am really stuck with using LiveMessage Send() in my desktop application.
Am doing a proof of concept for my college project and have a very near deadline.
| raised a ticket http://code google com/p/facebook-java-apilissues/detail?id=124.
Can you please help me using this API.
| used this API :
client.useBetaApiServer();
JSONObject sendMsg = new JSONObject();

sendMsg.put("from”, <logged in user id=);
sendMsg.put("msg", "text to send as live message");
boolean sent = client liveMessage_send(new Long(uid), "chatEvent"+uid,sendMsg);

and get this error:

=7xml version="1.0" encoding="UTF-8"?>

<grror_response xmins="http-//api. facebook.com/1.0/" xmins xsi="hitp/fwww w3 org/2001/XMLSchema-instance
<grror_code=0</error_code>
<EITOr_msg=Success</error_msg=

Andy to me
Shruthi,
This isn't working because there is a bug in the code. | will add a new issue for this.

Instead of the POST passing 'uid', it should be passing 'recipient’, as in hitp//wiki.developers fac ebook com/findex. php/l iveMessage. send.

POST: hitp./fapi.new facebook com/restserver php?
api_Key=x00

call_id=34543543507798&
event_name=chatEvent732076781&
format=xmi&

message=%7B%22
from%22%3A732076781%2C%22
msg%22%3A%22
text+to+send+as+live+rmessage%22%7D&
method=facebook livemessage send&
SESSIoN_Key=x0m
sig=kBc9085ad90sadda7225c803ce6ba2é
Uid=9383715738v=1.0

Andy

112

