
Grays 2.0: A Web 2.0 on-line Medical Social
Bookmarking system using the Google App Engine and

Django

A Dissertation

Submitted to

The Division of School of Computing

Dublin Institute of Technology

In Partial Fulfillment

of the Requirements for the Award

MSc in Computing (Information Technology)

Juan D. Convers

May 2009

Acknowledgments

First and particularly, I would like thank the big support and encouragement I re-

ceived from my supervisor, Damian Gordon of the School of Computing at the DIT

during the development of this project. He not only helped me to define a good

structure for this project, provided me very good advice in every session to improve

the dissertation and was flexible with my tight schedule during this period of the

year. I only have words of gratefulness for him.

I would like to thank my employer, Google Ireland and in particular my depart-

ment Search Quality Evaluation for being flexible with the time I needed to finish

up this dissertation project. The study leave they granted during this period was

fundamental to finish this project on time.

I also would like to thank all the users of the medical social bookmarking ap-

plication who filled out the feedback form. Their help was invaluable to write the

Results chapter.

Finally I would also like to thank all my family members and friends who en-

couraged me and supported me during this thesis period.

Declaration

I certify that this dissertation which I now submit for assessment for the award

of MSc in Computing (Information Technology), Dublin Institute of Technology, is

entirely my own work and has not been taken from the work of others, the dis-

sertation was prepared according to the regulations for postgraduate study of the

Dublin Institute of Technology and the dissertation has not been been submitted

for evaluation for any academic purpose other than in particular fulfilment for the

stated above.

Signed

——————————————————

Juan D. Convers

Date: May 6 / 2009

Abstract

Even if at beginning the term Web 2.0 ignited a lot controversy and it was consid-

ered by some as a market ploy, during the last few years the Web 2.0 has demon-

strated it is a reality and web services like blogs, wikis, podcasts, social networks

and social bookmarking systems are used everywhere. The Ajax set of technologies

are common in many services and certain features that once were a novelty like the

Tag Clouds, the user-generated contents and ranking and the online social interac-

tion are now the norm. Even if there have been some services directed to health

community there are not many social bookmarking services created to this popula-

tion segment. On the other hand the web development field has also evolved and

many web applications framework have appeared implementing the concepts of

the Model View Controller architecture. Finally the spam is still a problem affecting

many web related services and the new social applications are not the exception.

Therefore the objective of this dissertation was to provide to the medical commu-

nity an a Medical Social Bookmarking system developed in Python using the Django

web application framework over the Google App Engine, to deploy the system in

the appspot.com domain and in to analyse the process of developing an applica-

tion in such framework and to determine the user behaviour interacting with the

system. Apparently, this is the first time a medical social bookmarking services has

been developed under those conditions.

Table of Contents

Chapter 1: Introduction . 1

Introduction . 1
1.1 Project background . 3

1.1.1 Spam Phenomenon . 3
1.1.2 Web 2.0 Services . 4
1.1.3 Spam in Web 2.0 Services . 5

1.2 Project aim and objective . 6
1.2.1 Project Aim . 6
1.2.2 Project Objectives . 6

1.3 Intellectual Challenge . 7
1.3.1 Social Challenge . 7
1.3.2 Technical Challenge . 7
1.3.3 Scientific Challenge . 7
1.3.4 Personal Challenge . 8

1.4 Thesis Roadmap . 8

Chapter 2: Web Applications and Web 2.0 Applications 9
2.1 Introduction . 9
2.2 The World-Wide Web . 10

2.2.1 Origins . 10
2.2.2 Definition and Architecture 11
2.2.3 Ajax . 13

2.3 Web 2.0 . 14
2.3.1 Blogs . 16
2.3.2 Micro-blogging . 18
2.3.3 Wikis . 19
2.3.4 Podcasting . 22
2.3.5 RSS . 23
2.3.6 Social Networks . 25

2.4 Tagging . 31
2.4.1 Folksonomy . 31
2.4.2 Social Bookmarking Systems 33
2.4.3 Tag Clouds . 36

2.5 Conclusions . 38

Chapter 3: Spam . 40
3.1 Introduction . 40
3.2 Definition . 41
3.3 Types of Spam and Detection . 42
3.4 Conclusions . 49

Chapter 4: Software Development Process 50
4.1 Introduction . 50
4.2 Development Processes . 51

4.2.1 Waterfall Model . 51
4.2.2 Agile Framework . 53
4.2.3 Rational Unified Process (RUP) 55

4.3 Development Process Selected . 58
4.4 Conclusion . 59

Chapter 5: Analysis and Design . 60
5.1 Introduction . 60
5.2 High Level Analysis . 60
5.3 Architecture . 62

5.3.1 Model-View-Controller Architecture 62
5.3.2 Web Application Frameworks 63
5.3.3 Django . 65
5.3.4 Google App Engine . 68
5.3.5 Architecture in Gray’s 2.0 . 70

5.4 UML Diagrams . 71
5.4.1 Use Cases . 71
5.4.2 Class Diagrams . 79
5.4.3 Interaction Sequence Diagrams 80

5.5 Backend Design . 82
5.5.1 Entities and Relationships . 82
5.5.2 Entity Relationship Diagrams 84

5.6 Conclusions . 85

Chapter 6: Development of Grays 2.0 . 86
6.1 Introduction . 86
6.2 Development Environment . 87

6.2.1 Development Hardware . 87
6.2.2 Development Software . 88
6.2.3 Django Setup . 88
6.2.4 Google App Engine Setup . 91

6.3 Architecture . 93
6.3.1 Django on Google App Engine 93
6.3.2 Grays2.0 Architecture . 96

6.4 Development Process . 98
6.4.1 GUI Design and Template development 98

6.4.2 Handler Implementation . 101
6.5 Database . 115

6.5.1 Data Model . 116
6.6 Uploading Application . 119
6.7 Conclusions . 120

Chapter 7: Testing . 121
7.1 Introduction . 121
7.2 Blackbox / Whitebox . 122
7.3 IEEE 829 Testing . 123
7.4 Test Plan . 123
7.5 Test Cases . 123

7.5.1 Authorization . 124
7.5.2 Adding or editing bookmarks 127
7.5.3 Browsing or searching bookmarks 130

7.6 Conclusions . 134

Chapter 8: Evaluation . 136
8.1 Introduction . 136
8.2 International Evaluation Standards - ISO 9126 138
8.3 Evaluation Methodology . 140
8.4 Evaluation Results . 142

8.4.1 Users Profile . 143
8.4.2 Adding bookmarks . 144
8.4.3 Searching of browsing for bookmarks 145
8.4.4 General Overview . 146

8.5 Conclusions . 148

Chapter 9: Conclusions and Future Work 150
9.1 Introduction . 150
9.2 Conclusions . 150

9.2.1 Main conclusion . 150
9.2.2 Additional Conclusions . 151

9.3 Future Work . 155
9.3.1 Medical Bookmarking System 155
9.3.2 Other areas . 156

9.4 Personal Remarks . 157

Appendix A: Grays2.0 Code Snippets . 158
A.1 Configuration Files . 158

A.1.1 app.yaml . 158
A.2 App Engine Django Applicaton Handler Files 158

A.2.1 views.py . 158
A.2.2 urls.py . 159
A.2.3 forms.py . 160

A.3 App Engine Django Applicaton Template Files 161
A.3.1 base.html . 161
A.3.2 header.html . 162
A.3.3 menu.html . 163
A.3.4 footer.html . 165
A.3.5 main page.html . 165

Appendix B: Evaluation Form . 167

Appendix C: Data Analysis .py script . 168

References . 171

List of Tables

2.1 RSS Required channel elements. (RSS Advisory Board, 2009) 24
2.2 Top 20 Social Networking Websites. Accordingly to hitwise.com (week

ending 04/11/2009) . 28
2.3 delicious most popular domains and tags. (Wetzker et al., 2008) . . . 35

3.1 Common patterns in Social Bookmarking Spam. (Wetzker et al., 2008) 48

5.1 User Entity . 83
5.2 Bookmark Entity . 83
5.3 Bookmark Entity . 84

6.1 Hardware Specifications . 87
6.2 Software Specifications . 89
6.3 Google App Engine - Properties . 116

List of Figures

2.1 HTTP Protocol . 11
2.2 Traditional vs Ajax application models. 13
2.3 Web 2.0 Meme Map - O’Reilly 2005 16
2.4 Twitter, Popular micro-blogging service 19
2.5 Editing entry in Wikipedia. 20
2.6 RSS Feed Sample. http://media.acponline.org/feeds/annals.xml . . 23
2.7 RSS Aggegator: Google Reader. 24
2.8 Linkedin, professional social networking site. 27
2.9 Tag Cloud in del.icio.us . 37

3.1 Monty Python’s Flying Circus Spam Sketch. 41
3.2 Spam E-mail Sample. 43

4.1 Waterfall Model . 52
4.2 Two dimensions of the Rational Unified Process 56

5.1 Model View Controller . 63
5.2 Django Framework Functionality. 68
5.3 Django Framework on the Google App Engine. 69
5.4 Grays 2.0 on the Django Framework over the Google App Engine. . . 71
5.5 Use Case Number1: Create a new account. 74
5.6 Use Case Number2: Add a new bookmark. 76
5.7 Use Case Number3: Search for bookmarks. 77
5.8 Use Case Number4: Browse bookmarks by user or tag cloud. 78
5.9 Use Case Number5: Delete Contents. 79
5.10 Main Classes Diagram. 79
5.11 Interaction Sequence1 - Add / Edit Bookmark. 81
5.12 Interaction Sequence2 - Browse User Bookmark / Tag Bookmark. . . 82
5.13 Entity Relationship Diagram - Draft1 84
5.14 Entity Relationship Diagram for the Grays 2.0 Application (Final Ver-

sion) . 84

6.1 Django Testing Server - Welcome Screen 91
6.2 App Engine Hello World . 93
6.3 Grays 2.0 Architecture . 98
6.4 Generic Template . 99

6.5 Medical Bookmarks - Google Login 102
6.6 Add Bookmark - Menu item on the green bar 107
6.7 Add Bookmark - Error the user is not signed in. 107
6.8 Add Bookmark - The form to fill is printed 107
6.9 Add Bookmark - Bookmark saved and redirection to the user’s page. 107
6.10 Support Group - Search the datastore. 119

7.1 Registered user can browse own bookmarks. 132
7.2 User can browse bookmark by username. 133

8.1 ISO 9126 Standard . 138
8.2 Use of social services to get feedback 142
8.3 Familiarity with Web2.0 and Social Bookmarks 143
8.4 Social services and type of user. 144
8.5 Add a new bookmark . 145
8.6 Add a new bookmark . 146
8.7 Add a new bookmark . 146
8.8 Appspot Dashboard CPU Usage. 147

B.1 Evaluation Form - Part1. 167
B.2 Evaluation Form - Part2. 167
B.3 Evaluation Form - Part3. 167

Chapter 1

Introduction

The World-Wide Web has been transformed in the last years with the apparition of

social websites such as wikipedia.org, digg.co, del.icio.us, and flickr.com

changing the traditional content distribution model. In less than 10 years it has

evolved and it has become a geniune extension of our daily life when the community

social factors have begun to play an important role in the way we interact with the

web. A simple Google search for the term “Web 2.0” returns almost 400 million hits

linking to news, blogs and articles discussing this topic. These sites have changed

from being a small subset of the web content with a specific user base, to one of the

most important components of web sphere, posing a threat to the traditional and

more established on-line and off-line businesses. Those types of sites are the soul

of this new phenomenon that has been called “Web 2.0“ by Tim O’Reilly(O’Reilly,

2005).

One of the main features of those social Web 2.0 sites is they rely on their users.

In the traditional web sites used to provide static content generated by the pub-

lisher, but in the web 2.0 paradigm the owners of the websites depend on the

user-generated content, they simply create the platform to publish and distribute

this information. Those services create a symbiosis between the members and the

Introduction 2

service and as soon as the user base grows and they use the service, it becomes

better and better.

On the other hand healthcare is becoming more and more complex with thou-

sands of articles published on a monthly basis, with new discoveries both in the

diagnostic and therapeutic fields and with new challenging diseases tied to the de-

veloping world. Sterman discusses how difficult it is to generate reliable evidence

through the scientific method and determine a valid hypothesis when there are an

array of complex variables acting on the medical interventions or policies studied.

He found that common mental model lead to erroneous and dangerous reassuring

conclusions, that can persist for an significant amount of time that might hinder our

ability to change(Sterman, 2006)

Nevertheless Bates found that one of the keys to improving safety will be improv-

ing access to reference information. There are already a wide range of textbooks,

references on drugs, and tools for managing infectious diseases through access to

the Medline database and thousands of clinical journals on-line(Bates & Gawande,

2003). One of the challenges facing health professionals is to cope with this over-

whelming amount of medical information available on-line, since they need to be

able to find it, to rank it and to prioritize it. One of the keys to solving this problem

is to keep a bookmark list of the most relevant sites. Nevertheless a more useful

approach would be to participate in a social bookmarking service since it would al-

low the sharing between the different users and everybody would benefit from the

“wisdom of crowds”(Surowiecki, 2004). The downside of this incredibly dynamic

scenario is that there is the temptation of spamming the service with misleading

content or content that others user would not like to receive.

In Web 2.0 services, the methodologies and the spammer motivations change

constantly and could manifest as creating phoney user profiles, filling the system

with irrelevant or misleading annotations or corrupting the user-generated ranking

1.1. Project background 3

system. The spam phenomenon could threaten the existence of the social websites

because spam can lower their relevance enough to discourage legitimate usage.

This research aims to create a Medical Social Bookmarking Service entitled “Grays

2.0”, define and study the spam behaviour on the system and identify future mea-

sures to prevent and control the spam issue in a similar bookmarking system.

1.1 Project background

In this section an overview of the spam phenomenon is outlined, the Web 2.0 Social

applications are reviewed, and the previous research on spam in social services is

highlighted.

1.1.1 Spam Phenomenon

One of the risks that have to be taken into account in any web related service is

spam. It is defined by the Merriam-Webster dictionary as “unsolicited usually com-

mercial e-mail sent to a large number of addresses” and the anti-spam organization

Spamhaus define it more precisely as an electronic message where the recipient’s

identity and context are irrelevant because the message could be easily sent to a

wide array of different recipients and this recipient has not granted clearly a per-

mission for it to be sent(Glasner, 2001; spamhaus.org, 2008).

E-mail spam is probably the most common, the most problematic and the most

studied type of spam. It can be defined as the bulk sending of unsolicited mes-

sages (normally with commercial intent). According to the statistics published by

the e-mail security company Positini, spam activity has increased by 56 percent be-

tween September and October 2006. They also noted that almost 87 percent of the

messages processed by companies were actually spam. Another study published by

ipswitch in August 2006 found that on average 70 percent of the messages sent

1.1. Project background 4

to an email account were spam. Here they also analysed the main topics used on

the messages and they found they were: Medications, Finance/Phishing, Porno-

graphic, Electronics/Pirated Software and Mortgage Offers(postini.com, 2008; ip-

switch.com, 2006).

E-mail spam can be annoying for the end user because it can flood their accounts

with irrelevant messages and might even disable the Inbox, but it is also a huge

problem for the Internet Service Providers, since they must assume the cost of deal-

ing with the overwhelming amount of data transfer rates generated by these bulk

messages. There is not only an economic cost in spam, but also an environmental

impact too. In a study published by the anti-virus company McAfee (performed by

ICF International and Richi Jennings), they found the energy cost of spam is huge:

the energy spent in dealing with spam messages, transmitting and deleting them is

comparable to the energy used by 2.4 million homes in the United States(Mcafee

ICF International, 2009).

In summary, even if e-mail is the most common platform abused by spammers,

in practice any communication media on the web is a target to be attacked with

unsolicited messages. The economic factor is the main motivation of this activity:

The cost of sending bulk messages is minimum and the return of investment can

be huge since they might get a couple of customers or orders that will pay-off the

continuous sending of unsolicited messages. The Internet and the World-Wide Web

with their broad distribution and different array of services and media have opened

a new window for the spammers to send the unsolicited material.

1.1.2 Web 2.0 Services

The concept of “Web 2.0” was coined by Tim O’Reilly(O’Reilly, 2005). The term

originated from a brainstorming session between O’Reilly and MediaLive Interna-

tional following a conference dealing with next-generation Web concepts and is-

1.1. Project background 5

sues. The discussion centred on the common traits in companies that had survived

the dot.com bubble from early 2000. They perceived that there was a second gener-

ation of services on the web that could be considered a turning point into something

different they called “Web 2.0”.

Web 2.0 focuses on dot companies thinking about services rather than package

software, developing using open source methodology principles, trusting the users

as co-developers, using the user-generated data as one of the competitive advan-

tages and finally enabling user sharing and interaction through rich user interfaces.

Another common features of those application are the use of tagging system (it

has been called folksonomy in comparison with traditional taxonomy), the exten-

sive use of open source solutions (as a LAMP stack combination) and the extension

using APIs.

1.1.3 Spam in Web 2.0 Services

Folksonomy is one important component in many of these services such as del.icio.us

and flickr.com The tags that users add can be useful to find and share relevant

resources and help to build and grow knowledge communities. Nevertheless the

downside of the mounting popularity of those services is that they are beginning

to become more susceptible to tag spam, defined by Koutrika et al as “misleading

tags that are generated in order to increase the visibility of some resources or simply to

confuse users“(Koutrika et al., May 2007). In their study they attempted to simulate

spam attacks to a tag based 2.0 sharing system. They found that the existence of

popular tags provides many opportunities for malicious users to misuse tags and

spam searches. They also found that the naive users are most vulnerable because

they are more prone to search for unpopular tags where there will be more noise

in the postings. One interesting phenomenon they noticed is that the spammers

trying to attack the popular tags with their postings can have a smaller impact on

1.2. Project aim and objective 6

the system, since the community members have established a niche and query the

system about tags created by their peers. They also proposed to have some kind of

moderator for certain tags that might be targeted by spammers.

1.2 Project aim and objective

1.2.1 Project Aim

The main aim of this research is to identify the main web application frameworks

and once one has been selected, to design and develop a functional Web 2.0 on-line

Medical Social bookmarking service to provide an interesting and useful resource

to the medical community. A secondary objective of the project will be to try to

identify and avoid the underlying mechanisms on this collaborative system that

prevents and favour the appearance of the spam.

1.2.2 Project Objectives

• To plan and develop a Medical Social Bookmarking application and the cor-

responding dataset model, using Open Source Packages, to register a domain

name and get a hosting service to publish the application and the database

backend. Also to optimize the website and promote its visibility so it will be

found by the search engines and the user base will grow.

• To offer the academic and professional Medical community a working use-

ful Medical Bookmarking service to annotate and share interesting medical

resources published on-line with their students and peers.

• To review the literature and find the most important measures to avoid the

spam phenomenon in this Web 2.0 Social service.

1.3. Intellectual Challenge 7

1.3 Intellectual Challenge

In this section I will describe the intellectual challenge of my dissertation proposal

on four levels: social, technical, scientific and personal level.

1.3.1 Social Challenge

As was noted by Bates (2003) in his paper the healthcare is becoming more and

more complex with thousands of articles published constantly. Since one the keys

to improving safety is to improve the access to reference information, this collabo-

ration creates a new resource for the medical community where they will be able

to annotate and share useful medical resources. The medical disciplines are knowl-

edge intensive areas and therefore the proposed service can be relevant to them.

1.3.2 Technical Challenge

The technical challenge here is that it is not a trivial task to create a relevant So-

cial Bookmarking service, using a web application framework, to optimise it and

promote it in the search engines. It requires to master the Python programming

language, to setup and test the framework and finally to deploy the application. A

medical social bookmarking system in Django over the Google App Engine has not

been attempted before.

1.3.3 Scientific Challenge

There are not many scientific articles dealing with the Web 2.0 Social Bookmarking

systems and particularly in the Medical Bookmarking Systems, so this dissertation

will contribute to the scientific literature on Web 2.0.

1.4. Thesis Roadmap 8

1.3.4 Personal Challenge

There are different areas why this topic is very appealing to me: I had the op-

portunity to assist at a Tim O’Reilly talk three years ago and since then I became

interested in the Web 2.0 phenomenon. My original background is in Medicine but I

have been working in web related companies during the last 5 years, so this project

will give the opportunity to combine the knowledge acquired in both fields.

1.4 Thesis Roadmap

The rest of this dissertation will be organized in the following manner: Chapter

2 will contain a revision of the World-Wide Web, the Web 2.0 phenomenon, the

origins of the term, the technologies associated with those services and the type of

social services that are framed in the Web 2.0 term. In Chapter 3 a description of

spam will be developed and the different types of spam will be analysed. In Chapter

4 the different software development process will be discussed and one particular

methodology will be selected for the project. In Chapter 5 an analysis of the pro-

posed social bookmarking system will be performed and the outcome will be a set

of defined use cases, class diagrams and interaction sequence graphs modelling the

main functionalities of the application. In Chapter 6 the actual development of the

software will be presented, including the set-up of the development environment,

the selection of the web application framework rationale and the actual implemen-

tation of the different cases. In Chapter 7 the different types of software testing

methods will be discussed and the resulting product from the previous chapter will

be tested and in Chapter 8 the evaluation of the product will be executed based on

the feedback gathered from real users of the system. The dissertation will finish in

Chapter 9 with the conclusions of the project.

Chapter 2

Web Applications and Web 2.0

Applications

“Web 2.0 is the business revolution in the computer industry caused by

the move to the Internet as platform, and an attempt to understand the

rules for success on that new platform. Chief among those rules is this:

Build applications that harness network effects to get better the more peo-

ple use them. (This is what I’ve elsewhere called ”harnessing collective

intelligence.”)!” (O’Reilly, 2006)

2.1 Introduction

In this chapter the main features of traditional Web Applications and the of Web

2.0 Applications are compared and discussed. Since this dissertation is about a

Medical Social Bookmarking system using the Web 2.0 technologies, the main com-

ponents of Web 2.0 are relevant to this dissertation and they must be discussed in

this chapter. A small overview of the World-Wide Web will be discussed and the

main concepts of the Web 2.0 applications will be outlined. Also the main type of

2.2. The World-Wide Web 10

technologies composing the services known as “Web 2.0” will be reviewed and their

application on the medical and health field will be outlined. Finally the spam issue

will be outlined, particularly in these kind of applications.

2.2 The World-Wide Web

2.2.1 Origins

The World-Wide Web was developed in 1989 at the CERN (European Organization

for Nuclear Research) by the physicist Tim Berners-Lee. He wrote a proposal for

managing the information by servers that could transmit document information

through the Internet and linking the contents by using hypertext, using a simple

but useful graphical interface. This idea was very well received by the physicists

of the Institute and they began to use it to share the information gathered in the

laboratory. Info.cern.ch was the address of the world’s first-ever web site and

web server, running on a NeXT computer at CERN. In this site the visitors were

able to learn about the project and create their own web page. During 1991 there

were a additional web servers installed mainly in the United States and then there

were already 300 servers running. The turning point was February 1993, when

the National Center for Supercomputing Applications (NCSA) at the University of

Illinois at Urbana-Champaign developed the first version of Mosaic, a graphical

browser to use on personal computers (Berners-Lee, 2008). In 15 years the number

of unique URLs have grown in a exponential sequence. For example, Google passed

from 26 million pages in its index from 1998 to one trillion 10 years later. (Alpert

& Haja, 2008)

2.2. The World-Wide Web 11

2.2.2 Definition and Architecture

The World-Wide Web (WWW) is the most popular and widely distributed system to

access the Internet, in which items of interested such as Web pages, images, videos,

games, etc, are shared using global identifiers called Uniform Resource Identifiers

(URI). The World-Wide Web makes use of hypertext to access the different array

of contents available on the world’s different networks. This architecture allows

people to publish content and it is easy to share by using hyperlinks. The World-

Wide Web have evolved into an amazing information space of interlinked resources,

across multiple languages, countries, cultures, and media. The web browsers such

as Internet Explorer, Firefox or Safari are the software part used by the users to in-

teract with the World-Wide Web. The main protocol used for exchange information

in the web is the Hyper Text Transfer Protocol (HTTP) and most of the documents

are encoded in the HyperText Markup Language (HTML)(Jacobs, 2004)

Figure 2.1: HTTP Protocol

In the web the URLs are used to identify and find resources. When a user enters

in a web browser the URL of a resource, the browser sends a HTTP GET request

to the server (The request by default goes via TCP/IP using the port 80). Once the

web server receives this request, it will process the request and it will issue back an

HTTP response specifying the type of content and the encoding of this content in

2.2. The World-Wide Web 12

the HTTP Header. The user browser receives the reply and it knows how to interpret

it based on content type defined on the header. The browser can issue additional

HTTP requests to gather the additional elements of the resource (for example, it

will need some additional requests to gather the images, CSS styles or JavaScript

files). The resulting element displayed on the browser is commonly known as a

“Web Page”. A typical http request made by a browsers such as Firefox might looks

like this:

GET /exampledir/examplepage.html HTTP /1.1
Connection: close
User -agent: Mozilla /4.0
Accept: text/html , image/gif , image/jpeg
Accept -language:en

And a typical response from a web server such as the open source Apache, might

look like this:

HTTP /1.1 200 OK
Connection: close
Date: Thu , 06 Aug 1998 12:00:15 GMT
Server: Apache /1.3.0 (Unix)
Last -Modified: Mon , 22 Jun 1998 09:23:24 GMT
Content -Length: 6821
Content -Type: text/html

HTTP uses the TCP / IP stack underneath as the transport protocol. When a

HTTP request is made, it is necessary to establish a TCP connection with the server.

Once this connection has been reached the server processes through their socket

interfaces. The client sends the request into the socket and receives a response

on it. The HTTP protocol does not need to care about the integrity of the request

or the reply since those tasks are handled by the underlying TCP protocol. It is

important to note the HTTP protocol does not keep information about the clients,

so it is denominated as a stateless protocol(Berners-Lee et al., 1996) This type of

2.2. The World-Wide Web 13

communications between web clients and web servers using the HTTP protocol, are

the most important component of the World-Wide Web traffic.

2.2.3 Ajax

Ajax, is a collective term that includes the set of technologies enabling asynchronous

communication between the web applications on the client side and the back-end

application in the server side. JavaScript and XML have been on the web for several

years but the ability to combine them to create dynamic applications has created

a new wave of dynamic web sites. Using this approach it is possible to create rich

web applications where the user do not have to wait until the content is downloaded

from the server. Instead she is continually interacting with the application without

noticing that the connection running in the background. The web applications in

Ajax offer some behaviour that was only available before in desktop applications. It

is able to overcome the main issues with the traditional web applications: the slow

performance and the lack of interactivity. (Paulson, 2005; Garrett, 2005) The com-

parison between the main technological features of the traditional web applications

versus the Ajax ones is displayed in the Figure 2.2.

Ajax is by definition interactive. In fact it is one of the advanced methods avail-

able on the web to develop rich and dynamic web applications that have gained a

lot of popularity very quickly because it allows the page to update dynamically in

small chunks without having to reload itself again. (Rahkila, 2006)

Ajax is popular because the user does not need to install additional plug-ins or

extensions for browsing the content. The only requirement is to have a browser

compatible with the latest web standards: JavaScript, XML, HTML and CSS. The

Ajax application use an Ajax engine: a small service written in Javascript that us-

ing the XMLHttpRequest object is able to provide an asynchronous communication.

Using Ajax the server can communicate constantly with the page calling it and this

2.2. The World-Wide Web 14

Figure 2.2: Traditional vs Ajax application models.
(Garrett, 2005)

client can modify only the parts needed using a Javascript as well (Schools, 2009;

McLellan, 2005). This model accelerates the process of displaying the information

since the whole page does not need to be modified. The key elements in an Ajax

application are:

• XHTML and CSS for presenting the content.

• DOM (Document object model) to modify and display the content.

• XML to interchange and manipulate the data.

• XMLHttpRequest object to get the data asynchronously.

• Javascript to integrate all these elements together.

There are quite a few Ajax applications running on-line, such as: Gmail, Google

Maps, Calendar, Zoho Writer, Google Docs, etc. All of them are free and replace

2.3. Web 2.0 15

many of the functionalities offered by their desktop software counterparts. There’s

one feature prevalent in most of these applications: The collaboration. Many users

can share documents, edit them simultaneously, they can chat when they are re-

viewing their email or create a shared calendar where they can setup their meet-

ings. Ajax applications allow a great deal of interaction between its users. Ajax is

one the main components of many of the Web 2.0 applications that will be discussed

in the next section.

2.3 Web 2.0

As was outlined in the introduction chapter, Web 2.0 is not a particular defined tech-

nology but rather made up by Tim O’Reilly, that originated from a brainstorming

session between O’Reilly and MediaLive International following a conference deal-

ing with next-generation Web concepts and issues. The discussion from this session

was around the common characteristics of the web sites and services that were suc-

cessful despite the dot.com bubble. They identified some common trends in those

services that were clustered under the Web 2.0 umbrella. The points they identified

as the most important features of this new paradigm were(O’Reilly, 2005):

• Web as a Platform: The web behaves like a platform, a kind of on-line operat-

ing system, where different sites offer services rather than just static content.

These web services run in a similar fashion to their desktop counter parts.

• Harnessing Collective Intelligence: The links and the link structure gener-

ated by the humans are one of the most important factors in the determining

relevance. The site is a medium where the users generate the content.

• Data is the driving force: The combination of licensed data plus the content

generated by the users creates a distinct mesh-up difficult to recreate.

2.3. Web 2.0 16

• End of the software release cycle: In the Web 2.0 companies don’t think in

terms of products but rather they work in terms of services that live in some

sort of “perpetual beta” state where they are constantly monitoring, improving

the service and releasing updates.

• Lightweight Programming Model and Software Above Single Device: The

Web 2.0 creates web services developed to run in different devices in contrast

to the traditional programming targeted to a single device.

• Rich User Experience: The web applications behave similar to the desktop

applications but additionally they permit a high degree of collaboration. This

collaboration is an integral part of those services.

Figure 2.3: Web 2.0 Meme Map - O’Reilly 2005

2.3. Web 2.0 17

In the Web 2.0 world companies think about on-line services, using open source

methodologies, release their products on an agile methodology cycle but particu-

larly rely on their users as collaborators and as an integral part of their content. In

the Web 2.0 services domain the user feels empowered to create, modify and pub-

lish the content and share it with the rest of the community. Different technologies

and applications categories such as wikis, blogs, RSS, folksonomy, social networks

and tagging are a fundamental part of the Web 2.0 phenomenon and the following

subsections will discuss them in more detail.

2.3.1 Blogs

The word Blog is a contraction of Weblog and as its name implies it is a type of

website or service where the owner update the contents on a regular basis with

opinion entries, description of the life events or multimedia elements such as photos

or videos. One of the very interesting features of these services is that the owners

don’t need to take care about the technical details of publishing and maintaining a

site since the blogger tools take care of these issues for them. The word Blog can

be used both as a noun or as verb, describing either the site where the entries are

stored or the act of writing and publishing them (Horton, 2000). Another typical

feature of blog services is that the entries are displayed in a reverse chronological

order, so the last entries will be a the top of the page (it will be the first content

seen by the visitors).

McLean et al. discussed how medical blogs are becoming more and more com-

mon and they include discussions, cases, diagnostic images or other topics that

might be interesting for clinical practitioners. For example, Dean Giustini, a librar-

ian at the University of British Colombia in Canada, maintains in interesting blog

with reviews about topics useful for the medical students community(McLean et al.,

2007). Given the fact that the web is becoming more and more of a multimedia plat-

2.3. Web 2.0 18

form, blogging tools are becoming useful for sharing videos, audio files or images

useful for the medical learning process. Actually since there are many phones web

enabled with high resolution cameras embedded it is possible to get a high quality

image from a clinical case and upload it in the fly to a blogging platform.

Another interesting feature of blogs is that they can be tracked using different

technologies. One of the most useful ones are RSS (Really Simple Syndication).

These are XML files created by the blog content systems that alerts its subscribers

about the new entries published when they happen. Therefore the visitors inter-

ested in the content of a particular blog do not need to visit on a regular basis

but rather go there when there is new material to be reviewed. Since the RSS are

feeds that are sent to the browser, they can be loaded as live bookmarks or even be

tracked with a feed aggregator such as Google Reader. There is even a new term

coined in the web called “mashups” that involves the use of RSS feeds coming from

different sources to create a new site aggregating them.

Most blogs have a particular niche of visitors following the topics discussed by

the author, but it is common to have readers that at the same time are authors, and

this particular interaction between the different bloggers generates one important

community feature of those type of sites. Sometimes the entries are influenced by

the writings of others and the basic linking nature of the web becomes an informal

citation type between the different blogs. There are know bloggers in different

areas and verticals and the interconnection between many of them has been named

“blogosphere”.

There are two additional features of the blogging systems that helps the authors

to interact with each other and follow the events happening in their peer blogs:

Blogrolls and Trackbacks. The first one can be defined as a list of the other blogs

that the author reads regularly and therefore she wants to endorse them by placing

a link in her own. The sites that are linked in the blogroll normally write about

2.3. Web 2.0 19

similar topics or they have contents interesting to the author linking to them. The

trackbacks on the other hand are a more recent referencing feature of the blog

systems to automatically update an entry with a reference to another blog hosted

elsewhere, when the latter link to the former. If two sites have the trackbacks

activated this automatic referencing system allows the author of an entry to discover

if there is a discussion of his topics in places outside of his own blog (Marlow, 2004).

2.3.2 Micro-blogging

One the latest phenomenons in the Web 2.0 sphere that is beginning to develop

but has grown exponentially during the last months is “Micro-blogging”. The prin-

ciple of this new type of communication is very simple, the users of the Micro-

blogging services update their friends or followers about their current status using

small messages of usually less than 200 characters that are sent through the web or

the mobile phones. This communication service has been popularised very quickly

through services such as Twitter, Jaiku and Ponwce. Some Social Network services

such as Facebook and the most popular instant messaging service like Yahoo, MSN

and Gtalk also have a similar feature by offering a “Status” functionality (Java et al.,

2007).

The most popular example of this type of service of is Twitter that has become to

Micro-blogging almost what Google is to web search. There are media companies

using Twitter to send updates about their headlines like BBC or the New York Times

and even in this difficult economic times some people is using Twitter API to develop

applications to search for jobs. For example the company WorkDigital developed

TwitterJobSearch, a job search engine using the twitter feeds (Gedda, 2009).

Also recently there was an Internet service outage for most of the users in the

San Jose/Silicon Valley area of California, ATT turned to twitter to keep updated its

customers updated about the the fiber cut causing the problems and the status of

2.3. Web 2.0 20

Figure 2.4: Twitter, Popular micro-blogging service

the service, with around 2400 following the feeds(Reardon, 2009).

In the medical world Micro-blogging can also be useful. Sidharth Kumar Sethi

describes in his paper how Medical Doctors have many social interactions in the real

world but they have little time to manage them, so Micro-blogging services such

as twitter presents themselves as an effective system to keep in contact with the

different social circles like friends, patients and colleges. Some of the potential uses

he describes are Twitter pages for the Doctors working in a hospital so the nurses

and patients can track them, the conferences where the organizers could update

the participants on the events and announcements and some special channels for

tracking difficult patients or review specific conditions(Sethi, 2009).

Even if Micro-blogging is one the newest services of the Web 2.0 is growing very

quickly and there are more users and institutions getting to use those services in

many different creative ways. It seems there is a lot potential to grow and probably

there will be appear in the future new applications and use cases for the Micro-

blogging phenomenon(Java et al., 2007).

2.3. Web 2.0 21

2.3.3 Wikis

The most well-known wiki system is Wikipedia, an on-line encyclopaedia where any

user can add or edit any content to the site creating a vast repository of the human

knowledge. This type of collaborative tool where users can fully edit the content

of the website themselves was created by Ward Cunningham, who got decided to

name the tools after the Hawaiian term “wiki” meaning quick or to hurry. In wiki

systems the users can browse the different contents of the website and they can

edit them freely. They can also reorganize the contents and even the structure of

the site. The only tools a user needs to create content in a wiki are a web browser

and an Internet connection. The open nature of those systems position them as a

very powerful part of the Web 2.0 phenomenon, creating a platform to create and

share this user-generated knowledge and also to keep it it up to date (Augar et al.,

2004).

One interesting element about the wiki phenomenon is the community element.

Wikis not only allow the users to generate knowledge but also to collaborate be-

tween them, a very important feature. The contents are not published by a single

expert but it is rather the result of the work by different authors using the wiki

system. Wikis normally include a versioning system allowing the users to revert to

a previous version if there are disagreements with the last changes (Boulos et al.,

2006).

One of the paradoxes of wiki systems is their open nature where any user can

modify any content. This is one of its most important features because it allows

a real collaboration among the wiki users but at the same also a known drawback

since anyone can modify the contents and sometimes it can compromise the quality

of the contents and lead to vandalism. A vandal might edit the valid contents of a

good page, add inappropriate texts or even delete all the content of a page. Wikis

also can trigger a phenomenon known as edit wars when different people have an

2.3. Web 2.0 22

Figure 2.5: Editing entry in Wikipedia.

opposite opinion about a particular topic and they edit and revert the pages over

and over in order to highlight their point of view. A known case of this edit wars

happened with the page of the American ex-president George W. Bush. Since some

of the users were editing this page trying to highlight his failures and at the same

time some other some others viewed him more favourably. In the end both parties

reached a consensus having a version as much objective as possible and the article

was semi-locked by the administrators (Brain, 2005).

Another potential issue with wikis open nature is that anyone can copy and

paste copyrighted material without the authorization of the author. Finally another

issue related to academic standards of those contents is that wiki systems promote

community creation of contents and not individual authoring. Since most of the

contents are created by a group of people in different time frames and authorial

identification is very hard and therefore wiki contents are normally not considered

as valid academic references. Nevertheless, despite all these drawbacks when mis-

takes in wiki contents are compared with more traditional and recognized reference

2.3. Web 2.0 23

materials, surprisingly there are no big differences between them (Giles, 2005).

In the medical field there are some additional factors to take into consideration

since health records, medical past, diagnostic images and test results are sensitive

patient information and must be dealt with care. It is necessary for the authors of

health wikis to get permission from patients before posting that kind of information

on-line and also it is important to anonymize it. Nevertheless there have been some

successful cases of health-related wikis such as Ganfyd, an on-line wiki style medical

reference website edited by medical professionals and non-medical experts (Boulos

et al., 2006).

In conclusion wiki systems are one the most interesting products from the Web

2.0 era, that created a framework for truly sharing the human knowledge, with

an amazing capacity to keep it up to date by the minute. There are risks related

to the quality and the bias in the contents on those pages, but the community

itself eliminates the errors in the text of those pages by the subsequent revisions.

Therefore wikis presents as an interesting reference system for medical knowledge.

2.3.4 Podcasting

On October 23, 2001, Apple released an unexpected product, the iPod, a mp3 music

player that instead of using flash memory, used a small hard drive disk, and since it

uses a very intuitive set of controls through a scroll-wheel the product became an

instant success and a created a whole “ecosystem” around the product, with sound

systems, accessories and music stores targeting those devices(Darling, 2006). One

of the positive consequences of the popularity of those iPods and the competing mp3

players is that it has created created an new expression media in the websphere:

Podcasts. A podcast is defined by the new oxford dictionary as “a digital recording of

a radio broadcast or similar program, made available on the Internet for downloading

to a personal audio player” and by Merriam Webster as “a program (as of music or

2.3. Web 2.0 24

talk) made available in digital format for automatic download over the Internet”. This

term combined the terms of “Broadcast” and “iPod” to encompass all those digital files

in mp3, wma, aac, etc created by individuals or institutions and made available to

download automatically using scripts, to play off-line on the road when wanted.

In the medical field there are some very useful podcasts available to both health

professionals and patients. Dr. Des Dimov maintains in his medical blog a list

of the health themed podcasts he listens on a regular basis to keep up to date

with the medical news, discoveries and advancements. Some of the most trusted

sources of medical institutions such as the American College of Cardiology and

the prestigious Johns Hopkins University offer medical updates through podcasts

and some of the most read medical publications such as the Journal of American

Medical Association, the New England Journal of Medicine, the Annals of Internal

Medicine and the British Journal of Medicine offer summaries about the contents

published in the magazines using the the podcast format (Dimov, 2006). Normally

podcasts are hosted in a web server and are updated on regular basis and the user

can subscribe to the feeds of the podcast so they receive an automatic update on

their feed readers every time a new podcasts has been published. Those feeds

normally use RSS (Really Simple Syndication). An RSS sample of the Annals of

Internal Medicine can be found in the figure 2.6

2.3.5 RSS

Really Simple Syndication (RSS) is a popular set of formats created for syndicate

content easily through feeds which the reader subscribes to, for getting automatic

updates. There are different types of websites and media using this format but in

general the common factor is that they are content providers updating frequently

their sites such as news websites, blogs, magazines and podcasts. The RSS feeds are

defined using the XML format (extensible markup language), a generic tag based

2.3. Web 2.0 25

Figure 2.6: RSS Feed Sample. http://media.acponline.org/feeds/annals.xml

language used in many different applications for storing and sharing data. The user

can “Subscribe” to one of this RSS feeds by getting the link to the XML file and

storing it either in browsers such as Mozilla Firefox as a dynamic “Live Bookmark”

that updates automatically based on the contents of the feed, or add it to certain

“RSS readers or aggregators” applications or websites where is possible to store,

organize and read all the feeds in one single place (one of them is shown if the

Figure 2.7).

The creator of the first version of this format (RSS 0.91) was Dan Libby, who was

working for Netscape Communications and created this new XML type of format to

define a My Netscape Network Channel and keep the reader updated on the changes

published on these personal sites. Nevertheless the company stopped supporting

the format and another couple of developer groups: Dave Winer from UserLand

and the RSS-DEV Working Group keep developing RSS independently (Cadenhead

& Smith, 2006). The current version of the RSS format is 2.0, that defines what

is RSS: ”RSS is a Web content syndication format. Its name is an acronym for Really

Simple Syndication. RSS is a dialect of XML. All RSS files must conform to the XML

2.3. Web 2.0 26

Figure 2.7: RSS Aggegator: Google Reader.

1.0 specification, as published on the World-Wide Web Consortium (W3C) website.”

and specifies which ones are the header and the required and optional fields the

file must contain in order to be a valid RSS document. The required fields are

summarised in the Table 2.1.

In the medical field RSS feeds are very useful to health professionals since they

do not need to visit their favorite websites on a regular basis, but instead they can

subscribe to the appropriate RSS feeds and receive automatic alerts once the sites

have been updated with new content. Since now there are the Internet enabled

smartphones such as the iPhone and the Blackberry are very popular and many

doctors own one of these or a similar product, they can receive updates about the

medical news or cases irrespective of where they are.

Giustini discusses how many doctors are using RSS as a new method of dis-

covering new information since they have realised the traditional methods of find-

ing information such as search engines or the traditional Medline are not efficient

enough to find the latest and more relevant information available about a particular

2.3. Web 2.0 27

Element Description Example
title The name of the channel. It’s

how people refer to your service.
If you have an HTML website
that contains the same informa-
tion as your RSS file, the title of
your channel should be the same
as the title of your website.

example.com News Headlines

link The URL to the HTML website
corresponding to the channel.

http://www.example.com/

description Phrase or sentence describing
the channel.

The latest news from exam-
ple.com, a Sample Journal Web
site.

Table 2.1: RSS Required channel elements. (RSS Advisory Board, 2009)

topic. These busy health professionals are using RSS readers to fight information

overload and aggregate only the sources they are particularly interested in such as

the evidence based medicine Cochrane Library (Giustini, 2006).

On the other hand Barksy in his paper describes the kind of RSS feeds that can

be useful for Health Librarians. He recognised that Blog updates, the newspapers

and journals articles, press releases from health organizations and medical database

updates using RSS as the main type of feeds useful for the Health Professionals

working in libraries and documenting centres (Barsky, 2006).

In conclusion RSS is a very useful feed format that allows content publishers

to update its followers on the fly when new materials are published by using these

XML compliant files. On the other end the RSS files allow the end users to subscribe

to feeds of their favourite sites and aggregate all the information in one single

application or website where they can discover quickly when new content has been

published.

2.3. Web 2.0 28

2.3.6 Social Networks

Nowadays the term social network is associated with popular on-line Social Net-

work systems. Nevertheless the origin of this concept does not come from the

Internet or the World-Wide Web world but it is rather a concept described in the

anthropology sphere. The term “Social Network” was used first by the Professor

J. A. Barnes, a Reader in Anthropology in the University of London, who studying

in Bremnes, a small fishing village in Norway, discovered that the whole social life

could be described in terms of points linked by lines forming in practical a term

a set of complex relationships between the members of that society an creating in-

deed a network structure (Barnes, 1954). Even if this concept was interesting it was

not particularly known world-wide, but once with the Web 2.0 movement began to

develop and several social network services began to emerge such as MySpace and

Facebook, the concept became very popular and actually and today some Social

Websites are some of the most visited on the World-Wide Web.

Boyd and Ellison defined in their paper a social network as “web-based services

that allow individuals to construct a public or semi-public profile within a bounded

system, articulate a list of other users with whom they share a connection, and view

and traverse their list of connections and those made by others within the system.” The

majority of social networks permit its users to create an account where they can

define information they want to share and they are able to construct their networks

step-by-step by adding new connections to people they already know off-line or

by creating new bonds with the new member they meet on-line. One interesting

finding of their paper is that the main objective of social networks is not about

meeting strangers but rather to articulate existing social circles and unveil their

social networks. It is possible also to make connections with people that would

be very hard using an off-line scenario, but for most users Social Networks are a

medium to communicate with people they already know and that belong to their

2.3. Web 2.0 29

existing social networks (Boyd & Ellison, 2007).

Even if many of the popular social network sites are general, so they are used

by many users for many purposes, most of them had at the beginning a “Thematic”

origin: For example Facebook was originally designed to keep in contact with the

college students, MySpace was mainly a place to share music influences or politic

thinking and Friendster was a place to start romantic relationships. Nevertheless

some social sites are still focused mainly in one particular segment like LinkedIn,

which focuses in the work environment, Last.fm that is mainly about music or

Couchsurfing that is focused on the hospitality and the traveller niche.

Figure 2.8: Linkedin, professional social networking site.

The social network services have experienced an important growth recently and

since many of them have embedded email and instant messaging services, they have

become one of the most commonly used communication media to keep in contact

with friends and acquaintances.

There are a broad array of social network services on-line, for example the Open

Directory project lists in the social networking category more than 180 different

websites of this type (dmoz.org, 2009). Some of the most popular services in the

category “Computers and Internet - Social Networking and Forums” reported by the

American Internet traffic monitor company are listed in the Table 2.1.

Some of the websites listed are not exclusively Social Network services but rather

2.3. Web 2.0 30

Rank Property Domain Visits
1. MySpace myspace.com/ 31.37%
2. Facebook facebook.com/ 29.84%
3. YouTube youtube.com/ 8.67%
4. Tagged tagged.com/ 1.72%
5. Yahoo Answers answers.yahoo.com/ 1.41%
6. myYearbook myyearbook.com/ 1.01%
7. Twitter twitter.com/ 0.95%
8. Yahoo Groups groups.yahoo.com/ 0.94%
9. Windows Live Home home.live.com/ 0.59%
10. Classmates classmates.com/ 0.48%
11. Yahoo Profiles profiles.yahoo.com/ 0.45%
12. Meebo meebo.com/ 0.45%
13. MySpaceTV vids.myspace.com/ 0.41%
14. Bebo bebo.com/ 0.38%
15. Yahoo Message

Boards
messages.yahoo.com/ 0.37%

16. BlackPlanet.com blackplanet.com/ 0.33%
17. LinkedIn linkedin.com 0.31%
18. hi5 hi5.com/ 0.31%
19. Google Groups groups.google.com/ 0.31%
20. Mylife mylife.com/ 0.29%

Table 2.2: Top 20 Social Networking Websites. Accordingly to hitwise.com (week
ending 04/11/2009)

2.3. Web 2.0 31

services with some social components. If we extract Social Network-only services

we can conclude that the most popular ones in the United States are MySpace

(31.37%), Facebook (29.84%) and Tagged (1.72%). Nevertheless in certain Euro-

pean markets Facebook has become very popular such as the British one where it

has surpassed MySpace. One report published by the British Office of Communi-

cations in 2008 found that in the leader in the UK market for the Social Networks

site was Facebook, followed by MySpace and Bebo (Ofcomp, 2008). An interesting

fact related to the Facebook growth is that a report published just one year earlier

by the information provider Comscore, described how Bebo was the most visited

Social Network site in the UK (Also this report describes the astonishing growth of

the British traffic to the property Facebook.com, since it had grow in 366% in only

6 months (comscore, 2007).)

In the health field Social Networks are begining to show their potential in giving

support to patients with a particular condition and to discover the effectiveness of

new treatments to control certain diseases. For example, social network Patients-

LikeMe offers to its users the possibility to connect with some other users with sim-

ilar conditions and share experiences about symptoms, treatments, prognosis, etc.

The site is divided into channels and the patients can join big groups for the main

neurological, immune and mood diseases. It is interesting that using the same con-

cepts as traditional social networks the patients are able to share information about

the treatments they are receiving and discuss any technique that can improve their

outcome. For example Aldhous, mentions in his paper how some community of

users suffering from amyotrophic lateral sclerosis (ALS), have joined forces to try

out a new therapy using Lithium, to control their disease (Aldhous, 2008).

Dr. Luo also discussed how even if health professionals are not a particularly

technical knowledgeable population and there are only a limited number of profes-

sional Social Networking in the medicine field, still they are beginning to get into

2.3. Web 2.0 32

the Social Network phenomenon. MyMedwork is one of those Social Health Sites

where physicians, biomedical engineers, psychologists, pharmacologists and public

health researchers can gather in a Social Network environment, maintain contacts

with their peers, find and contact again their former classmates, colleagues or col-

laborators, or creating and developing new relationships across the globe. This site

also allows its participants to tag their publications with traditional PubMed tags,

so it is easier for them to look for similar topics in Medline (Luo, 2007).

As I have reviewed during this section the multiple advantages of the Social Net-

works services such as the ability to reveal and keep alive existing social connections

and extends the social circles, by having a profile in a social service and share in-

formation with friends or acquaintances, but one of the disadvantages discussed

by Gross and Acquisti is the privacy issues. They studied the patterns of informa-

tion revelation in on-line social networks, particularly in Facebook, and they found

that the large majority of the studied population are careless about sharing their

personal information and the limiting privacy preferences and rarely used. They

believe a consequence of this behaviour is that the users are at risk of attacks on

their personal and on-line presence and they might be victims of stalking and iden-

tity theft. Another risk is that some users might create a dossier of the personal

information available and sell to a third party. In conclusion they found that while

personal data is generously shared, the limiting privacy features are hardly used,

putting the user at risk (Gross & Acquisti, 2005). This issue is also discussed by Ald-

hous in the case on PatientsLikeMe portal, since the information shared the patients

can be identified by potential employers or insurance companies and it will have an

adverse outcome on them (Aldhous, 2008).

In conclusion recently Social Network services have evolved and developed

enormously during the last years and they have become one of the most discussed

topics in the news related to Web 2.0 services and sites like Facebook have demon-

2.4. Tagging 33

strated the potential of these kind of services, even in the Medical Fields. Never-

theless privacy is a factor that will have to be discussed as well, since the growth of

social networks services also increase the risks.

2.4 Tagging

2.4.1 Folksonomy

The term Folksonomy was coined by Thomas Vander Wal in a mailing list discus-

sion related to information architecture, when he was describing the classification

systems being developed in popular services such as Delicious and Flickr. In his

view this term was a combination of folk (the community) and Taxonomy (the clas-

sification), so it is a classification system where the users of the systems define

themselves the categories, through tagging systems and where unlike the formal

taxonomies schemes, there is not a formal set of hierarchies, but rather a flat sys-

tem defined by this community of users. (Smith, 2004)

Mathes (2004) analyses the relationship between the traditional methods for

generating metadata taxonomy systems and the new folksonomy classification in

the Web 2.0 applications. He describes how metadata is normally a set of struc-

tured information describing the main characteristics of different types of materials

such as articles, books, etc. The problem he found is that this metadata is normally

expensive to gather and to maintain, since it requires professionals trained in Li-

brary Information Sciences using a strict set of guidelines to make sure the quality

and accuracy of the classification is preserved. When there is a vast amount of in-

formation generated quickly this methodology is not suitable since the information

processing takes time and the professionals don’t have the resources to scale the

process, particularly in media with an exponential growth such as the World-Wide

Web. A second alternative he describes is author-generated metadata, where the

2.4. Tagging 34

creators of the documents add information about the documents they are creating.

Even if this method is more scalable than the first one it has the disadvantage that

the users are not involved in the process so each author acts in their own island of

information.

Finally he discusses a third methodology where the users are the main actors

involved in the creation of this metadata. Folksonomy can be included in this cat-

egory. The social bookmarking service was one of the first one of its kind in using

this, Folksonomy us used to define the classification of websites. Here the users are

able to add their favourite sites and they are tagged with a set of keywords named

“tags”. Something interesting about this model is that the bookmarks are public,

so users are not only saving their favourite sites but also sharing them with the

rest of the community. In this model the same websites are tagged with different

keywords and it creates in a user-based classification system. Some of the disadvan-

tages found by the author are the ambiguity and the limitation of the categorization

system: It is difficult to deal with synonyms and also it is challenging to set-up the

boundaries of the tag usage in the system, to avoid overlapping (Mathes, 2004).

Actually McLean et al acknowledge that this might be one of the issues for the

Health professionals used to search in professional medical databases such as MED-

LINE where the headings and subheadings are clearly specified. They think that the

lack of a standard hierarchy might prove to be challenging to those users and they

might criticise the possibility of using polysemy, synonyms and plurals, as it is the

case in many of the Web 2.0 folksonomy based applications (McLean et al., 2007).

In another paper related to the folksonomy categorization, Hotho and Jaschke,

add to the discussion a new term: they define the term “personomy” as the set of

resources a user add to the system tagging them with a particular keyword or set of

keywords and they consider the folksonomy as a collection of those personomies.

In many of those systems they found that a particular user can see all the elements

2.4. Tagging 35

he has added to the system but once he browse one of them he can get additional

info provided by the other users of the system (Hotho et al., 2006a).

In conclusion folksonomies are a new classification methodology that was born

on the World-Wide Web, where the users of a system collaboratively creating and

managing tags to annotate one particular kind of content, generate the categories

and therefore the classification categories. The main difference with traditional

methods is that there is not an expert involved in the taxonomy, but rather many

user classification based on their personal criteria and the combination of all those

personal opinions define a collective knowledge. Even if there are risks regarding

the ambiguity, overlapping and accuracy using this method, particularly in the Med-

ical field, it is one of the most useful scalable methodologies in the World Wide Wed

huge arena.

2.4.2 Social Bookmarking Systems

The bookmarks concept is probably as old as the World-Wide Web itself, since Mo-

saic, the first browser developed by the National Center for Supercomputing Appli-

cations offered the possibility to save their favourite websites using a feature called

“hotlists”. Once Netscape Navigator, the Mosaic successor was developed, the fea-

ture was incorporated in the form of bookmarks and also when Microsoft developed

their own version of the web browser they also included this functionality, through

favourites. Bookmarks were very useful in the initial stages of the web to keep a

list of the sites the user wanted to visit again, but the problem inherent with the

system was that personal bookmarks used to grow very quickly and were very hard

to maintain. Search engines are one of the best solutions to this issue because they

were crawling and indexing the web all of the time, so in a way they offered a

dynamic bookmarking service where the user could find on the fly sites they have

visited before just by entering keywords, so people get used of having their favourite

2.4. Tagging 36

sites at hand, just a search query away (Hammond et al., 2005). Nevertheless with

the development of Web 2.0 concepts where collective knowledge and collabora-

tion are the foundation of many services, the concept of storing the recommended

sites begun to emerge again but with the additional community element, it was not

only to go back again to the favourite ones, but also to share them with the rest

of the community adding even an editorial component on them. Del.icio.us was

the first one of these Social Bookmarking services where the users could store their

favourite sites and share them with the community, by “Tagging” the resources us-

ing the keywords that are considered appropriate for each one of them. As was

discussed before these new features are called “Folksonomy” by Thomas Vander

Wal, when he was describing the users ability to classify the resources based on

their own criteria and how the sum of those personal opinions were creating a user

bottom-up generation of metadata (Smith, 2004). Del.icio.us defines social book-

marking as a service designed to allow its users to store and to share bookmarks on

the web, instead of inside the browser. It identifies three main advantages of the

social bookmarking versus the traditional bookmarking(delicious.com, 2007):

• The users can get to the bookmarks from anywhere, no matter where they are

(athome, at work, in a library, or on a friend’s computer).

• It is possible to share the bookmarks publicly, so friends, coworkers, and other

people can use them for reference, amusement or collaboration.

• The people can find some other people in Delicious who have interesting book-

marks and they can add them to their own collecition of links.

Del.icio.us allows its users to gather in a central place their bookmarks and share

them if desired with any web visitor. To add a bookmark the user needs to be logged

into the system (it is necessary to register, but the process is quick and free) and

2.4. Tagging 37

Position Domain Tag
1. http://en.wikipedia.org design
2. http://www.youtube.com blog
3. http://www.flickr.com software
4. http://www.nytimes.com web
5. http://www.google.com tools

Table 2.3: delicious most popular domains and tags. (Wetzker et al., 2008)

must provide the URL, the title of the bookmark, notes (before it was called ex-

tended description) and any tags the user consider relevant to that resource. The

system tries to grab the title from the live page and offers some tag suggestions

(popular tags and recommended tags), so the bookmarking process is even more

streamlined. If the user can also install many browser plug-ins that integrates the

social bookmarking system into the normal browser bookmark behaviour. One in-

teresting feature is that user can check how the other users of the systems have

saved a bookmark (for example what title have they chosen and what tags they

have used to associate the resource).

In a paper published in 2008 by Wetzker, Zimmermann and Bauckhage, they

found the popularity of the service has grown exponentially since it was released in

2005, when they measured variables such as bookmarks, users, tags and URLs per

month. In their study they created a dataset consisting in 142 million bookmarks

downloaded from the service during a 4-month period starting in September 2007.

They started their web crawling by getting the bookmarks associated with the tag

“web2.0” and found the other tags associated with it and keep doing this process

recursively during the stated period. Their analysis on this data is very interesting

since the top bookmarked domains and the top selected tags are related to the tech-

nology domain(Wetzker et al., 2008). The top five domains and tags are displayed

in the Table 2.3.

2.4. Tagging 38

Del.icio.us is the most known social bookmarking service and it has the broad-

est audience but Hammond describes some other services with a similar concept.

For example CiteULike that is a bookmarking tool for academic links (the users

can bookmark papers from certain websites that have academic content, and from

which the site has been able to collect citation metadata), Connotea is a citation

manager that retrieves metadata from sites like PubMed, HubMed, Amazon.com

or Nature.com. FURL is another service that besides saving the bookmark stores a

copy of the page contents (Hammond et al., 2005).

Social bookmarking is used in the medical field as a means of share refer-

ences between practitioners and researchers. For example researchers can tag their

favourite academic papers so practitioners working on the same field can find addi-

tional useful references (Varlamis & Apostolakis, 2007). Barsky also discusses how

these tools are an excellent way of discovering new resources when the researchers

are looking for a particular topic, since they can dig for analogous materials, that

some other users have bookmarked using similar tags (Barsky & Purdon, 2006)

In conclusion Social Bookmarking is one the first activities associated with Web2.0

but at the same time represents some of the main principles of the computing move-

ment: Harnessing Collective Intelligence. Bookmarking was one of the first activities

related to World-Wide Web browsing and Social Bookmarking is an extension of

this task with a collaboration layer on top that allows the user not only to keep

their favourite sites but also to share them with the world and vice-versa.

2.4.3 Tag Clouds

As was discussed in the Web 2.0 and the folksonomies subsection, one of the main

features of Web 2.0 applications is to harvesting collective intelligence by allowing

the users to generate and categorize the content. One of the common ways of

classifying the content in one of these applications is by using Tags, which are a set

2.4. Tagging 39

keywords or term assigned to a piece of information that contains metadata, that

means information about the resource being tagged. Popular bookmarking websites

like del.icio.us, the video portal youtube and the photosharing service flickr use

tags to classify and categorize the resources on those systems. Once the services

become popular and the users actively tag most of their contents one the challenges

that emerge is how effectively display the tags so they can quickly come back to

the tagged resources. One solution implemented by many websites is Tag Clouds,

defined as “a set of words, typically a set of tags, in which attributes of the text such

as size, weight or colour can be used to represent features (e.g., frequency) of the

associated terms.” (Halvey & Keane, 2007).

One of the first services to use Tag Clouds was Flickr, but the concept was also

popularised by the social bookmarking service Del.icio.us and the blog search en-

gine Technorati. Those services uses the most common type of Tag Cloud imple-

mentation where the size and position of a unique tag represents the number of

items in the systems that have been identified with that particular tag. An example

of a Tag Cloud that is offered in the social bookmarking service delicious can be

observed in the Figure 2.9

Even if the Tag Clouds are not a particularly intuitive method of navigation they

can provide to the visitors and users an instant snapshot of the resources contained

into the whole service or in a subset of it. The Tag Cloud represents a summary of

the content of the website and the main topics are highlighted by size, position or

colour. These clouds are not considered as a replacement of the traditional naviga-

tional methods but rather as alternative method. In fact even if Tag Clouds are one

of the typical design elements associated with the Web 2.0 web applications and

many websites have tried to implement them to a certain extent, sometimes they

have created some unfriendly and unintuitive patterns that don’t accomplish their

objective (Smashing Magazine, 2007).

2.4. Tagging 40

Figure 2.9: Tag Cloud in del.icio.us

Actually Halvey and Keane studied the relationship between how the tags were

presented in a tag cloud and how easy it is was to find information. Some of

the interesting findings of this study are that the alphabetization and the font size

are very important and they determine the interval between presenting the cloud,

scanning the list and finding the information (Halvey & Keane, 2007).

Tag clouds are also used in some of the Web 2.0 medical applications. For exam-

ple the Medical Blogs RSS aggregator medworm offers a Tag Cloud section where

the most popular blogs in the MedWorm database tagged by topic are displayed

using this method. Here they highlight the importance of a particular Tag by size,

shading and color and one interesting option they offer is the possibility of building

the cloud by week, month or year; on the other hand it is also possible to rearrange

the cloud and convert it into a storm, where the most popular tags appear on top

and the least popular on the bottom, or into lists where the tags are categorized

alphabetically or by popularity (medworm.com, 2009).

In summary even if the Tag Clouds are not perfect and are certainly not a re-

2.5. Conclusions 41

placement for the traditional navigational methods, but they are properly used they

can give to the users a first glimpse of the most popular resources stored in a Web

2.0 application.

2.5 Conclusions

Since this dissertation is about a Medical Social Bookmarking system using the Web

2.0 technologies the main purpose of this chapter was to review traditional web

applications versus the new Web 2.0 ones. This new paradigm in web development

was discussed and the main technologies such as Ajax were discussed. Also the

main services composing Web 2.0 (blogs, RSS, micro-blogging, podcasting, social

networks, folksonomy and tagging) were studied in the detail and the realm of

medical applications on those domains was explored.

After doing this literature review it is clear that the Web 2.0 is not a marketing

plot as sometimes it has been called but rather a real evolution of the World-Wide

Web applications using different components of technology such as Ajax. A useful

finding of this review is that even if the search engines are very popular for finding

information on the web, there is an important amount of users that still are actively

bookmarking their favourite sites by using Social Bookmarking services so they can

share the resources with other users. Also it was useful to realise that the medical

community is beginning to get into the social web and use the main Social Net-

works, RSS aggregators, medical blogs, etc, but there is room for improvement and

it seems a Social Bookmarking system for the health segment like the one proposed

in this dissertation could be useful for them.

Chapter 3

Spam

“Under no circumstances will I ever purchase anything offered to me as the

result of an unsolicited e-mail message. Nor will I forward chain letters,

petitions, mass mailings, or virus warnings to large numbers of others.

This is my contribution to the survival of the online community (Roger

Ebert, The Boulder Pledge)” (Royce, 1970)

3.1 Introduction

In the previous chapter the features and services of Web 2.0 Applications were com-

pared and discussed and one of the conclusions from that review is that there is

an important number of user using blogs, RSS, micro-blogging, podcasting, social

networks and also social bookmarking systems. One of the risks of having a succes-

full product on the web is the possibility of abuse by users who will use the service

as a platform to promote a third party site of products. In this chapter the spam

phenomenon will be discussed, understanding what can be defined as spam, how it

can affect Web 2.0 services and how it can be contained.

3.2. Definition 43

3.2 Definition

The term spam is defined by the Merriam Webster dictionary as ”unsolicited usually

commercial e-mail sent to a large number of addresses” and the anti-spam organiza-

tion Spamhaus define it more precisely as an electronic message where the recip-

ient’s identity and context are irrelevant because the message could be easily sent

to a wide array of different recipients and this recipient has not granted clearly a

permission for it to be sent. The origin of the word to denominate this behaviour

can be traced to the episode 25th of the British television series Monty Python’s

Flying Circus where the customers are trying to get a dish from breakfast and ev-

erything contains spam (a canned meat product) and at certain moment the word

spam overrides the dialogue and the spam takes over the Scene and it is impossible

to hear anything but spam, so the word becomes really annoying .(Glasner, 2001;

spamhaus.org, 2008).

Figure 3.1: Monty Python’s Flying Circus Spam Sketch.
From youtube.com/watch?v=ODshB09FQ8w

The first spam message registered on the Internet was sent by Digital Equipment

Corporation in 1978. Gary Thuerk, an aggressive DEC sales employee thought it

would be interesting to inform all the Arpanet users that the company had inte-

grated the Arpanet protocol support directly in one of their new machines. Even

3.3. Types of Spam and Detection 44

if the message could have been relevant for the users there was a negative reac-

tion and the ARPA administrator lodged a formal complaint. Later on, before the

bulk messaging began to be problems in the email systems, Usenet, a world-wide

distributed discussion system divided in a set of ”newsgroups” with names that are

classified hierarchically by subject, experienced the phenomenon: Several groups

began to receive messages asking for money (charity messages) and make money

fast postings. Nevertheless this issue was not identified as a problem and neither

labeled as such until 1994 when a religious sect send a message warning that Jesus

was coming soon to every single Usenet group, Canter and Siegel, a pair of lawyers

working in the immigration field also did a posting to all the groups advertising

their services to help the recipients to participate in the green card lottery and it

provoked an angry reaction from the Usenet users which decided to retaliate and

to flood their Inbox and fax numbers with phony messages. From that moment the

spam term became popular and users began to refer to those types of communica-

tion as spamTempleton (2001).

3.3 Types of Spam and Detection

Traditionally the term spam have been used in the e-mail realm as the sending

of unsolicited bulk messages using the SMTP servers. Even if e-mail is the most

common platform abused by the spammers, in practice any communication media

on the web is a target to be attacked with unsolicited messages. The economic

factor is the main motivation of this activity: the cost of sending bulk messages

are minimum and the return on investment can be huge since they might get a

couple of customers or orders that will pay-off the continuous sending of unsolicited

messages. Brian Marshall have a small demonstration in his article about how spam

works, where he explains how if you spam a 100 friends with a message for offering

3.3. Types of Spam and Detection 45

a 5 box order and you get 2 orders is a great deal since the investment was almost

non-existent and there was return. If this small experiment is run in a greater

scale, the profits can augment exponentially and that is the reason why the spam

continues to be attractive for many people (Brain, 2003).

The Internet and the World-Wide Web with their broad distribution and different

array of services and media open a new window for the spammers to send the

unsolicited material. As was discussed in the previous section, newsgroups are

another favourite target for the spam, and other web mediums to be attacked are

the web search engines, blog service providers, wikis and ultimately mobile phone

text messaging systems have also be affected by spam.

E-Mail Spam

E-mail spam is probably the most common, the most problematic and most stud-

ied type of spam. It can be defined as the bulk sending of unsolicited messages

(normally with commercial intent). According to the statistics published by the

e-mail security company Positini, spam activity has increased in a 56 percent be-

tween September and October 2006. They also noted that almost 87 percent of

the messages processed by the company were actually spam. Another study pub-

lished by ipswitch in August 2006 found that in average 70 percent of the messages

sent to an email account were spam. Here they also analysed the main topics used

on the spam messages and they found they were: Medications, Finance/Phishing,

Pornographic, Electronics/Pirated Software and Mortage Offers (postini.com, 2008;

ipswitch.com, 2006). Laurent Oudot wrote an interesting article in security focus

summarising the modus operandi of the E-mail spammers (Oudot, 2003). These

findings were also highlighted in a can-spam report to the US congress in 2005:

• Email Harvesting: In this phase the spammers try to build a database with

an updated list of their targets. They use different mechanisms for gathering

3.3. Types of Spam and Detection 46

Figure 3.2: Spam E-mail Sample.

the addresses. They get them from the messages in Usenet, by creating robots

that scan all the messages and try to find any text next to the (from and

reply-to) fields. They also get them from mailing list revealing the recipients

and finally they can create web crawlers which surf the web and collect all the

links containing the the mailto parameter.

• Open Proxies: This is another useful tool in the spammer arsenal. Instead

of connecting directly to a remote mail server they use an open proxy. This

service allows the spammer to send the messages passing through a middle-

man server. The main advantage for the spammer is that they can keep their

anonymity. The mail server logs will show the proxy IP address instead of

the original sender who made the requests. Sometimes they even chain their

3.3. Types of Spam and Detection 47

request with several open proxies trying to hide their identity even more.

• Open Relays: Open relays are defined as a a Mail Transfer Agent that receives

messages from third party sources even if they are not the destination, and

it is able to route them to another third party. Since these relays forward

messages that they have not posted to or by a local user, they are abused by

the spammers. They use this service to send bulk messages to random email

addresses. Once the spam passes through one of these open relays the header

changes and it appears as it was originated there.

• Zombie Drones: This is the latest trend used by some malicious spammers to

distribute unsolicited messages. Instead of using open proxies or open relays,

they use viruses, worms and Trojans that hijack the home user computers and

turn them into a open proxy ”zombie” they can control to send the spam. This

is a serious problem for the users because they might not be aware of this

problem until the ISP closes their account.

E-mail spam is annoying for the final user because it can flood their mailboxes

with irrelevant messages and might even disable the inbox, but it is also a huge

problem for the Internet Service Providers, since they must assume the cost of deal-

ing with the overwhelming amount of data transfer rates generated by those bulk

messages.

Web Search Engine Spam

One important difference between the e-mail spam the web-based spamming is the

inherent technology tied to the HTTP protocol on the World-Wide Web. Spammers

can not send their messages directly to the users because the model works through

a request / response model, therefore the users need to ask for the web resource

before it is delivered. The best way for spammers to circumvent this limitation is

3.3. Types of Spam and Detection 48

by the abuse of the Search Engines given the fact that they are the primary source

of websites when web users are looking for information. Spam in this medium is

done by deceiving the search engines and compromising the good will relationship

between the engine and the user(Castillo et al., 2006). Spamdexing (search engine

spamming) is defined by Gyongyi and Garcia-Molina as “any deliberate action that

is meant to trigger an unjustifiably favourable relevance or importance for some Web

page, considering the page’s true value”. It was also defined by Perkins as “Any at-

tempt to deceive a search engine’s relevancy algorithm”. He introduces an interesting

concept: anything that would still be done if search engines did not exist or any-

thing that a search engine has clearly given written permission to is excluded from

the Web Spam definition.

We can summarise search engine spam as the use of any mechanism to arti-

ficially raise the ranking of a site a web page in the search engine results pages.

In order to achieve this objective the spammers try to understand the main fac-

tors determining the search engine ranking system and try to trick the algorithms

in order to take advantage of the flaws. There are different techniques used to

achieve those results and different authors have tried to classify them in separate

groups. One of the first attempts to classify the techniques was done by Perkins

who divided Search Engine Spam in two categories: Content spam and Meta spam.

On the other hand Gyongyi and Garcia-Molina in their Webspam Taxonomy paper

divide the techniques in two big categories: Boosting Techniques (Including Term

spamming and Link spamming) and Hiding Techniques (Including content hiding,

cloaking and redirection)(Garćıa-Molina & Gyöngyi, May 2005; Perkins, 2001). Fi-

nally Baoning in his dissertation tries to unify the different spam attempts in the

following three categories: (Wu, 2007)

• Content spam: It is about changing the content of the page in order to rank

higher. It includes mechanisms such as repeating the keywords several times

3.3. Types of Spam and Detection 49

on the document, adding additional query keywords that are not related with

the content of the page or abusing of the title, meta on alt tags by filling them

with keywords.

• Link Spam: The point here is to modify the link structure of the page and

the anchor of the links to try to achieve a better ranking. This is achieved by

participating in link farms (Each page has a collection of links that point to

almost every other page), engaging in link exchange schemes, link buying or

by buying expired domains inheriting the page rank of the previous domain.

• Page-hiding Spam: This technique is about presenting a different page to the

search engine, usually with more content. This is achieved by IP and user

agent based cloaking (presenting a different version to the web crawlers),

redirects (the spam page is seen by the robot but not by the user) and by layer

based spam (hiding part of the page using CSS styles.)

Blog Spam (Splogs)

As was discussed previously blogs are web sites composed of dated entries typically

listed in reverse chronological order. They have become an influential phenomenon

on the web and an interesting media to follow the events in the different niches.

Therefore spam have been also to appear on the blogosphere manifested through

spam blogs, called also splogs, created with the sole purpose of making money

by publishing advertisements or affiliate content, normally using contents auto-

generated or copied from other legitimate sources.

Blog spam is seriously affecting the blogging community since they blog search

services are getting overloaded searching through these splogs and the main host-

ing platforms are under attack by this new trend of spam. Kolari et al. and

Mayfield conducted an study with the objective to identify and classify the blog

3.3. Types of Spam and Detection 50

spam phenomenon. Based on the works of Gyongyi and Garcia-Molina on the web-

spam taxonomy they created their own classification adapted to the blogosphere.

The categories they proposed are: non-blogs, keyword stuffing, post-stitching, post-

plagiarism, post-weaving, link-spam and other techniques. In summary they found

that the splogs are created with text that is automatically generated or plagiarized,

are made for publishing just advertising or affiliation content or can be created just

to inflate the page rank of other domains(Kolari et al., 2006b).

Social Bookmarking Spam

Attempts to artificially raise the importance or ranking of a webpage do not target

only search engines, but can affect any user-generated content website like the

social bookmarking ones. Wetzker et al., analysing a big corpus data coming from

the del.icio.us social bookmarking service they noted a high occurrence of entries

posted by automatic mechanisms that were considered spam with a high impact.

One surprising piece data is that the 19 out of the 20 most active users of the

system belonged to this spam category. Some of these users were tagging the same

resource thousand of URLs in the same domain with only a few tags (Wetzker et al.,

2008).

When they analysed the patterns of spam entries in the system they found some

common features that can be useful for implementing spam detection measures in

future Social Bookmarking systems. Some of the common characteristics discovered

in that study are summarised in the Table 3.1

In a recent study published by Heyden, Koutrika and Garcia-Molina(2007) they

outlined the mechanisms they used detect and fight the spam phenomenon: Identification-

based techniques where both the users and moderators manually can flag certain

3.3. Types of Spam and Detection 51

Pattern Description
Very high activity Automated posting with a higher rate than

the human users
Few domains The URLs posted belong to a small set of

domains
High Tagging Rate Bookmarks tagged with an enormous

amount of tags
Very Low Tagging Rate High number of entries with low amount of

tags
Bulk Posts To enter many bookmarks in bulk

Table 3.1: Common patterns in Social Bookmarking Spam. (Wetzker et al., 2008)

contents as spam and also automatic detection based on patterns such as the IP

addresses, the user name patterns, the referring domains, or text tags used. Also

the sharing patterns were useful to determine if some sources or bookmarks were

behaving unnaturally and could be suspicious of being spam.

The second strategy they used was a rank-based approach where the content

likely to be spam was demoted and sent to the bottom of the results so even if

the spam was still there, it was not apparent to the legitimate users. Finally they

implemented a prevention interface model where they limit the opportunities to

malicious users to spam the system. The authors found two ways of accomplish this

goal; On one hand they set up CAPTCHAs to prevent automated account creation

or automated bookmark posting and in the other hand they also set up a system to

hide or reduce the value of certain interfaces by using personalization methods on a

per-user basis, so it would be extremely difficult to the spammer to compromise the

bookmark list of the bulk users. Finally they evaluated other alternatives such as

making users who register for an account or post a bookmark to either pay a small

fee or compute a proof-of-work. Nevertheless they pointed out that those interven-

tions could scare off legitimate users away. One interesting parameter discussed in

this paper is Spam Metrics. They take into account each object in the system (the

URL in a Social Bookmarking system) and define spam as a malicious behaviour of

3.4. Conclusions 52

selecting an incorrect tag for a particular object or adding irrelevant object to the

system. They conclude that the traditional spam fighting techniques might work

better in Social systems than in the email-based scenarios because the users have to

register but they acknowledge that spam techniques might evolve and rende them

obsolete(Heymann et al., 2007).

3.4 Conclusions

The objective of this chapter was to review the origins and main characteristics of

the spam phenomenon particularly for the potential abuse of the Web 2.0 applica-

tions that might appear. Even if e-mail spam is the most known type, the conclusion

of this review is that the problem can appear in any service where the user can in-

teract with the system. The splogs and fake accounts in the Social Bookmarking

systems are a serious issue that can compromise the quality of the service. It is

fair to assume that as Web2.0 services have become popular they will be abused by

spammers and therefore some spam detection and prevention is required.

Chapter 4

Software Development Process

“For some reason what a software design is going to do is subject to wide

interpretation even after previous agreement. It is important to involve the

customer in a formal way so that he has committed himself at earlier points

before final delivery. To give the contractor free rein between requirement

definition and operation is inviting trouble” (Royce, 1970)

4.1 Introduction

In the previous chapter the main characteristics of new Web 2.0 Applications were

compared and a review of the most important services and technologies of the

Web 2.0 sphere were described. Also the concepts of Folksonomy, Tagging and

Social Bookmarking were highlighted and the possibility of implementing one of

those services in the health domain was discussed. The objective of this project

is to implement a Social Bookmarking system so after having done a review of

the research relevant to this topic the next step is to discuss the different software

development process and identify the most appropriate one for this project.

The most important software processes are discussed in this chapter and the

reasoning about why a particular process is better than the others for this project

4.2. Development Processes 54

will be explained.

4.2 Development Processes

A software development process can be defined as the methodology or structure

set by an organization or individual that is used for developing or maintaining a

software project (Pes, 2009). There are alternatives to managing the development

process but all them try to describe the different tasks and time related to software

development including requirements gathering and analysis, functional specifica-

tions, software architecture, design, design, implementation, testing, deployment

and maintenance. The main objective of the process is to find a set of systematic

best practices that can be repeated over and over in order to keep a high quality

and good efficiency in the software development process.

Some of the processes use a sequential approach where every step is a prereq-

uisite to the next one and there are also some iterative methodologies where the

phases are smaller and in he cycles, and the different phases are revisited. The most

well known software development process models that will be discussed next are:

Waterfall Model, Agile Software Development and Rational Unified Process.

4.2.1 Waterfall Model

The waterfall model is a software development process sequential by nature where

each of the steps have to be completed rigorously before going to the next one and

the process follows a steady flow passing from analysis, design, implementation,

testing, integration and maintenance; so that the start of each of these stages must

await the completion of the one immediately before. The analogy to a waterfall

comes from the idea that the flow of the process should go head down and in

theory it should not be possible to pass to the next stage before the current one has

4.2. Development Processes 55

been completed. The main principles of this model are presented in the Figure 4.1

Figure 4.1: Waterfall Model

The origin of this model is attributed to Winston Royce in a paper he wrote

on his views of how to manage large software systems, particularly in Spacecraft

mission planning and post-flight analysis projects. Even if he recognizes there that

he believes in the concept he also acknowledges that the implementation is risky

and can lead to failure since the testing occurs at the end of the process and if there

errors discovered at this stage the redesign is very costly. (Royce, 1970) It is ironic

because Royce is credited with the origin of the model but the author did not use

the term “Waterfall” and did not advocate its use either. He was describing the

current status quo and promoting a more iterative model.

The biggest advantage of this model is that if the analysis and the requirements

of a software project are clearly defined at the beginning of the software project

there will be big gains in terms of the time and money during the implementation

4.2. Development Processes 56

phases. In terms of project management is also useful because it is easy to plan

the beginning and the end of each phase and calculate the total cost of the project

because all of the variables are considered before investing efforts into subsequent

phases. Since the model is well structured and the phases are separated, a team

member has a clear understanding of their role in each one of the phases and finally,

the end product is claimed to have a high reliability (McConnell, 1996).

Unfortunately in real life software projects it is not very common to have a

complete defined set of requirements at the beginning of the project and to have

a rigid structure creates issues since the model does not reflect the ever changing

reality of dynamic environments. In many software projects the client has a vague

idea about what the system should do and once she sees some prototypes she can

redefine exactly what she is looking for. Therefore one of the big disadvantages of

this model is that the rigid implementation of the phases does not match with the

changing nature of the majority of software projects

4.2.2 Agile Framework

The Agile Software Development framework is not a process per se but rather a

framework that encompasses a different set of methodologies that use an itera-

tive development, adapting to the changes in the software requirements, with self-

organized and highly motivated teams that use the best engineering practices in

order to deliver software quickly, of high quality and meeting the stakeholders

expectations. In the Agile approach there is planning but it is less rigid and the

specifications of the product evolve based on the feedback gather from the clients.

Martin Fowler is one the founders of the movement and he describes in his website

how a group of developers meet in 2001 to discuss some development lightweight

methods and decided to encompass all of them under the “agile” term and how

they wrote a manifesto that contains the main principles of the Agile Software De-

4.2. Development Processes 57

velopment (Fowler, 2006). Actually this manifesto is presented here:(Beck et al.,

2006)

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is , while there is value in the items on
the right , we value the items on the left more.

Teams working in the Agile framework have their customers as the number one

priority and they want to keep them happy by continuously releasing valuable soft-

ware and since they user shorter scales in the development process they accept

changes in the requirements (even at a later stage). Another typical feature of this

framework is the communication between the team, since they prefer the face to

face communication and to put together the business and technical team members.

Finally they consider the that the best products come from self-organizing teams

and that the software should be the main parameter for considering the success of

a project.

Some of the known development methodologies that can be classified as Agile

are: Extreme Programming, Scrum, Agile Unified Process and Open Unified Process.

The main advantage of this methodology is that since it is customer oriented,

this results in a highly satisfied end-user since they receive different iterations of

the product with added functionality and since they can give feedback to the devel-

opment team, most of their concerns are normally covered. The downside of these

4.2. Development Processes 58

methodologies is that there is always a risk of scope creep since they projects might

lack the support documentation; the other problem is the expertise of the teams: in

order to be successful an Agile team need to be composed by very good or senior

developers, since the team are self-organizing and work in fast turn around time

(Papadimoulis, 2007).

In conclusion the Agile Framework can be an excellent solution for the Software

Development in an iterative fashion when the team is composed of highly motivated

developers with a great degree of expertise who are able to deliver high quality

software in successive iterations and who are able to quickly adapt the product to

changes in the software specifications.

4.2.3 Rational Unified Process (RUP)

The Rational Unified Process is both a software engineering process and a process

product. The idea behind this process is to provide a structured framework to assign

responsibilities in a development team. The final goal is to produce software of a

high standard meeting the the needs of the end user within the expected schedule

and budget. (Kruchten, 2003)

The RUP is also a software product created by the company Rational Software

(now this company is part of IBM), where Ivar Jacobson, Grady Booch and James

Rumbaugh combined their knowledge and experience and incorporated popular

object-oriented principles to define the best practices in the Software Development

process. They identified the causes of the failures of projects using traditional meth-

ods like the waterfall model and they compiled these software best practices in the

Rational Unified Process. The practices they identified as suitable for a wide range

of projects and organizations include: (Kruchten, 2001):

• Develop software iteratively.

• Manage requirements.

4.2. Development Processes 59

• Use component-based architectures.

• Visually model software.

• Continuously verify software quality.

• Control changes to software.

Fowler believes that one the motivations driving RUP is to emulate the success

of UML unifying the modeling languages into a single one, but the outcome was not

a process per se but rather a framework composed by a large set of practices. The

Rational Unified Process does not provide a unique process; instead it offers the

developers a set of practices the team can chose from based on the requirements of

a particular project. Nevertheless one of the problems he identifies with this frame-

work is that it is extremely variable. He identified that some definitions present a

model as rigid as the waterfall model whereas some others could be framed inside

the Agile Development Manifesto (Fowler, 2005).

Architectural Elements The architectural principles of the Rational Unified Pro-

cess are based on two dimensions that are illustrated in the figure 4.2. The hori-

zontal dimension represents the lifecycle of the sofware process, including different

cycles, phases, iterations and milestones. Since RUP uses an iterative approach, the

phases are revisited in incremental iterations. The vertical dimension on the other

hand represents the core process which are grouped by engineering activity so this

axis contains tasks such as Business modelling, Requirements, Analysis and Design,

Implementation, Testing, etc.

The project lifecycle in RUP has four phases allowing to the project to be seen

from a higher perspective. These phases are iterative but each one of them has

objectives and milestones to be accomplished. Those phases are(Kruchten, 2003):

• Inception phase: The main factors in this phase are the costing schedule,

and budget. Here the Stakeholders must meet and agree on those variables by

4.2. Development Processes 60

Figure 4.2: Two dimensions of the Rational Unified Process

evaluating factors such business context, success factors and financial forecast.

The project needs to pass what’s called the lifecycle “objective” milestone.

Otherwise it needs to be reevaluated.

• Elaboration phase: The objective of this phase is to analyze the requirements

and get an architectural model representing as much as possible the problem

the project is going to solve. This includes use cases models, software ar-

chitecture, business cases, development plan and prototypes. Therefore this

phase produces the blueprint that will be used for the software development.

The milestone of this phase is called lifecycle “Architecture”.

• Construction phase: The aim of this phase is to actually build the system.

Here is where the main coding activities take place. At the end of this phase

the team will produce the first version of the software. The milestone of this

phase is named “Initial Operational Capability”.

• Transition phase: The objective of this phase is to make the transition be-

4.3. Development Process Selected 61

tween development and production, so the product is deliver to the end user.

Some of the activities related to this phase are beta testing, training and vali-

dation against the architectural model created in the inception phase. If this

phase is succesful the “Product Release” milestone is achieved and the project

ends.

The main advantage of the Rational Unified Process (RUP) is its iterative nature.

RUP takes into account that the requirements of the product might change but it

tries to manage requirements creep by keeping developing and integration of the

elements in successive cycles. Another big advantage of this iterative methodology

is that it is possible to make tactical changes to the product without having to

redesign the whole software system, since the new features will be just incorporated

in the next release. Finally the most significant benefit of RUP is its use-case-driven

approach, meaning that use cases defined for the software can be used during the

rest of the development process, so the design, testing, UI design will be tied to

those use cases.

The only disadvantage identified with this methodology was discussed previ-

ously and it is that in certain cases the definitions of the RUP can be too variable

and that in some implementations might be as rigid as the waterfall model (Fowler,

2005).

4.3 Development Process Selected

After reviewing some of the most popular software development process and since

one the main objectives of this dissertation is to produce a Medical Social Book-

marking system using the principles of Web 2.0 where the principles of release

early and release often are encouraged, one of the first criteria for chosing the soft-

ware process is that is has to be iterative. Since the waterfall model is by definition

4.3. Development Process Selected 62

a sequencial process where each one the steps have to be completed until the final

release of the product it is not suitable for this project. Due to the dynamic nature

of the web it is possible that during the development phase of the product a new

technology might appear that could be interesting to add the to the final product

but the waterfall model imposed restrictions on new features once the project is in

the implementation phase.

The selected process has to be then an iterative one, therefore the Agile Frame-

work and Rational Unified Process in principle could be considered as good can-

didates for the development of this social bookmarking service. Some of the ele-

ments of the agile manifesto such as considering the working software as the main

parameter of success, focus on the customer and release the software in smaller

timeframes are appealing, nevertheless some of the elements like constant meet-

ings between the teams could not be used here because there is only one developer

in this project. On the other hand some of the elements of the Rational Unified

Process such as developing the software iteratively, to use component-based archi-

tectures and to visually model software using the UML language is also suitable for

the project. One interesting feature of the Rational Unified Project is its use-case-

driven approach, so for this project it could be useful to define some clear use cases

and then adapt the development based on them. One of the disadvantages of RUP

is that it is also a product and I will not have access to it. Since this is a small size

development project with only one active developer, a striped down version of the

Rational Unified Process with a very agile implementation seems more appropriate

where the use cases and analysis requirements can be modelled using the UML no-

tation, but where the development and integration will be done in small iterations,

implementing different use cases in each iteration and releasing soon and releasing

often.

4.4. Conclusion 63

4.4 Conclusion

In this chapter the different methodologies and structures used for for developing or

maintaining a software project were reviewed. One conclusion from this reviewed

is that most of the methodologies can be splitted in two big groups the sequential

and the iterative ones. The waterfall model was reviewed as the most significant

representative of the sequential group and it was decided that the rigorous steps

that have to be followed convert it in a challenging option for the dynamic Web

Applications world. The iterative methods that were discussed are the Agile Frame-

work and the Rational Unified Process (RUP). Those two methodologies encourage

software development in an iterative fashion and accepts changes in the user re-

quirements, but RUP also encourage the use of the visual modelling of the software

and it is use case driven. In this project I will not have access to the RUP product but

it was decided that for the project of this dissertation some of the elements, partic-

ularly the ones of “Visualising and Modelling” the software can be used so, a scaled

down version of the Rational Unified Process in an agile development framework

was chosen.

Chapter 5

Analysis and Design

‘UML is not dessert topping and floor wax (Grady Booch).”

5.1 Introduction

In the previous chapter the Waterfall, Agile Framework and the Rational Unified

Process were discussed and assessment about the advantages and disadvantages of

each one them was conducted to determine which one of the alternatives was the

most suitable one for this Social Medical Bookmarking system. In this chapter the

project cycle will start with a high level analysis of this business problem to solve,

then an analysis of the most suitable architecture for this project will be discussed,

an analysis of the functional requirements will be performed and the system will

be modeled using standard UML notation. An Entity Relationship diagram of the

datamodel will be also presented at the end of this chapter.

5.2 High Level Analysis

The objective of this Software Development Project is to create a social bookmarking

service for the medical community that will run in a Web environment as a website.

5.2. High Level Analysis 65

This website will allow its user to store their favorites websites as bookmarks with

a title and a set of tags. This website will be accesible mainly by web browsers

installed in Windows, MacOSx or Linux based personal computers, but the site will

be also accesible by other devices such as PDAs, smartphones and Blackberries. The

non registered visitors will be able to browse the system click in the different tags

and see the bookmarks registered by other users and associated with that particular

tag, they can also search the bookmark repository by using keywords. The regis-

tered users will have the same functionality described before but additionally they

will be able to add new bookmarks into the repository. Here is a sample description

of this functionality from a typical medical user:

“I’m a Medical Doctor browsing the web looking for news and information about

Swine Flu. Using a search engine I found an official site from the US government,

PandemicFlu.gov that provides information on the pandemic influenza and the avian

influenza so I want to keep it for later reference. I go to my medical social bookmarking

site, I sign in and I click in a new a bookmark and I store this website with the title Pan-

demic Flu US Goverment, and I tag the site with the keywords reference, govermental,

influenza, flu and swine”

So this registered medical user will have a personal account with a list of all

the bookmarks they have added, but they can also browse some other people’s

bookmarks. Based on the concepts of Hotho et al the set of bookmarks of each one

of registered users will be consider a “Personomy” and the combination of all this

personomies will generate the “Folksonomy” of the system (Hotho et al., 2006a).

Finally there will be also an Administrator User who will be able to perform the

same actions explained before but additionally she will be able to delete entries

from the database (for example spam entries) or delete users from the system (spam

users).

5.3. Architecture 66

5.3 Architecture

In this section the different architecture models used in the Web Applications will

be discussed. The concept of Model View Controller architecture will be explained

and the different Web Application frameworks will be covered.

5.3.1 Model-View-Controller Architecture

The model view controller was described by G. E. Krasner and S. T. Pope as an

application architecture where the application domain is separated from the inter-

face and from the user interactions modifying the underlaying application domain.

In their architecture the “model” represents the information or the domain struc-

ture and it most of the cases it is related to the “data“ layer encapsulated by this

model. The “view” normally display the application’s state, so it provides a graph-

ical user interface where the user can interact with the application and modify the

data defined by the model and finally the response to the user interaction is car-

ried out by the “controller“ that handles the relationship between the view and the

model. They observed in their previous experience that separating the model of the

application domain from the model that was shown to the user and the way she

could interacted with it made sense since it was offering a high degree of modular-

ity. For example the developers could focus on just one component without having

to understand other areas. The relationship between the different components is

depicted in the figure 5.1 (Krasner & Pope, 1988). In conclusion this pattern em-

phasizes the separation of the application model, the Graphical User Interface (also

called the view) and the control logic managing all the different parts of the ap-

plication (see Figure5.1). Even if the concept itself has been around for almost 30

years, recently with all the developments of in the web application domain, the

concept has been implemented in several web application frameworks.

5.3. Architecture 67

Figure 5.1: Model View Controller

5.3.2 Web Application Frameworks

In Chapter 2 which discussed Web Applications and Web 2.0 Applications, how the

architecture of the web can be sumarised in the transfer of HyperText Markup Lan-

guage (HTML) documents from one server to a client using the Hyper Text Transfer

Protocol (HTTP). Actually at the start the web was planed as a media to trans-

fer static marked up documents so web developers needed to hardcode each one

of the pages and upload them in the webserver. The Common Gateway Interface

(CGI) was the first attempt to give the developers the ability to create pages dy-

namically using programming languages like Perl or C/C++ (NCSA University of

Illinois, 2001), but the capabilities were rather limited and these models lead to the

creation of not very secure applications. Then some real web programming began

to emerge when systems developed in industry supported languages like Java and

C, using different layers of abstraction to accomplish the tasks of bridging the logic

of the business with the HTTP protocol transmission. J2EE was one of the first

frameworks trying to put everything together, using the concept of servlets. Even if

those frameworks were very secure and made use of good programming practices,

the activities involved in creating a web application on them were complex with

many steps and configuration files(Daly, 2007).

At the same time appeared some lightweight script languages created specifi-

cally for generating those dynamic contents on the fly such as Coldfusion, followed

5.3. Architecture 68

by ASP (Active Server Pages) and PHP (Hypertext Preprocessor). The last one in

particular became very popular because of its open source nature and its easy inte-

gration with the popular Apache Web Server (nexen.net, 2008).

Even if those languages were a big step forward in creating dynamic websites,

soon many developers realised they were rewriting over and over again the same

functions to authenticate the users, establish database connections, generating the

output HTML code, etc.

That gave the idea to many developers at the same time to create “Packages” that

could manage all these repetitive tasks common to most the web applications, so the

developer could focus on the logic of the problem. Therefore the concept of Web

Framework was born as a collection of software packages or modules created to

help the web developers to write Web applications or Web services without having

to deal with low-level issues as protocols, authentication, database connection, etc.

Many of those Web Frameworks adopted the Model View Controller Architecture

principles. Some of the tasks managed by the Web Frameworks are:

• Interpreting HTTP requests,

• Authentication,

• Database connections,

• URL mapping and rewriting,

• Template system.

There are a broad array of web application frameworks for most of the pro-

gramming languages such as PHP, smalltalk, ASP, Cold fusion, Perl, Java, Ruby and

Python. Most of this frameworks are Open Source, but some are proprietary. The

Mindtree blog has a good compilation of the most popular Web Application Frame-

works (Mind Tree Blog, 2008):

5.3. Architecture 69

• PHP: Zend Framework, CakePHP, Symfony, CodeIgniter, Akelos and Prado

• Java: Google Web Toolkit, Spring Framework, Apache Cocoon, JSF - JavaServer

Faces, Aranea, AppFuse and Struts.

• Ruby: Ruby on Rails, Nitro, Camping and Ramaze.

• C Sharp: The .NET Framework, MonoRail and AForge.NET

• Python: Django, Pylons, TurboGears and Gluon

5.3.3 Django

Overview

Django is an open source high-level Python Web Application Framework that en-

courages “rapid development and clean, pragmatic design”. This application frame-

work was developed by web developers of a fast-paced newsroom environment

(World Company in Kansas) who decided to switch from PHP to Python and cre-

ate a set of packages to make the routine Web-development tasks quick and pain-

less. The framework was released under the BSD license but in June 17 2008, Ja-

cob Kaplan-Moss one of the original developers of Django, announced the creation

of the Django Software Foundation to support the development, promote the use

and protect the intellectual property of the Django Framework (djangoproject.com,

2008).

The history of Django Web Application framework is explained in the Django

Book and basically it describes a common problem faced by many professional

web developers; How to create and maintain many websites at the same time with

tight schedules without having to rewrite over an over the same code: “Django

grew organically from real-world applications written by a Web development team in

Lawrence, Kansas. It was born in the fall of 2003, when the Web programmers at the

5.3. Architecture 70

Lawrence Journal-World newspaper, Adrian Holovaty and Simon Willison, began using

Python to build applications. The World Online team, responsible for the production

and maintenance of several local news sites, thrived in a development environment

dictated by journalism deadlines. For the sites including LJWorld.com, Lawrence.com,

and KUsports.com journalists (and management) demanded that features be added

and entire applications be built on an intensely fast schedule, often with only days

or hours notice. Thus, Adrian and Simon developed a time-saving Web development

framework out of necessity it was the only way they could build maintainable appli-

cations under the extreme deadlines.”(Holovaty & Kaplan-Moss, 2007)

Some of the main highlights of the Django Framework are (djangoproject.com,

2008):

• Object-relational mapper: It allows the developer to define the data models

as Python Classes and the framework connect to the database, issue the SQL

queries and create or update the tables.

• Automatic admin interface: Django creates adminstration interfaces out of

the box for adding and updating content.

• Elegant URL design: In certain languages like PHP and ASP the URL structure

is defined by the language, but Django gives the developer the flexibility to

define the URL structure she decides.

• Template system: The Django framework comes with a template system and

an intuitive template language that allows the author to separate the logic

from the presentation

Architecture & Backend Integration

The core of the framework is composed by four components: An Object-relational

mapper that acts as intermediary between the Python created models and the re-

5.3. Architecture 71

lational databases, and URL dispatcher that supports regular expressions, a view

system that processes the requests and execute the business logic and finally a tem-

plate system. Additionally the frameworks contains a testing development server

and contains some useful model to create a validate forms. Finally the framework

also offers a set of middle-ware classes that runs a every time that Django handles

a request (Holovaty & Kaplan-Moss, 2007).

Django can run with different server environments. For example the popular

Apache Server is supported using mod python or mod wsgi. Also for the Object-

relational mapper python supports PostgreSQL, MySQL, SQLite and Oracle.

A diagram of the steps of the typical Django application are illustrated in the

Figure 5.2. In summary they are:

1. The client browser asks for a URL and the web server passes the request to the

URL dispatcher of the Django framework.

2. The URL dispatcher passes the request to a view matching the URL structure.

If there is a cached version it will be returned to the web server and served to the

browser, otherwise the view will process the request.

3. If the views needs to read or store information into the back-end, it will commu-

nicate with the model that will map the Python models with the relational database

system. The result of the query is sent back to the view.

4. When the view finishes to process the request, passes the information to the

template system, with the name of the HTML template to use. The template system

selects the html template and binds the information from the view into the template.

5. The resulting document is passed to the web server and the server sends the

document to the user.

One final note related to the server and backend integration is that it is possible

to use Django very easily with the Google App Engine application hosting platform.

5.3. Architecture 72

Figure 5.2: Django Framework Functionality.

Both Google App Engine and Django are designed to support the WSGI so it is

possible to use most of the functionality of Django out of the box in the Google App

Engine. It is only necessary to adapta the data models to make them compatible

with datastore. Actually the Google App Engine includes the Django version 0.96.

as one of the standard frameworks.

5.3. Architecture 73

5.3.4 Google App Engine

The Google App Engine is a service that allows a web developer to create and host

Web applications written in the Python programming language. 1

The engine not only supports the Python standard library, but also Application

Programming Interfaces (APIs) for the datastore, Google Accounts, URL fetch, im-

age manipulation, and email services. The Google App Engine also offers a Web-

based Administration Console where the developers can monitor and manage their

running Web applications. Currently, the Google App Engine is free to use with

up to 500MB of storage and about 5 million page views per month (Google.com,

2008c).

Any kind of web application written in Python can run over the App Engine

platform, but the system is designed to host particularly applications user by many

user at the same time. The system is designed to scale since the application will

be running in the on Google’s infrastructure so if the application becomes popular

and receives a significant amount traffic or it is used by many users, the hosting

platform can handle it. As more people use the application, App Engine allocates

more resources and all this process is invisible to the user. Some of the features of

the platform that were discussed once the service was launched are (Google.com,

2008d):

• Persistent storage (powered by Bigtable and GFS with queries, sorting, and

transactions)

• Automatic scaling and load balancing

• Google APIs for authenticating users and sending email

• Fully featured local development environment
1Note: At the moment of finishing this dissertation Google announced it

was supporting the Java programming language for the App Engine platform
(http://googleappengine.blogspot.com/2009/04/seriously-this-time-new-language-on-app.html).

5.3. Architecture 74

One unique characteristic of the Google App Engine compared to other hosting

platforms is the backend used for handling the data since they only permit to store

and retrieve it from a BigTable non-relational database. BigTable is a compressed,

high performance, and proprietary database system that runs over on Google File

System (GFS)(Chang et al., 2008). Finally the App Engine platform offers a Soft-

ware Development Kit (SDK) available for Windows, MacOSx and Linux, including

a development web server to testing the application locally.

As was discussed in the previous section Google App Engine supports natively

the version 0.96 of Django, so based on the architecture of the Google App En-

gine and expanding the diagram used there, the Django framework inside the App

Engine is illustrated in the Figure 5.3

5.3.5 Architecture in Gray’s 2.0

Henry Gray was a famous English anatomist, known for his methodical approach to

the knowledge of the structure and workings of the human body. He is the author of

the classical book of Anatomy. Since the objective of this project is to create a Social

Bookmarking system to tag medical resources on the World Wide Web, “Gray” and

“2.0” would be good tags to bookmark the actual service, so “Grays 2.0” will be the

code name of the web application.

Grays 2.0 is a Medical Social Bookmarking application that will run in the World-

Wide Web, it seems reasonable to separate the presentation part (HTML pages, CSS

styles) from the logic of the application (HTTP request processing, database access,

etc). Therefore a web development framework incorporating the elements of the

model view controller seems the most suitable option.

Python is known for having a extremely clean syntax and have a strong ob-

ject orientation. This language has been used in agile projects, so a Python-based

framework is probably the best alternative for this project. Django is one of the most

5.3. Architecture 75

Figure 5.3: Django Framework on the Google App Engine.

popular Python Web Application Frameworks with one with a broad community of

users. Django not only separates the logic from the presentation, but also offers an

elegant implementation of the URL structure that can be useful for managing the

multiple user and tag pages that will be generated once the systems grows.

Finally the Google App Engine is considered as a good hosting alternative for

this project because it is designed to scale, so the system could be able to handle

a growing number of users and page views. Nevertheless the App Engine offers

some quotas for free and also gives to possibility to have a sub-domain under the

appspot.com domain without any cost. Additionally the software development kit

5.3. Architecture 76

is available to download easily and supports Django 0.96 out of the box. Therefore

the alternative of developing Grays 2.0 in Django over the Google App Engine seems

to be the most effective solution.

Based on the architecture discussed in the Django section, the design of this

application will be based on the methods that will be implemented on the “views”

module, where the logic of the business resides in a Django project. The Figure 5.4

shows the different elements that will be constructed during the development time.

Figure 5.4: Grays 2.0 on the Django Framework over the Google App Engine.

5.4. UML Diagrams 77

5.4 UML Diagrams

5.4.1 Use Cases

Use Case diagrams identify the functionality that will be offered by the system, it

describes the users who will interact with the system, and the association between

the users and the system. Use Cases are normally used in the Analysis phase of

software development cycle to create the high-level requirements of the application.

As was discussed in the previous section the system will contain a big reposi-

tory of bookmarks, each one them composed by an URL, a title and a set of tags

associate with a bookmark. Based on the previous analysis we can identify in the

Social Bookmarking system three different kind of actors. Most of the use cases are

common to most the actors but each one of them have an specific set of cases:

• Visitor: A visitor is considered a guest actor in the system that either has not

been registered yet or has not logged in the application. A visitor can browse

the bookmarks by tags, browse the bookmarks added by an registered user

and search the bookmarks by keyword.

• Medicals User: A medical user is considered a medical actor that has logged

in and therefore has an account in the social bookmarking system. The main

Use Case added to this type of user is the ability to add a new bookmark and

tag the resource with the favorite keywords. The user actor can also browse

bookmarks by tags, browse the bookmarks added by other registered users

and can search the bookmarks of the repository by keyword.

• Administrator: The administrator actor has also an account in the system and

therefore needs to be logged in in order to perform the actions associated with

the role and has the same use cases of the Medical User actor but additionally

she can remove bookmarks, tags or users from the system (mainly because of

5.4. UML Diagrams 78

spam issues).

Now each one of the previous use cases will be analysed separately and the UML

Use Case diagrams of each one of them will be included:

5.4. UML Diagrams 79

Create a new user account

Use Case Number: U1 Use Case Name: Create a new user account and manage

user accounts.

Goal: To create a new account for a new customer and manage the accounts.

Brief Description:A new user have to register for use any service in the Grays 2.0

system. The user fills a form asking for a new account and then the User Administrator

creates the new account. The administrator can edit and delete the accounts.

Actors: Administrator, Medical User

Frequency: High. Each time a new user browse the website a new account has to be

created. The administrator will manage the accounts frequently

Scalability: If the site is successful it is expected that the user mass will grow and there

will be new registrations.

Criticability: Very. All the new users have to register so without this case it is not

possible to add new users.

Primary Path:

1. A new user browses the Grays 2.0 homepage and before using any service she is

asked to signin.

2. If she does not have a username and password she is asked to register.

3. Once she has filled all the required fields this information is passed to the system.

4. If the validation was successful the system creates a new account for the user with

the username and password.

5. The user is authenticated with this information and can continue.

Use cases Related to Primary Path: None.

Alternative Path: 2.1 The information provided by the user is incomplete. No user

account is created. She is invited to repeat the signup process again.

Use cases related to alternative: None.

Exceptions: None.

Use cases related to exceptions: None.

5.4. UML Diagrams 80

Figure 5.5: Use Case Number1: Create a new account.

5.4. UML Diagrams 81

Add a new bookmark

Use Case Number: U2 Use Case Name: Add a new bookmark to the system.

Goal: To allow the registered user to publish new bookmark into the Grays 2.0

Brief Description:Since the contents of Grays 2.0 are user-generated this main use

cases allows the registered user to login into the system and publish a new URL, adding

a title and associating the bookmark with the desired tags.

Actors: Medical User

Frequency: Medium - High. Even if not all the visitors will convert into registered users,

ideally most of the users of Grays 2.0 will also be collaborators. Therefore it is expected

that this Use Case will happen frequently

Scalability: If the number of user begin to grow as expected there will be more users

adding bookmarks. Nevertheless at the beginning the peek user number is expected to

be approximately 15 users entering bookmarks at the same time.

Criticability: Medium. The system is still usable even the adding bookmark section is

down, but since the website is mainly about bookmarking websites, if this case fails it

will compromise an important functionality.

Primary Path:

1. A registered user browse the Grays 2.0 homepage and she is asked to signin.

2. Once she is signed the option to add a new bookmark is offered.

3. The user selects a title for the bookmark, enters the URL and associates the tags

wanted.

4. The bookmark is stored into the bookmark repository and the tags are associated

with the bookmark.

5. The user recieves a message confirming the the bookmark has been saved.

Use cases Related to Primary Path: None.

Alternative Path: 2.1 If the signin information is not valid, the user will be invited to

the sign-in process again.

2.2 If the URL entered into the system is not a valid URL, the user will be informed and

invited to enter a valid URL.

Use cases related to alternative: U1.

Exceptions: None.

Use cases related to exceptions: None.

5.4. UML Diagrams 82

Figure 5.6: Use Case Number2: Add a new bookmark.

5.4. UML Diagrams 83

Search for bookmarks

Use Case Number: U3 Use Case Name: Search for a bookmark.

Goal: To allow the registered users or visitors to search for bookmarks.

Brief Description:The user can look for bookmarks related to a query composed of

keywords. The system will look in the bookmark respository and return matches for

that query.

Actors: Visitor, Medical User

Frequency: High. It is expected the user will look for information several times on a

daily basis, since the web users are very familiar with the concept of search engine.

Scalability: At the beginning the peek user number is expected to be around 100 users

looking for information at the same time.

Criticability: Medium. It is not the only mechanism for finding information in the

system, but it the functionality might be useful to the majority of users.

Primary Path:

1. A registered user or a visitor browse any page in the Grays 2.0 system.

2. A search box is presented where the user can enter the query.

3. The user enters the query and submit the form.

4. The system returns a list with one or more bookmarks matching the query.

5. The user can browse the bookmarks or enter a new query.

Use cases Related to Primary Path: None.

Alternative Path: 2.1 If the query does not match any result the system will return a

message informing the user and the search option will be offered again.

Use cases related to alternative: U3.

Exceptions: None.

Use cases related to exceptions: None.

5.4. UML Diagrams 84

Figure 5.7: Use Case Number3: Search for bookmarks.

5.4. UML Diagrams 85

Browse User Bookmarks or Tags

Use Case Number: U4 Use Case Name: Browse User Bookmarks or Tags.

Goal: To allow the the registered users or the visitor to broswe the bookmarks by name

or by tag.

Brief Description:The user registered user can browse the system and get the book-

marks she stored before. Both the registered users and the visitor can browse the book-

marks created by other registered users or alternatuve they can browse the tag cloud an

discover the most popular tags.

Actors: Visitor, Medical User

Frequency: High. This is one the main features of the Social Bookmarking system, to

browse the bookmarks by user or tag so it is expected this features will be used very

frequently.

Scalability: At the beginning the peek user number is expected to be around 100 - 150

users browsing the bookmarks at the same time.

Criticability: High. This is one of the main feature of the system. If the registered user

can not get back the bookmarks she has stored before that is a major issue. Also it will

be common for the visitors to browse the tag cloud frequently so the criticability of this

use case is high.

Primary Path:

1. A registered user or a visitor browse any page in the Grays 2.0 system.

2. If the registered user is logged in there will a link to browse her bookmarks.

3. Alternative the registered user or the visitor can browse some other users bookmarks

by name.

4. Finally they can visit the tag cloud and find the most popular tags.

Use cases Related to Primary Path: U2.

Alternative Path: 2.1 If the selected user has not saved any bookmarks yet the system

will return an error message. If there are no bookmarks in the system both the user and

tag cloud options will return this error message.

Use cases related to alternative: None.

Exceptions: None.

Use cases related to exceptions: None.

5.4. UML Diagrams 86

Figure 5.8: Use Case Number4: Browse bookmarks by user or tag cloud.

5.4. UML Diagrams 87

Delete Contents

Use Case Number: U5 Use Case Name: Delete Contents.

Goal: To give the administrator the tools to delete bookmarks, tags and links.

Brief Description:As was discussed in a previous chapter on the risks of this system is to

have spam users adding spam entries to the bookmark repository. The objective of this

use case is to give the administrator the ability to erase entries from the data repository.

Actors: Administrator

Frequency: Low. Since the user will have to register before adding a bookmark it is

expected that at the beginning this case will be used sparingly.

Scalability: At the beginning the administrator will use this case only 1 or 2 times a

week.

Criticability: High. Even if the frequency of this case is low, it has a high because the

spam entries should be deleted at once.

Primary Path:

1. A administrator browse the Grays 2.0 system and log-in.

2. She will see a whole list of users with the associated bookmarks and tags.

3. She can delete a bookmark or tag from a user.

4. If she considers a user account is only made of spam, she can delete all together.

5. The selected entries are erased from the system.

Use cases Related to Primary Path: U2.

Alternative Path: 2.1 If the bookmark to delete has been saved by more than 3 users

a confirmation alert will be presented. If a tag is used by more than one user, the

confirmation will appear too.

Use cases related to alternative: None.

Exceptions: None.

Use cases related to exceptions: None.

5.4. UML Diagrams 88

Figure 5.9: Use Case Number5: Delete Contents.

5.4.2 Class Diagrams

Class diagrams identify the class structure of a system, including the properties

and methods of each one of the classes. On these diagrams normally the various

relationships that can exist between classes such as inheritance are illustrated.

The main class diagram in the Figure 5.10 shows the most important classes of

the Social Bookmarking System. There is a user superclass user with two subclasses:

Registered User and Administrator. They share some common properties such as

the name and the account inherited from his parent but they also implements some

5.4. UML Diagrams 89

methods of their own (for example the Administrator user implements has some

unique methods such as deleteAccount(), deleteBookmark() and deleteTag().

The Registered User subclass also have its own methods such as saveBookmark()

and browseBookmar(). She also inherits the name and account attributes from its

parent class (the user class).

The there is also another important superclass called model with different data

properties. The bookmark, tag and link are subclasses and they also inherit from

its model parent the different properties they can hold. The bookmark class send

messages to the link and tag classes to store the information related to each one of

the bookmarks.

Figure 5.10: Main Classes Diagram.

5.4. UML Diagrams 90

5.4.3 Interaction Sequence Diagrams

The Interaction Sequence diagrams describe the interactions between the different

classes composing a system to achieve a desired result. The message are the defini-

tion of the communication links between the different classes. On those diagrams

the objects appear in the horizontal axis and the time in the vertical one.

Add / Edit Bookmark

The Add / Edit Bookmark diagram shows the interaction between the Registered

User, Bookmark and Data Store objects. The Sequence begins when the user saves

a bookmark. This message is sent to the Bookmark Object which can communicate

with the Data Store object. It sends a message to adds the data into the bookmark

repository. Now the Registered User object can send a message to edit a Bookmark

that works in the same sequence, but instead of creating a new record into the

bookmark repository. It also can send a message to delete a bookmark. Once the

Bookmark object receives this message it will delete its contents and send a message

to the Data Store object to remove the bookmark from the repository.

5.4. UML Diagrams 91

Figure 5.11: Interaction Sequence1 - Add / Edit Bookmark.

5.4. UML Diagrams 92

Browse User Bookmark / Tag Bookmark

The Browse User Bookmark / Tag Bookmark diagram shows the interaction between

the User, Bookmark and Data Store objects. The Sequence begins when the user

browse a bookmark by user. This message is sent to the Bookmark Object which

can communicate with the Data Store object. It sends a message to get data from

the bookmark repository. The User object can also send a message to request the

Bookmarks by tag. The process behaves in a similar sequence but the Bookmark

object instead of requesting the bookmarks by user to the data store object is asks

for the bookmarks associated with a particular tag. In both scenarios the data store

object returns a message with the data matching the criteria and the bookmark

object returns to the user the requested bookmarks.

Figure 5.12: Interaction Sequence2 - Browse User Bookmark / Tag Bookmark.

5.5. Backend Design 93

5.5 Backend Design

5.5.1 Entities and Relationships

There are two concepts to take into consideration for designing the backend data-

model of the Social Bookmarking System: Folksonomy and Personomy. As was dis-

cussed in a previous chapter the folksonmy is the a bottom-up the classification sys-

tem generated by a community of users in particular system created by tagging or

annotating a set of resources. The personomy is a subset of this Folksonomy taken

into account only the metadata generated by one specific user. Based on these defi-

nitions we identify three type of elements into a Social Bookmarking sytem that are

interelated: The users, the bookmarks and the tags. Actually Hotho et al undertook

a similar analysis in the definition of a formal model for folksonomies (Hotho et al.,

2006b).

So they entities identified and the relationship between them are:

• Users: Each user can store one or more bookmarks into the systems with zero

or more tags.

• Bookmarks: Each bookmark can be stores by one or more users with a differ-

ent title and zero or more tags.

• Tags: Each tag can be associated to one or more bookmarks and can be used

for one or more users.

We can also identify that there is a ternary relation between the Users, the Book-

marks and the Tags, where each resource entered into the system will be a combi-

nation of those three elements. The nature of this relationship must be considered

where the entities and the relationships of the system are will the defined.

Some of of the attributes associated to each identity are defined in the following

tables:

5.5. Backend Design 94

Entity:User
username varchar
password varchar

Table 5.1: User Entity

Entity:Bookmark
title varchar
URL varchar
date-created datetime
date-modified datetime

Table 5.2: Bookmark Entity

Entity:Tag
name varchar

Table 5.3: Bookmark Entity

5.5.2 Entity Relationship Diagrams

Based on the ternary relationship described previously and the entities mentioned

in the previous tables of the entities and relationship section we can produce a first

entity relationship diagram illustrated in the Figure 5.13.

One of the problems arising here is the URL attribute of the Bookmark table.

If two users or more users add a bookmark to the system with a different title but

the same URL, the URL value will be repeated over and over, violating the rules

of the first normal form (Codd, 1970). One solution to overcome this drawback is

to separate this attribute to a new relation, so the same URL can belong to one or

more bookmarks.

Therefore the redesigned entity relationship based on the previous analysis can

be found in the Figure 5.14

5.6. Conclusions 95

Figure 5.13: Entity Relationship Diagram - Draft1

5.6 Conclusions

The high level analysis performed at the begining of the chapter helped to under-

stand the main functionality of the system: it will be a web application where the

registered users can store, share and retrieve their bookmarks or the ones stored by

other users. Another decision taken after this analysis is the model-view controller-

architecture to be used because the project is about a Web Application. The concept

of Web Application was reviewed and it was decided to use the Django web appli-

cation framework on the Google App Engine hosting platform. Finally the main use

cases were modeled, the most important classes and interactions of the system were

5.6. Conclusions 96

Figure 5.14: Entity Relationship Diagram for the Grays 2.0 Application (Final Ver-
sion)

outlined using UML and the data model was planed and modeled using standard

entity relationship diagrams so the next step now is to develop the web application.

Chapter 6

Development of Grays 2.0

“I have the students learn Python in our undergraduate and graduate Se-

mantic Web courses. Why? Because basically there’s nothing else with the

flexibility and as many web libraries.”(Prof. James A. Hendler.)”

6.1 Introduction

In the previous chapter the main use cases of the Social Bookmarking System were

discussed and it was decided that the Django web application framework over the

Google App Engine hosting services was going to be used since it was a good choice

because Django has a good community of users, it implements the Model View

Controller and it is based in Python, a programming language with a clear syntax

and used in many agile projects. The task that will be explored in this chapter is

how to implement the cases described in the previous chapter. The activities that

will be covered in this chapter is how to set-up the development environment, how

to install and use the Google App Engine development framework, how to create a

Django application, develop the different components of the Web Application and

how bind it with the App Engine. Finally the user interface design will be created

and finally the data-model explored in the previous chapter will be incorporated

6.2. Development Environment 98

into the application. At the end of this phase there will a working software running

both in the local development platform an online in the App Engine hosting account.

6.2 Development Environment

The first step before starting the development phase was to set-up and configure

the development machine and the development environment. A first strategic de-

cision taken was to use on this project only open source applications and packages

covered by the Open Source initiative: “www.opensource.org/licenses/alphabetical”.

The main reason to make this decision was to avoid having to go over many dif-

ferent kind of EULAs (End User License Agreements) from each of the proprietary

software packages and the second reason was to save on the costs of this project,

since all the activities related to this project can be accomplished using those open

source systems and applications.

6.2.1 Development Hardware

The hardware used for the development of the project was a Netbook Samsung

NC10 with the specifications described in the Table 6.1:

Development Hardware Specifications

Storage Media 160 GB 2.5” SATA HDD
CPU 1.6GHz Intel Atom N270
Memory 1 GB
Display 10.2” (25.9 cm) 1024x600 LED-backlit TFT

LCD
Connectivity 10/100 Mbit Ethernet 802.11b/g wireless

LAN Bluetooth 2.0+EDR 3 USB 2.0 ports

Table 6.1: Hardware Specifications

6.2. Development Environment 99

6.2.2 Development Software

Different software packages were used for the development of the project but was it

was mentioned before all of them were compliant with the licenses from the Open

Source Initiative, starting by the operating system: A netbook was bundled with

Microsoft Windows XP, but it was replaced by the Linux distribution Ubuntu 8.10

(the Intrepid Ibex) covered by the GNU General Public License. This Linux distribu-

tion was selected because it has widest community of users (it is the most popular

Linux distribution), it has a strong emphasis in the usability and since it is based on

Debian it is very easy to install new software using the apt-get program to manage

the packages. For example for installing Python on the system it is enough to issue

the following command in the linux terminal sudo apt-get install python

The other packages installed and used in the development of this project are in

the Table6.2.

The Django and Google App Engine packages are the most important pieces of

the architecture for the application so they will be discussed separately

6.2.3 Django Setup

Since Django is a Python framework it Python needs to be in the system before at-

tempting to install the framework in the development system. To verify if Python is

installed in the machine and check the version it is necessary to open the terminal an

issue the command python -V. In the standard distribution of Ubuntu 8.10 Python

comes installed by default so the response received was Python 2.5.2. Django

works with any version between 2.3 to 2.6. Django can be downloaded for free

from the Django project website (www.djangoproject.com/download/).

The version version 1.0.2 was downloaded in a compressed format

(file Django-1.0.2-final.tar.gz) to the Desktop folder and then it was uncom-

6.2. Development Environment 100

Development Software

Package Functionality
Gedit 2.24 Simple text editor with coding highlighting (Typing La-

tex Document)
Geany 0.14 Small code editor / IDE with color coding support (De-

velopment for coding in Python, Javascript and CSS)
Firefox 3.03 Web browser. (Testing the application
Opera 9.64 Web browser. (Testing the application
Texmaker 1.7 Integrated Latex editor with dvi, ps and pdf modules

(Editing Latex document and creating final paper)
KBibTex 0.21 bib manager (Managing bibliographic references)
Gimp 2.61 Image Manipulation Program (Creating and editing

graphic elements for the UI of the application)
Koulour Paint 4.14 Small illustration program (Creating small designs for

the paper)
ArgoUML 0.28 UML Editor (Designing use cases, classes and interac-

tion diagrams)
KSnapshots 0.81 Screenshot Software (Creating screenshots for the pa-

per)
MySQL Workbench 5.1 Database Designer (Creating the datamodel and de-

signing the ER diagrams).
Python 2.5.2 Dynamic object-oriented programming language

(Used by Django and the App Engine).
Django 1.0.2 Web Application Framework (Developing and testing

the Web Application).
Google App Engine SDK
for Python 1.2.1

App Engine SDK (Developing and testing the Web Ap-
plication)

Table 6.2: Software Specifications

pressed and installed using

tar xzvf Django-1.0.2-final.tar.gz

cd Django-1.0.2-final

sudo python setup.py install

To test if Django was properly a test project was created named django-test,

using the command startproject. A transcript of the process is next:

juan@ubuntu :~$ mkdir django -test

6.2. Development Environment 101

juan@ubuntu :~$ cd django -test/
juan@ubuntu :~/ django -test$ pwd
/home/juan/django -test
juan@ubuntu :~/ django -test$ django -admin.py startproject
django -test
Error: ’django -test ’ is not a valid project name. Please use
only numbers , letters and underscores.
juan@ubuntu :~/ django -test$ django -admin.py startproject
django_test
juan@ubuntu :~/ django -test$ ls
django_test
juan@ubuntu :~/ django -test$ cd django_test/
juan@ubuntu :~/ django -test/django_test$ ls
__init__.py manage.py settings.py urls.py

When a new Django project is created, it creates by default the 4 files that appear

at the end of the transcript. init .py is a standard file to tell the Python compiler

the contents of this directory should be treated as a package, manage.py is used to

interact with the project in different ways (for example starting the server or the

interactive shell), settings.py is self explanatory and urls.py is used by the URL

dispatcher to match the URLs in the http request with the corresponding view.

A handy feature of the Django framework is it comes with a testing web server

embedded so just by typing: python manage.py runserver the testing server is

started and will serve content in the localhost address (http://127.0.0.1:8000/):

juan@ubuntu :~/ django -test/django_test$
python manage.py runserver
Validating models ...
0 errors found

Django version 1.0.2 final , using settings
’django_test.settings ’
Development server is running at
http ://127.0.0.1:8000/
Quit the server with CONTROL -C.
[01/ May /2009 09:03:30] "GET / HTTP /1.1" 200 2063

6.2. Development Environment 102

A screen-shot of the standard page Django offers when the testing server is

started can be seen in the Figure 6.1. Finally to create a new “test application”,

the command startup has to be used:

juan@ubuntu :~/ django -test/django_test$ python
manage.py startapp test_application
juan@ubuntu :~/ django -test/django_test$ ls
__init__.py __init__.pyc manage.py settings.py
settings.pyc test_application
urls.py urls.pyc
juan@ubuntu :~/ django -test/django_test$ cd
test_application/
juan@ubuntu :~/ django -test/django_test/test_application$
ls
__init__.py models.py views.py

When a new application is generated Django creates a directory with the name

of the application and puts inside to files: models.py, where the data models will

be defined (it will used by the object-relational mapper to create the relations in

the relational database manage system) and views.py, where the requests will be

processed and send back to the template manager system. Those files will be used

later on in the development of the Social Bookmarking application.

6.2.4 Google App Engine Setup

Both Python and Django are running fine in the system so the next step in the

development platform configuration process is to download and install the Google

App Engine SDK (Software Development Kit) and test it. The SDK “include a web

server application that emulates all of the App Engine services on your local computer.

Each SDK includes all of the APIs and libraries available on App Engine. The web server

also simulates the secure sandbox environment, including checks for attempts to access

system resources disallowed in the App Engine runtime environment”

One of the advantages of the SDK is that includes some utilities to upload the

6.2. Development Environment 103

Figure 6.1: Django Testing Server - Welcome Screen

application to the Google App Engine platform; so once the application has been

tested locally and it works it is very easy to synchronize the local version with the

production environment. The process will be discussed later on in this chapter.

The Google App Engine Software Development Kit (SDK) can be downloaded for

free from the official website (http://code.google.com/appengine/downloads.html).

The file google appengine 1.2.1.zip for the Linux platform was saved and un-

compressed into the home folder. The site also offers a small “Hello World” sample

(http://code.google.com/appengine/docs/python/gettingstarted/helloworld.html)

very helpful to understand how the applications run in the Google App Engine and

to test the development server. Each App Engine application needs an app.yaml

configuration tile that defines which scripts should handle the different URL re-

quests. For the hello world example this file looks like:

application: helloworld
version: 1
runtime: python
api_version: 1

6.2. Development Environment 104

handlers:
- url: /.*

script: helloworld.py

The handlers version here tells the App Engine all the requests should be pro-

cessed by the script helloworld.py. In this “Hello World” application. The script

only prints this message.

print ’Content -Type: text/plain ’
print ’’
print ’Hello , world!’

A “helloworld” directory was created in the home directory of the development

machine and the app.yaml and helloworld.py files were saved here. And she test

server was loaded passing this directory as parameter:

juan@ubuntu :~/ helloworld$ ls
app.yaml helloworld.py
juan@ubuntu :~/ helloworld$ cd ../ google_appengine
juan@ubuntu :~/ google_appengine$
./ dev_appserver.py ../ helloworld/
INFO 2009 -05 -02 07:34:05 ,794 appengine_rpc.py :157]
Server: appengine.google.com
INFO 2009 -05 -02 07:34:05 ,818 appcfg.py :320]
Checking for updates to the SDK.
INFO 2009 -05 -02 07:34:06 ,303 appcfg.py :334]
The SDK is up to date.
INFO 2009 -05 -02 07:34:06 ,508 dev_appserver_main.py :463]
Running application
helloworld on port 8080: http :// localhost :8080

The SDK test server loads the test web server in port:8080 by the application

passed in the parameters. This “Hello World” application running can be seen in

the Figure 6.2.

6.3. Architecture 105

Figure 6.2: App Engine Hello World

6.3 Architecture

6.3.1 Django on Google App Engine

In the previous section the development environment set-up was described but to

start developing the project one last step on setting this development environment

to configure the Google App Engine to make sure it can run Django Applications

on it. One of the advantages described previously is that since both Google App

Engine and Django are designed to use the WSGI standard to run applications, the

integration should be painless. Damon Kohler wrote a very useful article in the

official app engine website about how to accomplish this task(Kohler, 2008). For

using Django 0.96 (as it will be done in this project) the process is very simple: The

app.yaml file is set-up in a mode where all the requests are passed to the main.py

script:

Listing 6.1: app.yaml file
application: medical -bookmarks
version: 1
runtime: python
api_version: 1

handlers:
- url: /static

static_dir: static

6.3. Architecture 106

- url: .*
script: main.py

In the main.py script the WSGI handler imported from Django is defined and

the logging information is passed to the App Engine (instead of the normal Django

manage.py). A sample of this script that will be used for this project is available on

the Google website:

Listing 6.2: main.py handler
import logging , os

Google App Engine imports.
from google.appengine.ext.webapp import util

Force Django to reload its settings.
from django.conf import settings
settings._target = None

Must set this env var before importing any part of Django
os.environ[’DJANGO_SETTINGS_MODULE ’] = ’settings ’

import logging
import django.core.handlers.wsgi
import django.core.signals
import django.db
import django.dispatch.dispatcher

def log_exception (*args , **kwds):
logging.exception(’Exception in request:’)

Log errors.
django.dispatch.dispatcher.connect(

log_exception , django.core.signals.got_request_exception)

Unregister the rollback event handler.
django.dispatch.dispatcher.disconnect(

django.db._rollback_on_exception ,
django.core.signals.got_request_exception)

def main ():
Create a Django application for WSGI.
application = django.core.handlers.wsgi.WSGIHandler ()

6.3. Architecture 107

Run the WSGI CGI handler with that application.
util.run_wsgi_app(application)

if __name__ == ’__main__ ’:
main()

Finally the normal settings.py normally created by Django for a new project

has to be tweaked so the Django models will not be used (instead the App Engine

ones will be used), the authentication an admin have to be disabled too (handled

by the App Engine as well) and the sessions. The sample listing that will be adapted

to this projects is:

Listing 6.3: settings.py script
import os
ROOT_URLCONF = ’urls ’
MIDDLEWARE_CLASSES = (

’django.middleware.common.CommonMiddleware ’,
’django.contrib.sessions.middleware.SessionMiddleware ’,
’django.contrib.auth.middleware.AuthenticationMiddleware ’,

’django.middleware.doc.XViewMiddleware ’,
)

INSTALLED_APPS = (
’django.contrib.auth ’,

’django.contrib.contenttypes ’,
’django.contrib.sessions ’,

’django.contrib.sites ’,
)

ROOT_PATH = os.path.dirname(__file__)
TEMPLATE_DIRS = (

Put strings here , like "/home/html/django_templates" or
"C:/www/django/templates ". Always use forward slashes ,
even on Windows.
Don ’t forget to use absolute paths , not relative paths.
ROOT_PATH + ’/templates ’,

)

Using this configuration, when the application is running and a URL is re-

quested, the App Engine passes the request to main.py and since this file is creating

the Django application for WSGI, the request will be handled by the URL dispatcher

6.3. Architecture 108

as in any normal Django application. The system is ready to run a Django appli-

cation on the Google App Engine, so the next step now is to edit the Django files

composing the project and develop each one the parts of Medical Bookmarking

System.

6.3.2 Grays2.0 Architecture

Since Grays 2.0 will be a Social Bookmarking system developed in Django over the

Google App Engine, the architecture of the application will have elements of both

as it was explained in the previous section. Since Django implements the MVC

architecture and the presentation is separated from the logic, this project will use

this implementation.

A typical Django application contains the following files:

• A urls.py file used by the URL dispatched to identify view is called for any

given URL pattern. This project will use that file.

• A views.py file that contains the handlers with the business logic for each one

of pages requested. Grays 2.0 will used this file constantly since most of the

development will take place here.

• A models.py file with a description of the database tables as Python classes.

Since this project runs on the App Engine it will also have a models.py file but

instead of having a map to a database it will map the Google Datastore.

• A settings.py file with the configuration of the application (it will be used

as previously described)

• A /templates/ directory where all the .html templates are stored and used by

the template manager system. The Grays 2.0 project will create the .html files

here.

6.4. Development Process 109

Additionally Django offers an elegant module to handle forms (forms.py) that

will be used. Also given the fact this is an App Engine application it needs to have

the app.yaml and main.py described in the previous section. At the end of the

development time the application source code files structure will look as:

|-- app.yaml
|-- forms.py
|-- main.py
|-- models.py
|-- settings.py
|-- static
| |-- icons.jpg
| ‘-- styles.css
|-- templates
| |-- sample.html
|-- urls.py
|-- views.py

A mapping between this structure and the diagram that was exposed during the

Analysis and Design phase is shown in the Figure 6.3.

6.4 Development Process

The files described in the previous sections were created in the application folder.

The next step in the development process is to created the graphical interface the

user will use to interact with the system as html templates. Those templates will be

linked with the output from the views in the application. Finally the handlers will

be coded.

6.4.1 GUI Design and Template development

The initial mock-ups of the Graphical User Interface design of the Medical Social

Bookmarking, were designed using the GIMP image editor and then the Graphical

elements were separated in different .PNG files and the rest of the structure of

6.4. Development Process 110

Figure 6.3: Grays 2.0 Architecture

the design was coded in HTML and CSS. The resulting files were stored in the

/template/ (html files) and /static/ (css and graphic elements) directories of the

project.

The objective of this phase was to create a generic template that could be used

by all the different handlers of the application. Some general principles of Web

usability where taken into account when designing the user interface, like the ones

discussed in free online ebook published in “webstyleguide.com”. The aim of this

process was to create a user friendly interface with a professional look, presenting

the information in a clear way, putting the information in an position easy to find

6.4. Development Process 111

and to give the user always possibility to either search for the information with a

text-box or to browse the content by clicking around. The screen shot with the

result of this process can be found in the Figure 6.4.

Figure 6.4: Generic Template

A very powerful feature of the Django template system is the concept of “Tem-

plate inheritance” that works similar to the inheritance of the programming lan-

guages. The idea is the web developer can build a skeleton template with elements

common to all the pages of the website and then define regions or blocks that can

be overridden by the children templates extending from this parent. The template

system also allows others to include additional templates inside a template, com-

mon in many Web scripting languages such as PHP or ASP. Therefore the generic

template will be stored as a base template (/base.html/) with the variable “title”

and “body” blocks that can be used by the templates extending it. The base tem-

plate will also include some common templates for the header, the menu and the

footer of the template.

Here is the code of the base template:

6.4. Development Process 112

Listing 6.4: base.html template

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional //EN"
"http ://www.w3.org/TR/html4/loose.dtd">

<html >
<head >
<title >Medical Bookmarks - Juan Convers

- {% block title %}Page Title{% endblock %}</title >
<link type="text/css" rel=" stylesheet" href ="/ static/styles.css">

<script type="text/javascript">
var gaJsHost = ((" https:" == document.location.protocol) ?

"https ://ssl." : "http ://www .");
document.write(unescape ("%3 Cscript src=’" + gaJsHost +

"google -analytics.com/ga.js’
type=’text/javascript ’%3E%3C/script %3E"));

</script >
<script type="text/javascript">
var pageTracker = _gat._getTracker ("UA -9927** -*");
pageTracker._trackPageview ();
</script >
</head >
<body >
<table width ="700" border ="0" cellpadding ="0" cellspacing ="0">

{% include "header.html" %}
{% include "menu.html" %}

<table class ="white" width ="100%" border ="0" cellspacing ="0"
cellpadding ="0">

<tr>
<td width ="3%"><img src ="/ static/spot.gif" width ="24"

height ="23" alt=" blankspace" /></td >
<td width ="94%" valign ="top" class="main">

{%block body %}{% endblock %}

{% include "footer.html" %}

</body >
</html >

To test the templates in running in the application and determine if the inheri-

tance was working a “generic” page was created without any content. This exercise

6.4. Development Process 113

was very useful because the same steps will be followed in the development of each

handler of the application. Those steps are:

1. Create an entry in the urls.py file with the URL pattern that will trigger the

handler we are coding.

from django.conf.urls.defaults import *

urlpatterns = patterns(
’’,
(r’generic ’, ’views.generic ’),
)

2. Define and code the handler method in the views.py that will process the

request and return the result with the template name that should be associated

with this handler:

import django
from django import shortcuts

def generic(request):
""" Handler for showing a generic empty page in the

Bookmarking System """
params = {}
return shortcuts.render_to_response(’generic.html ’, params)

3. Create and store the template in the /templates/ directory that was refer-

enced from the previous handler (generic.html in this case):

{% extends "base.html "%}
{% block title %} Generic Template {% endblock %}
{%block body%}
<h2>Generic Template </h2 >

Put the content here.

{% endblock %}

6.4. Development Process 114

In the local testing server, browsing this page with the address:

http://localhost:8080/generic/ returned the same results of the Figure 6.4.

6.4.2 Handler Implementation

The templates have been designed and tested with a generic handler. The next

step in this development process is to program the handlers for each one the URLs

implementing the use cases described in the analysis chapter.

Create a new account and login

An additional advantage of using the Google App Engine as a hosting platform is

the integration with Google Accounts for user authentication. There is user API

available that allows the developer to use the Google login information for granting

the user access to the application and interacting with her so she does not need

to create an additional account. Furthermore, if the user is already logged-in any

Google Service, the application does not need to ask to the user to login again

because the authentication information is already there. If it is not the case the

application can redirect the user to the normal Google Login page and go back to

the application with user account already in place (see Figure 6.5 to have an idea

how the process takes place)

A big advantage of this approach for the Social Medical Bookmarking applica-

tion is that the developer do not need to write a single line of code for creating and

managing the accounts. This part is taken care by the normal account creation pro-

cess of Google, that includes a CAPTCHA challenge, to ensure that the registration

is not automatically generated by a bot.

Another side benefit very important for the objective of this project is the re-

duction of the potential spam in the system, since a week account creation system

could open the door to robots created by the spammers that can create accounts

6.4. Development Process 115

Figure 6.5: Medical Bookmarks - Google Login

and bookmark postings in bulk.

In order this functionality the application need to import the module ‘‘users’’

(from google.appengine.api import users).

It can create loging (users.create login url("/")) and

logout (users.create logout url("/")) pages.

A very useful method for always returning those parameters to the the templates

was found in:

http://google-app-engine-samples.googlecode.com/svn-history/

r99/trunk/django example/views.py.

It is an open source project so it will be adapted to the views.py in this project with

the following changes:

def respond(request , user , template , params=None):
""" Method to return a standard response ."""

if params is None:
params = {}

if user:
params[’user ’] = user
params[’sign_out ’] = users.CreateLogoutURL (’/’)
params[’is_admin ’] = (users.IsCurrentUserAdmin () and

’Dev ’ in os.getenv(’SERVER_SOFTWARE ’))
else:

6.4. Development Process 116

params[’sign_in ’] = users.CreateLoginURL(request.path)
Add the date by default in the return parameters
params[’current_date ’] = datetime.datetime.now()

It always add the .html extension to the template name.
template += ’.html ’
return shortcuts.render_to_response(template , params)

Add a new bookmark

The objective of this method as was discussed in the use case is to provide the

user the interface to add a new entry to the bookmark repository, associated with a

username and the number of arbitrary tags she decides. After registering the URL

pattern in the urls.py file:

(r’^save/$’, ’views.bookmark_save_page ’),

A class is created in the forms.py using the Django forms module:

from django import newforms as forms

Form for storing the Bookmarks.

class BookmarkSaveForm(forms.Form):
url = forms.URLField(

label=’URL ’,
widget=forms.TextInput(attrs={’size ’: 64})

)
title = forms.CharField(

label=’Title ’,
widget=forms.TextInput(attrs={’size ’: 64})

)
tags = forms.CharField(

label=’Tags ’,
required=False ,
widget=forms.TextInput(attrs={’size ’: 64})

)
edit = forms.CharField(

required=False ,
widget=forms.HiddenInput ()

)

6.4. Development Process 117

The next step is to write handler in views.py. First it will check that the user

is logged in before continuing the process. If that’s not the case the Django http

module will be used for sending an error message:

from google.appengine.api import users
from google.appengine.ext.db import djangoforms

import django
from django import http
from django.http import HttpResponse , Http404

def bookmark_save_page(request):
""" Handler to add or edit a new bookmark in the DataStore """

Get the current user and if the user didn ’t sign in, it
will complain
user = users.GetCurrentUser ()
if user is None:

return http.HttpResponseForbidden(’You must be signed in to
add a new bookmark !!’)

...

Now the handler has to check if the user is already posting information in the

bookmark form. If that’s not the case it will generate the form and it will pass it to

the respond method, so it will be sent to the template.

if request.method == ’POST ’:
...

else:
form = BookmarkSaveForm ()

return respond(request , user , ’bookmark_save ’, {
’form ’: form ,
})

If the user is posting the bookmark information then the handler must check

that the URL is valid, check if the link object already exists in the Datastore and

6.4. Development Process 118

if that is the case to associate with the new bookmark created by the user. Before

creating a new bookmark for this user for that particularly URL it has to check it

does not exist (if it exists it means the user is editing the bookmark). Finally it has

to link the set of tags with this bookmark and redirect the user to his bookmarks

page. Note that the Bookmarks, Links and Tags objects are created based on the

classes defined in “models.py”.

In these couple of statements we import
both the models an the forms

from models import *
from forms import *

if request.method == ’POST ’:
form = BookmarkSaveForm(request.POST)
if form.is_valid ():

Create or get link
url = form.clean_data[’url ’]

Select if the link is already in the Datastore if that ’s
true it will use it otherwise it will create a new one.
linkquery = db.GqlQuery (" SELECT * FROM Link WHERE

url = :urlp", urlp=url)
link2 = linkquery.fetch (1)
if len(link2) == 0:

link = Link(url=url , linkcount =1)
else:

if not request.has_key(’edit ’):
link2 [0]. linkcount = link2 [0]. linkcount + 1

link = link2 [0]
link.put()

Select if the bookmark is already in the Datastore if
that ’s true it will use it otherwise it will create a
new one.
Create or get bookmark.
bookmarkquery = db.GqlQuery (" SELECT * FROM Bookmark WHERE

link = :linkp AND
user = :userp",
linkp=link , userp=user)

bookmark2 = bookmarkquery.fetch (1)
if len(bookmark2) == 0:

6.4. Development Process 119

bookmark = Bookmark(user=user , link=link ,
title=form.clean_data[’title ’])

else:
bookmark2 [0]. title = form.clean_data[’title ’]
bookmark = bookmark2 [0]

Create new tag list.
tag_names = form.clean_data[’tags ’]. split ()
for tag_name in tag_names:

tag_name = tag_name.lower ()
tagquery = db.GqlQuery (" SELECT * FROM Tag WHERE

name = :namep",
namep=tag_name)

tag2 = tagquery.fetch (1)
if len(tag2) == 0:

tag = Tag(name=tag_name)
else:

tag = tag2 [0]
tag.put()
if tag.name not in bookmark.taglist:

bookmark.taglist.append(tag.name)
bookmark.put()
return http.HttpResponseRedirect (’/user/%s/’ % user)

A walk through of this process is demonstrated in the following set of screen-

shots (Figures 6.6 to 6.9):

Search for bookmarks

The aim of this method is to give the user a search box where she can enter a query,

search in the bookmark repository and return her a list of the bookmarks matching

the query. Again here we need to register the URL pattern in the urls.py file:

(r’^ search/$’, ’views.search_page ’),

Also a class is created in the forms.py using the Django forms module:

from django import newforms as forms

Form for querying the bookmark datastore.
class SearchForm(forms.Form):

query = forms.CharField(

6.4. Development Process 120

Figure 6.6: Add Bookmark - Menu item on the green bar

Figure 6.7: Add Bookmark - Error the user is not signed in.

label = ’’,
widget=forms.TextInput(attrs={’size ’: 32})

)

And a template templates/search.html that will show the search form or re-

ceive the results from the query. The capabilities of the Django Template Language

are remarkable, since it accepts variables with values coming from the handler and

6.4. Development Process 121

Figure 6.8: Add Bookmark - The form to fill is printed

Figure 6.9: Add Bookmark - Bookmark saved and redirection to the user’s page.

performs operations on them (for example “bookmark.title|escape”), it is able to

test if a variable is present or not in the response (“if bookmarks”) and even do

simple loops (“‘for bookmark in bookmarks’’):

6.4. Development Process 122

{% extends "base.html" %}
{% block title %} Search Bookmarks {% endblock %}
{%block body%}

<h2>Search Bookmarks </h2 >

Enter a keyword to search for:

<form id="search -form" method ="get" action =".">
{{ form.as_p }}
<input type=" submit" value=" search" />

</form >

<div id="search -results">
{% if show_results %}

{% if bookmarks %}
{% for bookmark in bookmarks %}
<div class=" greenmain">

{{ bookmark.title|escape }}

({{ bookmark.link.linkcount }})
{% if user %}
{% ifequal user bookmark.user %}

<a href ="/ save/?key ={{ bookmark.key }}"
class="edit">[edit]

<a href ="/ delete /?key ={{ bookmark.key }}"
class="edit">[delete]

{% endifequal %}
{% endif %}

{% if bookmark.created %}

Created: {{ bookmark.created.date}}
{% endif %}

{% if show_tags %}
Tags:

<ul class="tags">
{% for tag in bookmark.taglist %}

{{ tag|escape }}

{% endfor %}

{% endif %}
{% if show_user %}

6.4. Development Process 123

Posted By:

{{ bookmark.user }}
{% endif %}

</div >
{% endfor %}

{% else %}
<p>No bookmarks found.</p>

{% endif %}
{% endif %}

</div >

{% endblock %}

The last step is to write the code of the handler in views.py. The code is actually

self explanatory: It will check if the request has a key “query” and if that is the case,

it calls a search method on the Bookmarks object to get all the results matching the

query. The models class has not been discussed yet (see next section) but it is

important to clarify that bookmarks inherits from a “SearchableModel” and that is

reason it supports the search() method directly.

from google.appengine.api import users

from models import *
from forms import *

def search_page(request):
""" Handler for searching the bookmarks """
user = users.GetCurrentUser ()
form = SearchForm ()
bookmarks = []
show_results = False

if request.GET.has_key(’query ’):
show_results = True
query = request.GET[’query ’]. strip ()
if query:

print query
form = SearchForm ({’query ’ : query})
bookmarks = Bookmark.all(). search(query).order("-created ")

6.4. Development Process 124

return respond(request , user , ’search ’, {
’form ’: form ,
’query ’: query ,
’bookmarks ’: bookmarks ,
’show_results ’: show_results ,
’show_tags ’: True ,
’show_user ’: True
})

Browse user bookmarks or tags

The purpose of this method is to browse the bookmarks created by the current user

of the system or by other users. As was discussed in the Use Case section, the visitor

users can also get the bookmarks created by any user. This method returns a list of

the bookmarks created by the user selected in the URL. The first step as usual is to

define the URL pattern in the urls.py file, but in this case we can use a powerful

feature of the URL dispatcher in Django: It allows the developer to use regular

expressions and this value is passed to the handler, so in our case it will be:

(r’^user /(.+)/$’, ’views.user_page ’),

The next step is to develop the handler part in views.py. Note that the username

parameter recieved here comes from the regular expression part in the URLs file, so

basically it will contain whatever the user puts after the /user/ part in the URL.

def user_page(request , username):
""" Handler for User Page in the Bookmarking System """

user = users.GetCurrentUser ()
try:

email = username
#+ "@gmail.com" Add this part to the appspot.com version
userbookmarks = users.User(email)

except:
raise Http404(’Requested user not found.’)

bookmarks = Bookmark.gql("WHERE user = :userp ORDER BY created

6.4. Development Process 125

DESC",userp=userbookmarks)
return respond(request , user , ’user_page ’, {

’username ’: userbookmarks ,
’bookmarks ’: bookmarks ,
’show_tags ’: True
})

One challenge faced during the development of this part was to show the book-

marks coming from a user since the handler was working fine in the local develop-

ment environment, but once the application was live it was always giving and empty

result set. One solution devised to overcome this issue was to add the “gmail.com”

part to the user in the production version. This hack solved the issue.

For browsing the bookmarks by tag a simmilar implementation was used:

urls.py

(r’^kwd /([^\s]+)/$’, ’views.tag_page ’),

views.py

def tag_page(request , tag_name):
""" Handler for showing a Tag page. """
user = users.GetCurrentUser ()
tag = db.GqlQuery (" SELECT * FROM Tag WHERE name = :namep",

namep=tag_name)
tag2 = tag.fetch (1)
If it didn ’t find the Tag returns bookmarks as empty.
otherwise it query the datastore
if len(tag2) == 0:

bookmarks = ""
else:

for tag3 in tag2:
tag = tag3.name

bookmarks = Bookmark.gql("WHERE taglist = :tagp",tagp=tag)

return respond(request , user , ’tag_page ’, {
’bookmarks ’: bookmarks ,
’tag_name ’: tag_name ,
’show_tags ’: True ,
’show_user ’: True

6.4. Development Process 126

})

Tag Cloud

The last use case to be implemented in this part is the Tag Cloud. That means the

possibility to browse the bookmarks visually using a cloud with the most popular

tags highlighted by size according to their relevance. The Tag cloud will appear by

default in the homepage and also there will be a deep URL (/kwd/). Both of those

handlers called a tag cloud() method that returns a dictionary with the tag cloud.

Here is the implementation:

def tag_cloud ():
""" Handler for generating Tag Cloud """
MAX_WEIGHT = 10
temp_count = {}
lower_count = 1
higher_count = 1

tagquery = db.GqlQuery (" SELECT * FROM Bookmark ")
tagresult = tagquery.fetch (10000)

It iterates throught the tag list in the bookmarks
and for each element ofthe tag list it counts the
number of times it appears
for taglist in tagresult:

for uniquetag in taglist.taglist:
if uniquetag not in temp_count:

temp_count[uniquetag] = 1
else:

temp_count[uniquetag] = temp_count[uniquetag] + 1
if temp_count[uniquetag] > higher_count:

higher_count = temp_count[uniquetag]

tags = []

Calculate count range. Avoid dividing by zero.
range = float(lower_count - higher_count)
if range == 0.0:

range = 1.0

6.4. Development Process 127

Calculate tag weights and assigns the values to the
tags list of dictionaries that will be sent to the template.
TODO: TO SORT ALPHABETICALLY THE DICT BEFORE.
for key in temp_count:

temp_dict = {}
weight = int(

MAX_WEIGHT * (temp_count[key] - lower_count) / range
)
if weight < 0:

weight = weight * -1
temp_dict[’name ’] = key
temp_dict[’weight ’] = weight
tags.append(temp_dict)

return tags

And for tag cloud html templates part if both the homepage and the tag cloud

page, and the CSS bit associated:

<table summary ="tag cloud" class=" bluebox" cellspacing ="0">
<tr >

<td class =" blueboxBody">
<div id="tag -cloud">

{% for tag in tags %}
<a href ="/ kwd /{{ tag.name }}/"
class="tag -cloud -{{ tag.weight }}">
{{ tag.name }}

{% endfor %}
</div

</td >
</tr >

</table >

static/styles.css

#tag -cloud a {
margin: 0 0.2em;

}

.tag -cloud -0 { font -size: 100%; }

.tag -cloud -1 { font -size: 110%; }

.tag -cloud -2 { font -size: 120%; }

.tag -cloud -3 { font -size: 130%; }

6.5. Database 128

.tag -cloud -4 { font -size: 140%; }

.tag -cloud -5 { font -size: 150%; }

.tag -cloud -6 { font -size: 160%; }

.tag -cloud -7 { font -size: 170%; }

.tag -cloud -8 { font -size: 180%; }

.tag -cloud -9 { font -size: 190%; }

.tag -cloud -10 { font -size: 200%; }

What is interesting about this implementation is that method counts the number

of times each times appears and based on the frequency it gives to each one of them

a weight value between 1 - 10 and then in the template with CSS, each one of the

tags is shown with its relative size in comparison with the other tags of the system.

6.5 Database

One of the main differences between the Google App Engine platform regarding

the storing the data is that it does not use a relational database management sys-

tem (RDBMS) in the back-end but instead its own storing engine called the Google

Datastore (based on on BigTable non-relational database). As was discussed before

BigTable is a compressed, high performance, and proprietary database system that

runs over on Google File System (GFS)(Chang et al., 2008). Some of the advan-

tages of this model are the Datastore can execute multiple operations in a single

transaction, can scale very well to manage large data sets and can optimize the way

the data is stored so querying the data can be done very efficiently. Nevertheless

one of the challenges faced by the developers of the traditional web applications

with a relational database mindset is they need to change the way they model the

data because the ‘JOIN” operations as such as not supported. The Google Datastore

is not a relational database. A web application developed for the Google App En-

gine has to store the data using the “Model” class. The process of instantiating this

class is described in the official documentation as: “An application defines a data

6.5. Database 129

model by defining a class that subclasses Model. Properties of the model are defined

using class attributes and Property class instances. An application creates a new data

entity by instantiating a subclass of the Model class. Properties of an entity can be

assigned using attributes of the instance, or as keyword arguments to the construc-

tor.”(Google.com, 2008a). Doing the analogy to the relational databases systems,

the data “models” are equivalent to the tables and the “properties” are equivalent to

the columns. Some of the properties supported by the Datastore used in this project

are(Google.com, 2008b):

Google App Engine Supported Properties

Property class Value type Sort order
StringProperty str, unicode Unicode
IntegerProperty int, long Numeric
DateTimeProperty DateProperty, TimeProp-

erty
Chronological

StringListProperty list of a supported type If ascending, by least el-
ement; if descending, by
greatest element

UserProperty users.User By email address (Uni-
code)

LinkProperty db.Link Unicode
ReferenceProperty db.Key By path elements (kind,

ID or name, kind, ID or
name...)

Table 6.3: Google App Engine - Properties

One interesting property is the “Reference”, that can be used to create a many-

to-one relationship between the model with the property and the model referenced

by the property (this is similar to the foreign keys in a relational database system).

Finally since the Datastore is not exactly a RDBMS, SQL can not be used to retrieve

the information from the Datastore; instead google offers “GQL” a SQL-like lan-

guage with simmilar syntax but with some restrictions (as mentioned before it does

not support JOIN operations).

6.5. Database 130

6.5.1 Data Model

If there was a Relational Database System in the back-end of this application, like

MySQL, based on the Entity Relationship diagrams created in the analysis and de-

sign chapter, the SQL statements we would need to use to create the database table

would be:

-- ---
-- Table ‘Link ‘
-- ---
CREATE TABLE ‘Link ‘ (

‘idLink ‘ INT UNSIGNED NOT NULL ,
‘url ‘ VARCHAR (45) NOT NULL ,
PRIMARY KEY (‘idLink ‘))

ENGINE = InnoDB;

-- ---
-- Table ‘User ‘
-- ---
CREATE TABLE ‘User ‘ (

‘idUser ‘ INT NOT NULL ,
‘username ‘ VARCHAR (45) NULL ,
‘password ‘ VARCHAR (45) NOT NULL ,
PRIMARY KEY (‘idUser ‘))

ENGINE = InnoDB;

-- ---
-- Table ‘Tag ‘
-- ---
CREATE TABLE ‘Tag ‘ (

‘idTag ‘ INT NOT NULL ,
‘name ‘ VARCHAR (45) NULL ,
PRIMARY KEY (‘idTag ‘))

ENGINE = InnoDB;

-- ---
-- Table ‘Bookmark ‘
-- ---
CREATE TABLE ‘Bookmark ‘ (

‘idBookmark ‘ INT NOT NULL ,

6.5. Database 131

‘Title ‘ VARCHAR (45) NULL ,
‘Created ‘ DATETIME NULL ,
‘Modified ‘ DATETIME NULL ,
‘Link_idLink ‘ INT UNSIGNED NULL ,
‘User_idUser ‘ INT NULL ,
PRIMARY KEY (‘idBookmark ‘) ,
INDEX ‘fk_Bookmark_Link ‘ (‘Link_idLink ‘ ASC) ,
INDEX ‘fk_Bookmark_User ‘ (‘User_idUser ‘ ASC) ,
CONSTRAINT ‘fk_Bookmark_Link ‘

FOREIGN KEY (‘Link_idLink ‘)
REFERENCES ‘mydb ‘.‘Link ‘ (‘idLink ‘)
ON DELETE NO ACTION
ON UPDATE NO ACTION ,

CONSTRAINT ‘fk_Bookmark_User ‘
FOREIGN KEY (‘User_idUser ‘)
REFERENCES ‘mydb ‘.‘User ‘ (‘idUser ‘)
ON DELETE NO ACTION
ON UPDATE NO ACTION)

ENGINE = InnoDB;

-- ---
-- Table ‘Bookmark_has_Tag ‘
-- ---
CREATE TABLE ‘Bookmark_has_Tag ‘ (

‘Tag_idTag ‘ INT NOT NULL ,
‘Bookmark_idBookmark ‘ INT NOT NULL ,
PRIMARY KEY (‘Tag_idTag ‘, ‘Bookmark_idBookmark ‘) ,
INDEX ‘fk_Tag_has_Bookmark_Tag ‘ (‘Tag_idTag ‘ ASC) ,
INDEX ‘fk_Tag_has_Bookmark_Bookmark ‘

(‘Bookmark_idBookmark ‘ ASC) ,
CONSTRAINT ‘fk_Tag_has_Bookmark_Tag ‘

FOREIGN KEY (‘Tag_idTag ‘)
REFERENCES ‘mydb ‘.‘Tag ‘ (‘idTag ‘)
ON DELETE NO ACTION
ON UPDATE NO ACTION ,

CONSTRAINT ‘fk_Tag_has_Bookmark_Bookmark ‘
FOREIGN KEY (‘Bookmark_idBookmark ‘)
REFERENCES ‘mydb ‘.‘Bookmark ‘ (‘idBookmark ‘)
ON DELETE NO ACTION
ON UPDATE NO ACTION)

ENGINE = InnoDB;

But as it was discussed before the Google App Engine does not support the Rela-

tional Database Systems, so the Google Datastore has to be use and the application

needs to instantiate the Model class in order to store and access the data. Based on

6.6. Uploading Application 132

this constraint the data model of the Medical Bookmark applications will be stored

in the file ‘‘models.py’’ with the following structure:

from google.appengine.ext import db
from google.appengine.ext import search

class Link(db.Model):
url = db.URLProperty(required=True)
linkcount = db.IntegerProperty(required=True)

class Bookmark(search.SearchableModel):
title = db.StringProperty(required=True)
user = db.UserProperty(required=True)
link = db.ReferenceProperty(Link)
created = db.DateTimeProperty(auto_now_add=True)
modified = db.DateTimeProperty(auto_now=True)

List with the Tags belonging to this user.
taglist = db.StringListProperty ()

class Tag(db.Model):
name = db.StringProperty ()

Finally as you can see in this model the Bookmark class is not inheriting directly

from the db.model, but instead it inherits from search.SearchableModel. One of

the issues faced during the development time was how to implement the search

function of the application and the answer was found in one of the discussion fo-

rums (see Figure 6.10).

6.6 Uploading Application

The Google App Engine Python SDK is bundled with a command for interacting

with App Engine called appcfg.py. This utility can be used to synchronize the

new versions of the code with the production version of the application. In the

http://appengine.google.com/ address there is a console where a new appli-

6.6. Uploading Application 133

Figure 6.10: Support Group - Search the datastore.

cation can be created under the appspot.com domain. For Grays 2.0 the sub-

domain selected was “medical-bookmarks”, so the full URL of the application is

http://medical-bookmarks.appspot.com/. The command used to upload each

version to the hosting platform was:

appcfg.py update medical -bookmarks/

The first time the script uploaded the code it asked for the email and password of

the Google Account. In the subsequent processes the information was not required

(it is stored in a cookie). The information stored in the ‘‘app.yaml’’ file is used

to identify the application identity (you can have up to 10 applications with each

Google Account). That was the end of the process.

6.7. Conclusions 134

6.7 Conclusions

In the previous chapter the Analysis and Design was performed and some clear

use cases were defined about what the Medical Social Bookmarking system was

supposed to accomplish. In this chapter the development environment was created

and two pieces of applications were installed on the development machine: The

Django Web Application Framework and the Google App Engine SDK. Some test

applications were coded and once everything was tested the actual development of

the system was performed, creating the graphical templates and then developing all

the use cases described in the previous chapter using Python as a language, Django

as a framework and the App Engine as the testing server and hosting platform.

Some of the challenges faced on this stage were the datamodel created in the design

phase, since it had to be adjusted to meet the requirements of the Google App

Engine Datastore, how to implement the search functionality, since it was not very

obvious in the provided documentation and how to show the user’s bookmarks

once the application was deployed in the production server. The main output of

this chapter is a first version of a fully functional Medical Bookmarking System

Application running in the appspot.com domain. The next chapter will cover the

testing phase of this product.

Chapter 7

Testing

“To find the bugs that customers see - that are important to customers -

you need to write tests that cross functional areas by mimicking typical

user tasks. This type of testing is called scenario testing, task-based testing,

or use-case testing.” (Brian Marick)

7.1 Introduction

The process of reviewing the software and correcting the errors and bugs on it

is normally an expensive procedure and can raise the costs of the development

process. In a paper published by Westland in 2002 he found that the unsolved

errors can increase the cost of the software development exponentially and the cost

even increases more with each one the phases of the cycle. The conclusion of this

study is that in depth testing should be performed before and after the system have

been released(Westland, 2002). In the previous chapter the software development

process was described and detail and the resulting product of the phase as a fully

working piece of software with the use cases implemented. At this stage is very

important to check this web application to make sure it does not contain bugs or

critical errors that were not detected during the development phase. It is important

7.2. Blackbox / Whitebox 136

to use a systematic approach to the testing phase so the steps are executed in the

same approach for each one of the cases. Fortunately the IEEE (Institute of Electrical

and Electronics Engineers) published a document to be used in the software testing,

the IEEE 829-1998 (829 Standard for Software Test Documentation)(IEEE, 1998).

The document helps to define the different activities and processes related to the

testing through a set of document such as the test plan, design specification, case

specification, reports, etc. In this chapter a subset of this specification will be used

to testing the Medical Bookmarks application.

7.2 Blackbox / Whitebox

The Blackbox and Whitebox are terms used to designate different methods to per-

form the software testing. In blackbox testing the tester impersonates the external

user who has no knowledge of inner-workings of the application and therefore it

focus mainly on testing if the application meets the functional requirements. In

this testing methodology the tester gives the application a set of valid and invalid

inputs and determines if the application returns the expected results in each one of

the cases. On the other hand whitebox testing requires for the tester with a good

knowledge of the application internals (Risley, 2008). The main difference in this

case is the tester know which classes will be instantiated, which methods will be

called and which variables will be modified so when she enters an input the testing

is done in each on the components involved in the tested functionality. Whitebox

testing can be performed at different levels but the smallest component that can be

tested it is called the unit testing. For this application a blackbox method will be

used to emulate a real user (no knowledge of the inner workings).

7.3. IEEE 829 Testing 137

7.3 IEEE 829 Testing

As discussed in the introduction the IEEE 829 provides a good framework for plan-

ning and executing the testing of a software package. In this project some of the

documents from that specification will be used for conducting the testing. A test

plan will be designed specifying how the testing will be done, what it is going to be

tested and who will be performing the testing and its scoope. Some test cases will

also be defined, giving a general description, specifying the action to be executed,

the expected result, the actual result and some additional notes.

7.4 Test Plan

The aim of this testing plan is to verify in Grays 2.0, the Medical Bookmarking

System v1.0, implemented in this dissertation project meets the expectations set-

up in the analysis phase and executes the different tasks implemented as expected.

The tests are exclusively Black box (input/output), based on functionality and with

no access to the code, just to the user interface. The tests will divided in three,

covering the authentication, add new bookmark, search for a bookmark, browse

bookmarks by user or tag and tag cloud modules. A test case will be created for

each one of the modules using the “test case” format from the IEEE specification;

therefore the description, action, expected result, actual result and final test result

will be recorded.

7.5 Test Cases

In this section the different test cases will be described and performed. The cases

are divided in three subsections grouping the main functionalities of the system:

Authentication, adding or editing bookmarks and browsing or searching for book-

7.5. Test Cases 138

marks. Again all this test cases will be conducted using a black box methodology.

One prerequisite common for all the cases is to have an Internet connection and

web browser. For certain test cases a Google account will be required.

7.5.1 Authorization

All the test cases in this section are associated with the authentication process. Here

it will be tested if the user can login and logout in the system and see the menu op-

tions in the graphical interface, associated with each state.

User can login

Description: A user can login into the system.

Prerequisites: To have a valid Google Account

Steps to execute:

1. The user goes to the homepage or any deep URL of the site and find the sign-in

item on the menu.

2. The user clicks in the sign-in link.

Expected Result:

1. Since the user is not in the system the “login” option should be shown.

2. The user is provide his user name and password an submit the info.

3. The system redirects to the homepage showing the user name in the interface.

Actual Result:

1. The sign-in item menu was available in the homepage at the menu on the top,

next to the date and on the left.

2. After clicking in login, the system redirected the browser to the Google Accounts

login.

7.5. Test Cases 139

3. Once the login information was provided the browser went back to the home-

page of the bookmarking application.

4. In the homepage the name was printed in the welcome message and the logout

option was available.

Comments: The authentication part was handled by the Google accounts system.

Result: Pass

Registered user can logout

Description: A user loged in the the system can logout.

Prerequisites: To have a valid Google Account

Steps to execute:

1. The user first have to login (previous test case).

2. The user clicks in the sign-out link.

Expected Result:

1. Once the user is authenticated a “logout” option should be displayed in the

interface.

2. When the user clicks in the logout option she should be loged out.

Actual Result:

1. The sign-out item menu was available only the user was loged in the system.

2. After clicking in the logout link, the user was loged out.

3. The user was redirected to the home page and the standard visitor page was

printed.

Comments: The sign-out process was handled by the Google accounts system.

Result: Pass

7.5. Test Cases 140

Loged user can not sign-in again and vice-versa

Description: A loged user can not login again and and loged out user can not

logout again in the system.

Prerequisites: To have a valid Google Account

Steps to execute:

1. The user click in sign-in item on the menu.

2. Once the user is in the system she tries to do it again.

3. The user click in sign-out item on the menu.

4. Once the user is out of the system she tries to do it again.

Expected Result:

1. Since the user is not in the system the “login” option should be shown.

2. Once she is registered the sign-in option should not be be available.

3. When the user logout the “sign-out” option should not be available.

Actual Result:

1. The sign-in item menu was available in the homepage at the menu on the top,

next to the date and on the left. The “sign-out” option was not available.

2. After clicking in login, the system redirected the browser to the Google Accounts

login.

3. Once the login information was provided the browser went back to the home-

page of the bookmarking application and the “sign-in” option was replaced by

“logout” option. It is not possible to login again

4. After clicking in the logout link, the user was loged out and redirected to the

page with the “sign-in” option. The “Sign-out” option is not available anymore.

Comments: The authentication part was handled by the Google accounts system.

Result: Pass

7.5. Test Cases 141

7.5.2 Adding or editing bookmarks

All the test cases in this section are associated with inserting information into the

datastore, mainly by adding, editing bookmarks from the application. In this sec-

tion it will be tested that only the registered user can add new information and that

a registered user can add or edit new bookmark and the associated tags.

Only registered users can add bookmarks.

Description: A user has to be to registered in the the system before adding a

bookmark.

Prerequisites: None

Steps to execute:

1. The user makes sure she is not loged in.

2. The user clicks in the “Add New Bookmark” link.

Expected Result:

1. Since the user is not authenticated the system should not allow the bookmark

to be added.

Actual Result:

1. As an unregistered user clicking the “Add New Bookmark” option in the system,

the application printed a “You must be signed in to add a new bookmark!!”

Comments: Even the test case is fine, it would be useful to redirect the user to

the login page once the message is printed.

Result: Pass

Registered user can add a bookmark.

7.5. Test Cases 142

Description: A registered user is able to add a new bookmark to the respository.

Prerequisites: Loged in the system

Steps to execute:

1. The user clicks in the “Add New Bookmark” link.

2. The user fills out the form.

3. The user clicks submit.

Expected Result:

1. Once the user fill out the form a clicks submit a new bookmark will be added

to her repository.

2. She will be redirected to her page to see her bookmarks and the new bookmark

should appear there.

Actual Result:

1. Once the “Add New Bookmark” link was clicked, the add bookmark form with

the “Url”, “Title” and “Tags” was presented.

2. After filling all the fields were filled out and the form was submitted the appli-

cation redirected the user his bookmarks page.

3. The bookmark that was just added appears on the list.

Comments: None.

Result: Pass

Registered user can edit a bookmark.

Description: A registered user is able to edit a bookmark she already has in the

respository.

Prerequisites: Loged in the system and a bookmark already saved.

Steps to execute:

7.5. Test Cases 143

1. The user clicks on her bookmarks link (for example “test’s bookmarks”.

2. The user select one bookmark and click in “edit”.

3. The user edit the title or the tags and save the bookmark.

Expected Result:

1. Once the user clicks in edit a form will allow her to edit the field of the saved

bookmark.

2. When the new information is saved the bookmark should be updated and the

information reflected in the user’s bookmark page.

Actual Result:

1. Each one of the saved bookmarks has a “edit” link next to it.

2. Once the “edit” link is clicked a form is printed with the “Url”, “Title” and “Tags”

pre-filled.

3. The title and the tags were changed and the form was submitted.

4. The changes are reflected into the user’s bookmarks page.

Comments: When editing a bookmark it would be useful to show the user a

message informing that the application is in “Editing” mode.

Result: Pass

Only valid URLs can saved as Bookmarks.

Description: A registered user can only save valid URLs as bookmarks.

Prerequisites: Loged in the system.

Steps to execute:

1. The user clicks in the “Add New Bookmark” link.

2. The user fills out the form with an invalid URL

3. The user clicks submit.

Expected Result:

7.5. Test Cases 144

1. The system should check the information entered in the URL field is a valid

bookmark.

2. If the information is not a qualified URL it should not proceed.

Actual Result:

1. When it was attempted to save a bookmark with a random string in the URL

the system printed a “Enter a valid URL” message.

2. The form was printed again with the same information entered before.

Comments: It was noted that the URLs without the “http” protocol were consider

invalid (technically correct). It would be more user friendly to automatic add the

protocol if the user does not do it.

Result: Pass

7.5.3 Browsing or searching bookmarks

The test cases in part are related to the browsing and search functionalities of the

bookmark system. It will test if a registered user can browse her own bookmarks.

It also will be tested if the users can browse the bookmarks by username or by tag

and if the systems allows to search bookmarks by entering a query.

Note all the following cases are based on the prerequisite that there are already

two users on the system (“TestUserA” and “TestUserB”) and each one them has

already save 2 bookmarks with the properties summarised in the following chart:

def user_page(request , username):
TestUserA

Bookmark1
URL: http ://www.test -a1.com
Title: Test Bookmark A1
Tags: test bookmark usera

Bookmark2
URL: http ://www.test -a2.com

7.5. Test Cases 145

Title: Test Bookmark A2
Tags: test bookmark usera

TestUserB

Bookmark1
URL: http ://www.test -b1.com
Title: Test Bookmark B1
Tags: test bookmark userb

Bookmark2
URL: http ://www.test -b2.com
Title: Test Bookmark B2
Tags: test bookmark userb

Registered user can browse own bookmarks.

Description: A registered user (TestUserA) can browse his own bookmarks.

Prerequisites: Loged in the system with and the user already has two bookmarks

saved.

Steps to execute:

1. The TestUserA clicks in the “TestUserA’s Bookmarks” link.

Expected Result:

1. The system should check retrieve the bookmarks created by the user TestUserA

.

2. The boomarks should be displayed.

Actual Result:

1. When the TestUserA clicked on “TestUserA’s Bookmarks” link the browser open

a page with the title “Bookmarks for user: TestUserA”.

2. The page contains only the bookmarks created this user “TestUserA” (see Figure

7.1)

Comments: None

7.5. Test Cases 146

Result: Pass

Figure 7.1: Registered user can browse own bookmarks.

User can browse bookmark by username.

Description: A user (TestUserA) can browse bookmark by usename.

Prerequisites: Loged in the system. TestUserB has two bookmarks saved.

Steps to execute:

1. The TestUserA types in the URL “/user/TestUserB/” in the web browser.

Expected Result:

1. The system should check retrieve the bookmarks created by the user TestUserB

.

2. The boomarks should be displayed to TestUserA.

Actual Result:

1. When the TestUserA type the URL in the Web browser a page was opened with

the title “Bookmarks for user: TestUserB”.

7.5. Test Cases 147

2. The page contains only the bookmarks created this user “TestUserB” (see Figure

7.2)

Comments: The functionality works but it would useful to have a page with a list

of users or top users

Result: Pass

Figure 7.2: User can browse bookmark by username.

User can browse bookmark by tag.

Description: A user can browse bookmark by tag.

Prerequisites: There are has four bookmarks saved with the tag “test”.

Steps to execute:

1. The user types in the URL “/kwd/test/” in the web browser.

Expected Result:

1. The system should check retrieve the bookmarks associated with the selected

tag.

7.5. Test Cases 148

2. The bookmarks should be displayed, giving also the information about the

creator.

Actual Result:

1. Once the URL was typed in the Web browser a page was printed the title

“Bookmarks for tag: test”.

2. The page contains bookmarks created by both “TestUserA” and “TestUserB”

Comments: None

Result: Pass

User can search for bookmarks.

Description: A user can search the bookmark repository issuing a query.

Prerequisites: There are has four bookmarks saved with the words “Test Book-

mark” in the title.

Steps to execute:

1. The user types “Test Bookmark” and then “Test Bookmarked” in menu search-

box.

Expected Result:

1. The system should search and retrieve the bookmarks matching the query in

the title.

2. The bookmarks should be printed with the information of the creator.

3. It should return an empty set if there are no bookmarks matching the query.

Actual Result:

1. When the query “Test Bookmark” was sent the application returned the book-

marks saved by both “TestUserA” and “TestUserB’ ’.

2. When the query “Test Bookmarked” was issued the application returned an

empty set.

7.6. Conclusions 149

Comments: Even if the search engine works, it would be useful to display the user

a “Not bookmarks found for this query” message if the query returns an empty set.

Result: Pass

7.6 Conclusions

At the begining of the chapter it was discussed the importance of the testing process

in any software development process since the testing permits to discover bugs and

errors that can be very costly down the road once the application has been deployed.

In the previous chapter the use cases from the analysis and design chapter were

implemented and the outcome of that process was a first version of the functional

software: A Medical Social Bookmarking application. The objective of this chapter

was to create a testing plan so the different functionalities of the application could

be tested to make sure it did not have major bugs and the main operations were

working as expected. The execution of the test plan demonstrated the application is

working and the users are able to save and search for bookmarks. There were some

minor improvements suggestions that could be implemented in the next iteration

but the core functionality of the Bookmarking Application was working as expected.

Now the final stage of this project is to perform and evaluation on the application.

This will be carried out in the next chapter.

Chapter 8

Evaluation

“Correctness is clearly the prime quality. If a system does not do what it

is supposed to do, then everything else about it matters little.” - Bertrand

Meyer

8.1 Introduction

Evaluation is defined by the the Evaluation Centre of Western Michigan University

as the “The systematic process of determining the merit, value, and worth of someone

(the evaluee, such as a teacher, student, or employee) or something (the evaluand, such

as a product, program, policy, procedure, or process)” (ec.wmich.edu, 2009). Every

product should be evaluated to determine its relative value if compared with similar

products or initiatives. In the software engineering field the evaluation of the qual-

ity of the final product is very important step since it should be perceived as a en

excellent one by the customers, the stakeholders and end users. The product should

be regarded as a software that accomplishes the task it is supposed to perform. A

high quality software should be the goal in any software development project and

it should be achieved to give the product a good head start in that market where is

intending to compete.

8.1. Introduction 151

One of the problems arising in the software quality assessment process is to

agree in what exactly this term means, because the definition can be very subjective.

Kan describes how there are popular views about the quality where it is seen as

something ethereal that can not be measured and how sometimes can even be

viewed as a synonym for expensive or luxurious (luxury items are described as high

quality ones). Those views contrast with the professionals view about quality as the

conformance to requirements and the fitness for use (Kan, 2003). In the software

engineering field the term quality normally refers to the quality of the design (how

good is the design of the project) and the quality of conformance (how well the

product implements this design).

The International Organization for Standardization (ISO) also offers a useful

definition of Quality (“The totality of features and characteristics of a product or ser-

vice that bear on its ability to satisfy stated or implied needs.”), Assessment (“An

action of applying specific documented assessment criteria to a specific software mod-

ule, package or product for the purpose of determining acceptance or release of the

software module, package or product”) and Software Quality(“The totality of features

and characteristics of a software product that bear on its ability to satisfy stated or im-

plied needs”). Actually the ISO 9126 standard is defined and used for the evaluation

of software quality.

In the previous chapter a set of testing methods were performed on the working

on the Medical Social Bookmarking System. Now the the last stage of this devel-

opment process is to apply some of the International Evaluation Standards of eval-

uation and do an assessment on the product’s quality based on the input received

from external users.

8.2. International Evaluation Standards - ISO 9126 152

8.2 International Evaluation Standards - ISO 9126

In the introduction it was discussed how the quality evaluation can be difficult

in certain cases because human subjective factors can play a role determining the

quality of a product and in this case a software product. There are International

Organizations like the ISO (International Organization for Standardization) that

promulgates industrial and commercial standards on a global scales. Actually ISO

has published a standard the ISO 9126, that deals precisely with the evaluation of

the software. This standards divides the process into four different parts covering:

The quality model, the external metrics, the internal metrics and the quality in the

use of the metrics(ISO/IEC Standard, 2003).

Figure 8.1: ISO 9126 Standard

This standard does not specify the requirements for software, but rather it gives

a quality model that should be applicable to every type of software. One the

8.2. International Evaluation Standards - ISO 9126 153

most useful part of this standard is this quality model since it defines the 6 main

quality characteristics a software product should be evaluated against: Function-

ality, reliability, usability, efficiency, maintainability and portability. Each one of

this characteristics have at the same time sub-characteristics that are summarised

in the Figure 8.1 and explained in detail in the following table (adapted from

www.sqa.net/iso9126.html):

ISO 9126 - Quality model

Characteristics Subcharacteristics Definitions

Functionality

Suitability This is the essential Functionality characteris-
tic and refers to the appropriateness (to speci-
fication) of the functions of the software.

Accurateness This refers to the correctness of the functions,
an ATM may provide a cash dispensing func-
tion but is the amount correct?.

Interoperability A given software component or system does
not typically function in isolation. This sub-
characteristic concerns the ability of a software
component to interact with other components
or systems.

Compliance Where appropriate certain industry (or gov-
ernment) laws and guidelines need to be com-
plied with, i.e. SOX. This subcharacteristic ad-
dresses the compliant capability of software.

Security This subcharacteristic relates to unauthorized
access to the software functions.

Reliability
Maturity This subcharacteristic concerns frequency of

failure of the software.
Fault tolerance The ability of software to withstand (and re-

cover) from component, or environmental,
failure.

Recoverability Ability to bring back a failed system to full op-
eration, including data and network connec-
tions.

8.2. International Evaluation Standards - ISO 9126 154

Usability
Understandability Determines the ease of which the systems

functions can be understood, relates to user
mental models in Human Computer Interac-
tion methods.

Learnability Learning effort for different users, i.e. novice,
expert, casual etc.

Operability Ability of the software to be easily operated by
a given user in a given environment.

Efficiency
Time behaviour Characterizes response times for a given thru

put, i.e. transaction rate.
Resource behavior Characterizes resources used, i.e. memory,

cpu, disk and network usage.

Maintainability

Analyzability Characterizes the ability to identify the root
cause of a failure within the software.

Changeability Characterizes the amount of effort to change a
system.

Stability Characterizes the sensitivity to change of a
given system that is the negative impact that
may be caused by system changes.

Testability Characterizes the effort needed to verify (test)
a system change.

Portability

Adaptability Characterizes the ability of the system to
change to new specifications or operating en-
vironments.

Installability Characterizes the effort required to install the
software.

Conformance Similar to compliance for functionality, but
this characteristic relates to portability. One
example would be Open SQL conformance
which relates to portability of database used.

Replaceability Characterizes the plug and play aspect of soft-
ware components, that is how easy is it to ex-
change a given software component within a
specified environment.

Since this standard does not prescribe specific quality requirements but rather

gives a general framework for evaluating the software quality based on the criteria

previously discussed, some of the areas can be useful for the evaluation of this

project and how it was used in the evaluation methodology it will be discussed

next.

8.3. Evaluation Methodology 155

8.3 Evaluation Methodology

When all the phases from the software development process were completed, the

Medical Social Bookmarking application was uploaded to the appspot.com top level

domain and it was already fully working, the next step was to make an evaluation

of the software. The methodology decided to evaluate was to get feedback from

real users, so a feedback form was created using the Google Docs form feature.

An email was sent to 30 different registered users asking them to fill out the form,

three weeks before the end of project when this paper was reaching the end of the

creation process. The poll was sent to users working both in the IT field, familiarised

with the the World-Wide Web technologies and Web 2.0 social services, and to less

savvy users working the health care field. The objective of this decision was to have

a broad sample of user with a different degree of expertise.

The feedback form included eleven different questions with the objective to eval-

uate the main functionalities discussed in the use cases: Insert bookmarks into the

bookmark repository and search or browse bookmarks from the repository. Some

other questions were designed to get a profile of the users using of the system and

finally there was a question to provide general feedback or suggest new functional-

ity. The plan of the evaluation was to analyse the data gathered from the users and

apply some of the parameters of the quality model from the ISO 9126 standard.

The questions were clustered in the following categories for the results analysis:

User profile questions:

• Are you familiar with the concept Web 2.0?

• Are you familiar with the the term social bookmarking?

• Are you a user or have used the folllowing services? (Facebook, Deli-

cious, Linkedin, Blogger, Twitter, Couchsurfing)

8.3. Evaluation Methodology 156

• Do you work in the health care field?

Add bookmarks questions:

• Did you visit the http://medical-bookmarks.appspot.com/ website?

• Did you add a bookmark into http://medical-bookmarks.appspot.com/

• If you answered yes, how easy was it to find the information?

Browse or search bookmarks questions:

• Did you visit the http://medical-bookmarks.appspot.com/ website?

• Did you browse / search for information there?

• If you answered yes, how easy was it to find the information?

General overview questions:

• In general how do you rate the site If you rate the site http://medical-

bookmarks.appspot.com/

• What functionality is missing in the service (and you would like to have)?

One of the challenges faced during this phase was the response rate to the so-

licited feedback. From the 30 request sent through email, there were only 14 replies

in the form and the time was running up so a second strategy used by the author

was to use all his exiting social network accounts and promote the feedback form.

The status in Facebook was changed a couple of times promoting the service and the

feedback, a message was posted in the Dublin group of the Couch surfing network

and the status of the Gmail account was updated with the Url from the docs form.

Some screen-shots of those efforts can be observed in the figure 8.2. The stragegy

was effective since at the end of the period 43 different rows of data were gathered

in the feedback form and that is the sample used for the results discussed next.

8.4. Evaluation Results 157

Figure 8.2: Use of social services to get feedback

8.4 Evaluation Results

As was discussed in the previous section a total of 43 forms were filled out using a

Google docs form. The data was stored in a spreadsheet and exported as a CSV file.

A Python script (included in the appendixes) was written to analyse the data and

gather the statistics that will be discussed next.

8.4.1 Users Profile

One of the first conclusions about the user’s profiles was that most of the have a

good knowledge about the concepts related to Web 2.0 and Social Bookmarking

8.4. Evaluation Results 158

systems, since around 80% answered “Yes” to the questions about the familiarity

with those concepts as can be observed in the figure 8.3. Some of the comments

left on the areas for improvement field, gave some hints about the expertise of the

users (ie. “I would like to see a suggestion example when I am adding a Tag (e.g.

should I use commas, do capital letters matters, etc.) in examples like http://medical-

bookmarks.appspot.com/user/luisellamz/ it is not very clear why there is a (1) besides

the link and is missing an RSS feed :)”)

Figure 8.3: Familiarity with Web2.0 and Social Bookmarks

Another interesting data related to the profile of the users was the users were

using or had used before. The overwhelming majority of users (more than 90%)

were Facebook users, while between 40% and 50% were users of other services

such as LinkedIn, Blogger or Twitter. Couchsurfing (specialized in the travelling

and hospitality segment) had the lowest percentage usage with 20%. The Social

Bookmarking service del.icio.us had a usage rate of 40% across the users partici-

pating in the feedback, which is good news because it means almost have the users

had a previous reference point to compare Grays2.0 with. Finally another very im-

portant piece of data that has to be taken into account when analysing the data is

the percentage of health care users, because only 16% belonged to the field. Appar-

ently most of the users were IT professionals or people working in other areas. One

of the reasons explaining this bias might be that the medical users were not to keen

on trying out the product and give feedback. The profile of the users is summarised

8.4. Evaluation Results 159

in the graphs of the Figure 8.4.

Figure 8.4: Social services and type of user.

8.4.2 Adding bookmarks

In the Figure 8.5 there is a summary about the data concerning the percentage of

users that added a bookmarking into the repository and their subjective perception

about how easy or difficult it was the process. The functionality, usability and

efficiency parts of the quality model related to the “Adding” function were evaluated

with those questions and with the open form at the end of the form. More than half

of the users of the system 54% Added a new bookmark to the repository and 72%

considered it was very or extremely easy to add a new bookmark (4 -5), only 8%

(2 users) considered it was impossible to add a new bookmark. Based in this data

it is considered that the functionality, usability and efficiency is very good. One of

the reasons explaining the 8% of the impossible set is that the hosting server was

returning back 500 errors during certain periods (ie. “It returns a server error (500)

so I was unable to use it. I would therefore say all possible functionality is missing.”).

Nevertheless since the application was back running and most the users were able

to add bookmarks, the recoverability of the system is considered also good.

One of the comments entered in the improvements sections related to the usabil-

ity was: “Complete URL need to be entered (including the http and the www part), if

8.4. Evaluation Results 160

Figure 8.5: Add a new bookmark

only the domain name could be entered, that can be good to have too.” and “Accepting

different URL formats will be user friendly.”. In conclusion the evaluation of adding

bookmarks was good but there are couple of areas of improvement.

8.4.3 Searching of browsing for bookmarks

Most of the feedback left by the users in the open field at the end of the form was

useful for evaluation the functionality of searching and browsing for bookmarks.

Some of the quotes left by the users were:

“It would be easy and handy if a bookmark has a description associated with it...

like a brief what the bookmark is related to etc”, “maybe a map would be nice, as there

are a lot of hospitals listed. that might make it easier for users to navigate. i assume,

that most users are not looking for a particular hospital but rather for a hospital in the

area within where they are living (eg. hospitals in Dublin). just an idea”, “tell users

that there are zero search results, if that is the case”, “search even with misspellings”

Nevertheless analysing the data from the questions related to browsing 73%

of the users who browse a bookmark responded it was very or extremely easy to

browse or search for a bookmark. Now there is a 23% of the users who rate the

functionality as 3 / 5 and probably the quotes transcribed before belonged to the

users on that group (the data is compiled in the Figure 8.6). The functionality

8.4. Evaluation Results 161

and usability of this part of the system is considered good based on the feedback

provided by the users. The same issue of the the hosting server was returning back

500 errors during certain periods was present here but again the recoverability was

assesed as good. There were no feedback about critical problems accessing the

bookmarks so even if there is room for improvement the overall evaluation of this

part is satisfactory.

Figure 8.6: Add a new bookmark

8.4.4 General Overview

The last question of the form before the open feedback was a wrap-up query about

the general perception of the site in terms of quality, since the users were asked

to rate the medical social bookmarking application from 1 to 5 (minimum - maxi-

mum) without giving them specific guidelines, so they took into account only their

subjective perception. It was interesting to discover that half of the users rate the

site with “4”, 17% rated as “5” and still some 28% of the users qualified the site

with a “3”. This data is summarised in the Figure 8.7

Going back to the criteria discussed at the beginning of this chapter and based

in all the points discussed briefly, the following point can be presented:

Functionality: The functions that were defined in the use cases, implemented in

the software development and tested in the previous chapter were evaluated mostly

8.4. Evaluation Results 162

Figure 8.7: Add a new bookmark

positive by the majority of users. Most of the were able to add and browse book-

marks in the system. The users did not discuss it but the system was secure and

only allowed the registered user to add new bookmarks, so the security is assesed

as good.

Reliability: During the development and testing phase the application and the host-

ing platform demonstrated a good degree of reliability and no outages were notices.

Nevertheless some users reported in the feedback form some 500 server errors that

were reported. Now since the application was able to restart by itself and most of

the time was up the recoverability is considered good as well.

Reliability: During the development and testing phase the application and the host-

ing platform demonstrated a good degree of reliability and no outages were notices.

Nevertheless some users reported in the feedback form some 500 server errors that

were reported. Now since the application was able to restart by itself and most of

the time was up the recoverability is considered good as well.

Usability: Most of the users were able to perform the operations required like

saving bookmarks and browsing bookmarks without any additional instructions, so

the usability is evaluated as good too. They were some improvement suggestions to

make it better that will be implemented in the next iteration but so far it works.

Efficiency: The application has not been used heavily yet but looking at the logs in

8.5. Conclusions 163

the Google App Engine console (see Figure 8.8) it seems the application is perform-

ing efficiently and is not spending many cycles of CPU, so this part is evaluated as

good too.

Figure 8.8: Appspot Dashboard CPU Usage.

Maintainability: This parameter was not evaluated by the users but given the fact

the application was developed with a Web Framework that separates the business

logic from the presentation, so far it has been very easy to maintain the application

and correct small bugs. Therefore this parameter is evaluated as good too.

Portability: This areas has not been evaluated yet but in theory since the appli-

cation was developed in Django it should be fairly easy to part the application to

another hosting environment outside the Google App Engine, changing only the

models and certain queries, so the portability should be good.

8.5 Conclusions

The last phase of this Software Development project about creating a Medical

Bookmarking System using Django and running over the Google App Engine, after

successfully doing the analysis, development and testing phases, was to evaluate

the software. A group users from the system was selected to evaluate the system

8.5. Conclusions 164

through a form created using Google Docs. One of the conclusion from this method-

ology is that the social networks are powerful not only to keep in contact with the

friends and colleagues but also to get feedback and they might be very useful in the

future research projects. Just by changing the status in the different social network

accounts the author was able to get additional responses and the dataset improved

compared with the first request by email.

In this chapter it was also discussed the concept of quality, the subjectivity that

might surround the term and how it is important to define standards so the soft-

ware can be evaluated against them. The standard ISO 9126 was discussed since

it is a very good framework for evaluating different kind of projects. Based on the

objective and subjective feedback provide by the users, the Medical Bookmarking

system was evaluated and it was discovered that most of adding and browsing func-

tion work, but also it was noticed that the users perceived there areas that can be

improved in order to make the product more appealing to them (for example the

graphical interface). In conclusion, the application is doing what it should do com-

petently, but there areas where it could improve in order to be more successful and

broaden its user base.

Chapter 9

Conclusions and Future Work

“A conclusion is the place where you got tired of thinking.” - Arthur Bloch

9.1 Introduction

The objective of this last chapter in this dissertation is about reviewing the work that

has been carried out during the last months, including the software development

process, writing of this paper, the critic evaluation of the findings and the analysis

of the addition of this project to the body of knowledge and the impact it will have

in the domain of the Web 2.0 applications created with the medical community in

mind. A personal perspective about this project will be discussed and at the end of

this chapter the ideas and suggestions for future work will be addressed as well.

9.2 Conclusions

9.2.1 Main conclusion

One of main and most rewarding conclusions an the end of this projects is that the

main objective was achieved. The main research aim was to the different applica-

9.2. Conclusions 166

tion frameworks and to select one to create a Web 2.0 Medical Social Bookmarking

service that could be useful and interesting to the medical users. The Web frame-

works were analysed and it was decided to develop the application using the Django

MVC based application framework and to host it in the Google App Engine infras-

tructure to take advantage of the scalable platform they offer. Now at the time of

writing this dissertation there is a fully functional web application running into the

medical-bookmarks.appspot.com URL that has been used already by 60 different

users and that offers the functionality of adding medical bookmarks and offers the

possibility to browse and search for bookmarks. Even if some valid suggestions

were provided during the evaluation phase that will be discussed later on in the

section of future work, the basic functionality of adding and browsing bookmarks is

working as expected so this main objective was achieved and this application could

evolve and become a used service. The idea about having created a service that was

not available before is gratifying and it is probably the most important conclusion

of this work.

9.2.2 Additional Conclusions

During the development of the literature review, the analysis and design of the ap-

plication, the development, testing and evaluation there some different conclusion

that were drawn and discussed at the end of each one of the chapters so the idea

here is not to summarise every conclusion discussed before but rather to go over

some of the most important lessons learned from the development of this project.

Web 2.0 is not a fad but a real development of World-Wide Web: A couple of

years ago in the case studies module of our masters we had an interesting discus-

sion about the Web 2.0 trying to determine if it was really an advancement in the

9.2. Conclusions 167

World-Wide Web or if it was a market ploy created only for economical reasons.

Two years later when this research project was conducted and the literature was

reviewed one conclusion is that even if there is not a breakthrough technological

development completely associated with the Web 2.0 phenomenon, the importance

of the social networks, the ability to collaborate, the user created content and the

constant updates by the web users have shifted the mindset of the web-sphere and

most of the popular web sites today have incorporated in their platforms an im-

portant amount of social components and the user interaction with the content has

become the norm. The traditional news media offer blogging platforms on their

websites and give the users the ability to comment the news or even to download

a podcast, most of the people have heard about Facebook and have their friends

and colleges updated using their status, twitter is picking up and the user base have

grow and the people is getting into the habit of the microblogging. Even traditional

web services like Google offers now the ability to comment the search results, store

and share with friends a colleges RSS feeds and create user-generated maps in the

maps platform. The World-Wide Web is far away from the model of serving static

pages to the visitor. Today the web is social, today we live in the Web 2.0.

Spam is a threat to the popular Web 2.0 services: E-mail was one of the first

and probably the most service to be abused the unsolicited messages, but in the

review performed in this dissertation one of the conclusion that can established

is the spam phenomenon can have a negative impact in any service that offers

the user interaction. In the literature review it was noticed that the splogs and

the fake accounts created in social bookmarking services by the spam users can

affect the usefulness and the overall quality of the service. The other important

conclusion from this topic is the popularity plays an important role in the amount

of spam a service receive. Grays 2.0, this medical social bookmarking system did

9.2. Conclusions 168

not suffer any single spam attack. One of the reasons might be the users needed

to authenticate before posting information and the registration and authorization

procedures were handled by Google Accounts, but still one of the hypothesis is the

service was still begining to ramp up and was not ranking yet in the web search

engines. So the popularity might be a factor directly related with the spam.

Iterative and agile methodologies are suitable for Web 2.0 projects: Agile

methodologies were the working software is the most important part the perfor-

mance evaluation, the teams regard their customers as the most important stake-

holders and were the software development cycles are shorter having a mentality

of release soon, release often is in the mindset of the team, are a good methodol-

ogy for Web2.0 projects. The World-Wide Web is very dynamic and changes very

quickly so sequential models such as the waterfall ones are not suitable for the web

2.0 applications.

Django over the Google App Engine to host starter Web 2.0 applications: Dur-

ing the development of this application, the exercise of installing and configure the

Django Web Framework and the Google App Engine Software Development Kit was

performed and it was possible to create a development environment ready to de-

velop, test and deploy a web application in the Google App Engine hosting platform.

When the author was reading the documentation about the App Engine he found

Django was supported natively and that Google allocated a free quota for hosting

the application without any cost, so it was a very attractive solution for this project.

During the development of this project this fact was verified and the application is

running right now on the Google App Engine using the django web framework. If

the application becomes very successful and goes over the quota then the owner

need to pay based on the resource usage, but for starter application is a good alter-

native.

9.2. Conclusions 169

Python is a very powerful programming language: One of the tasks related to

the web development of this project was to learn how to program in Python, since

the selected web framework and hosting platform were created for the develop-

ment on that language. Even if at the beginning it was difficult to get used to the

code blocks based on indentation and not curly braces and the strict enforcement of

those rules, once those were assimilated in the coding practices, the development

experience was a real joy. The data structures of Python are amazing and the com-

bination of lists, dictionaries and tupples, next to the extensive built-in library allow

the developer to perform complex tasks in a few lines of code. Even at the end of

the project Python was used to process efficiently the feedback data.

It is possible to write a dissertation with just open source packages: The last

additional conclusion from this project derives from the process itself of writing this

dissertation. One conclusion at the end of this project is that it is possible to write

a complex dissertation with multiple chapters, several references, tables, figures,

screenshots, etc, using only open source packages. This dissertation was written in

the same netbook development machine discussed in the hardware requirements

with Ubuntu 8.10 installed. The document was typed in Latex using gedit and

texmaker and the bibliography was managed with bibtex using kbibtex. Also the

graphical elements were edited with GIMP and the screenshots were performed

with ksnapshot. Therefore the whole project was done using only open source

packages. This fact really brings down the costs of the dissertation project.

9.3. Future Work 170

9.3 Future Work

9.3.1 Medical Bookmarking System

During the evaluation period of the Medical Bookmarking system, the general ques-

tion about the open functionality was very good to discover there are areas of im-

provement in the application and where were some features that were not envi-

sioned in the design phase that might be interesting to develop in the next iteration.

Some of those are:

Description comment of each bookmark: In the current system it is only possi-

ble to associate the bookmark with the title or tags. One the suggestion from the

evaluators was to add also a general description field to each one of the bookmarks,

similar to the “notes” functionality del.icio.us offers.

RSS Feeds: One of the users suggested to offer the RSS functionality for the user

bookmarks or tag bookmarks. Using this functionality the users could add a live

bookmark option to their personal bookmark list in their browsers (like in Firefox)

and then keep synchronized the Grays bookmarks with the off-line ones. They

also could subscribe to the bookmarks created by other users or to the bookmarks

associated with one particular tag.

Add other user’s bookmarks in your list: Some users suggest adding a quick

functionality to get the bookmarks added by other users into the personal list. This

feature would be easy to implement and it probably will be a time saver for many

users.

Voting system: An interesting functionality could be to offer the user the ability

to vote and push up or put down a particular bookmark from the repository. This

9.3. Future Work 171

information could de used for sorting the bookmarks when user issue a query in the

search box or when someone is browsing the bookmarks by tag.

User Interface Improvements: A couple of quotes from the users: “more graphics

so the website will look more friendly, a more user friendly interface would be nice, the

look of the site does not attract people”. Based on those it is clear that the User

Interface could be improved to make it more interesting to the visitors. The next

iteration should include a revamp in the UI.

9.3.2 Other areas

Different Web 2.0 Applications: The scope of this project was limited to the So-

cial Bookmarking Services. But there many other Web 2.0 services and applications

that could be implemented using a similar methodology to the one used in this

project. It could be interesting to see social networks, blogging services or other

folksonomy based applications running on Django over the Google App Engine.

Spam Study in Content Management Systems: One of the drawbacks of this

project was that it was not possible to study the spam phenomenon on it because

the system was not spammed at all. It would be interesting to use one of ready to

use Content Management System packages or blogging platforms and to study the

spam on them.

Web 3.0: In some newspapers and technology magazine articles there are begin-

ning to appear terms like Web 3.0, as the next generation of Web services. An

interesting research topic would be to investigate if there is really such a term and

if it is the future of the World-Wide Web, what would entitle.

9.4. Personal Remarks 172

9.4 Personal Remarks

I have been working during the last three years for one of the most important

Internet companies in the world and I have been fortune enough to have the chance

to experience first hand how the web is evolving at a really fast pace. The first year

I had the opportunity to witness one small presentation from Tim O’Reilly where he

discussed the term of Web 2.0 and at that moment I had to confess I haven’t heard

about this term before. Now three years later the term is everywhere and there are

many services related to the Web 2.0 and the social services. I am thrilled I had the

chance to develop this dissertation project in that interesting field, combining my

two professional backgrounds.

Appendix A

Grays2.0 Code Snippets

A.1 Configuration Files

A.1.1 app.yaml

application: medical-bookmarks

version: 1

runtime: python

api_version: 1

handlers:

- url: /static

static_dir: static

- url: .*

script: main.py

A.2 App Engine Django Applicaton Handler Files

A.2.1 views.py

def search_page(request):

"""Handler for showing the page for searching the bookmarks """

user = users.GetCurrentUser()

form = SearchForm()

bookmarks = []

show_results = False

A.2. App Engine Django Applicaton Handler Files 174

if request.GET.has_key(’query’):

show_results = True

query = request.GET[’query’].strip()

if query:

print query

form = SearchForm({’query’ : query})

bookmarks = Bookmark.all().search(query).order("-created")

return respond(request, user, ’search’, {

’form’: form,

’query’: query,

’bookmarks’: bookmarks,

’show_results’: show_results,

’show_tags’: True,

’show_user’: True

})

def user_page(request, username):

"""Handler for showing the User Page in the Bookmarking System"""

user = users.GetCurrentUser()

try:

email = username

#+ "@gmail.com" Add this part to the appspot.com version

userbookmarks = users.User(email)

except:

raise Http404(’Requested user not found.’)

bookmarks = Bookmark.gql("WHERE user = :userp ORDER BY created DESC",userp=userbookmarks)

return respond(request, user, ’user_page’, {

’username’: userbookmarks,

’bookmarks’: bookmarks,

’show_tags’: True

})

A.2.2 urls.py

from django.conf.urls.defaults import *

urlpatterns = patterns(

’’,

A.2. App Engine Django Applicaton Handler Files 175

(r’^$’, ’views.index2’),

(r’^index2$’, ’views.index’),

(r’^user/(.+)/$’, ’views.user_page’),

(r’^user/(.+)/([^\s]+)/$’, ’views.user_tag_page’),

(r’^delete/$’, ’views.bookmark_delete’),

(r’^save/$’, ’views.bookmark_save_page’),

(r’^search/$’, ’views.search_page’),

(r’^tag/([^\s]+)/$’, ’views.tag_page’),

(r’^tag/$’, ’views.tag_cloud_page’),

)

A.2.3 forms.py

import re

from django import newforms as forms

Form for storing the Bookmarks.

class BookmarkSaveForm(forms.Form):

url = forms.URLField(

label=’URL’,

widget=forms.TextInput(attrs={’size’: 64})

)

title = forms.CharField(

label=’Title’,

widget=forms.TextInput(attrs={’size’: 64})

)

tags = forms.CharField(

label=’Tags’,

required=False,

widget=forms.TextInput(attrs={’size’: 64})

)

edit = forms.CharField(

required=False,

widget=forms.HiddenInput()

)

Form for deleting the Bookmarks.

class BookmarkDeleteForm(forms.Form):

key = forms.CharField(

required=False,

widget=forms.HiddenInput()

A.3. App Engine Django Applicaton Template Files 176

)

confirm = forms.CharField(

required=False,

widget=forms.HiddenInput()

)

Form for querying the bookmark datastore.

class SearchForm(forms.Form):

query = forms.CharField(

label = ’’,

widget=forms.TextInput(attrs={’size’: 32})

)

A.3 App Engine Django Applicaton Template Files

A.3.1 base.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>MedB - Medical Bookmarks</title>

<link type="text/css" rel="stylesheet" href="/static/styles.css">

<script type="text/javascript" src="/static/script.js"></script>

<script type="text/javascript" src="/static/menu.js"></script>

</head>

<body>

<table width="700" border="0" cellpadding="0" cellspacing="0">

{% include "header.html" %}

{% include "menu.html" %}

<table class="white" width="100%" border="0" cellspacing="0"

cellpadding="0">

<tr>

<td width="3%"></td>

<td width="94%" valign="top" class="main">

{%block body%}{%endblock%}

{% include "footer.html" %}

A.3. App Engine Django Applicaton Template Files 177

</body>

</html>

A.3.2 header.html

<!-- Header Row -->

<tr>

<td colspan="2">

<div class="headtitle"><h1 id="headertitle"><span

style="color:yellow; font-weight: bold;">

Medical Bookmarks</h1></div>

</td>

</tr>

<!-- menu row -->

<tr>

<td colspan="2" bgcolor="#336699">

<table width="100%" border="0" cellspacing="0" cellpadding="0">

<tr>

<td class="hmenu"><img src="/static/spot.gif" width="2"

height="22"></td>

<td class="hmenu"> </td>

{%if user %}

{% else %}

{%if sign_in%}<td class="hmenu">

Sign in</td>{%endif%}

{%endif%}

<td class="hmenu">Homepage

</td>

{%if user %}

<td class="hmenu"><a href="/user/{{user.nickname}}/"

class="hmenulink">

{{user.nickname}}’s Bookmarks</td>

{% endif %}

<td class="hmenu">

Add New Bookmark</td>

<td class="hmenu">

Tag Cloud</td>

<td><table width="100%" border="0" cellspacing="0" cellpadding="0">

A.3. App Engine Django Applicaton Template Files 178

<tr>

<td><div align="right">

<form action="/search/" method="get" name="search">

{%if query%}

<input type="text" name="query" size="8" value ="{{query}}" />

{% else %}

<input type="text" name="query" size="8" />

{% endif %}

<input type="submit" value="search" />

</form>

</div></td>

</tr>

</table></td>

</tr>

</table>

</td>

</tr>

<tr>

<!-- The height of this spot will tell how big the palid

blue line will be -->

<td colspan="2" id="dateholder" class="leftmenu">

<div align="right" class="whitebold">

Date: {% include "datetime.html" %}

|

<!-- Login Info -->

{%if user %}

{{user.nickname}} <{{user.email}}>

{%if is_admin%} | Admin{%endif%}

{%if sign_out%} | Sign out{%endif%}

{% else %}

{%if sign_in%}Sign in{%endif%}

{%endif%}

<!-- End Login Info -->

</div>

</td>

</tr>

A.3.3 menu.html

<tr>

<!-- The height of this spot will tell how big the palid

blue line will be -->

A.3. App Engine Django Applicaton Template Files 179

<td colspan="2" id="spotholder" class="leftmenu"><img

src="/static/spot.gif"

width="2" height="2" border="0"></td>

<!-- -->

</tr>

<tr>

<td width="119" id="menuholder" class="leftmenu">

<div class="latestnews">

<p />

Latest Additions.

{% if latestbookmarks %}

{% for bookmark in latestbookmarks %}

-

{{ bookmark.title }}<a/>

{% endfor %}

{% endif %}

<p />

</div>

<div class="signbox" id="sigbox">

<table width="100%" border="0" cellpadding="2" cellspacing="0" bgcolor="#6699CC">

<tr>

<td>

<table width="100%" border="0" cellspacing="0" cellpadding="0">

<tr>

<td></td>

<td></td>

</tr>

<tr>

<td></td>

<td></td>

</tr>

<tr>

<td class="leftmenuitem"> »</td>

<td class="leftmenuitem">

{%if user %}

Sign Out</td>

{% else %}

Sign In</td>

{% endif %}

</tr>

</table>

</td>

</tr>

</table>

A.3. App Engine Django Applicaton Template Files 180

</td>

<td width="591" align="left" valign="top" class="main">

<table width="100%" border="0" cellspacing="0" cellpadding="0">

<tr>

<td width="3%" id="cornerholder" class="leftmenu">

</td>

<td width="95%" class="main"> </td>

<td width="3%" bgcolor="#FFFFFF"><img src="/static/spot.gif" width="3"

height="2"></td>

<td width="1%" bgcolor="#CCCCCC"><img src="/static/spot.gif" width="1"

height="2"></td>

</tr>

</table>

A.3.4 footer.html

</td>

<td width="3%" bgcolor="#FFFFFF"></td>

<td width="1%" bgcolor="#CCCCCC"></td>

</tr>

</table>

</td>

</tr>

<tr>

<td colspan="2" class="footer"><img src="spot.gif"

height="10" alt="" />© 2008 MedB. Developed by Juan Convers

</td>

</tr>

</table>

A.3.5 main page.html

{%extends "base.html"%}

{% block title %}Welcome to Django Bookmarks{% endblock %}

{%block body%}

<h2>Welcome to Medical Bookmarks</h2>

{%if user %}

A.3. App Engine Django Applicaton Template Files 181

<p>Welcome {{ user }}!

Here you can store and share bookmarks!. To see your bookmarks

click here</p>

{% else %}

<p>Welcome anonymous user!

You need to login with

your Google Account

before you can store and share bookmarks.</p>

{% endif %}

Feel free to click in the tag cloud in order to see the

popular bookmarks or

use the search box on top go get bookmarks related to

your query

{% if tags %}

<table summary="tag cloud" class="bluebox" cellspacing="0">

<tr>

<td class="blueboxBody">

<div id="tag-cloud">

{% for tag in tags %}

<a href="/kwd/{{ tag.name }}/"

class="tag-cloud-{{ tag.weight }}">

{{ tag.name }}

{% endfor %}

</div

</td>

</tr>

</table>

{% endif %}

{%endblock%}

Appendix B

Evaluation Form

Screenshots from http://www.tinyurl.com/poll-thesis

Figure B.1: Evaluation Form - Part1.

183

Figure B.2: Evaluation Form - Part2.

Figure B.3: Evaluation Form - Part3.

Appendix C

Data Analysis .py script

Python script written for analysing the data from the feedback and generating the
graphs (feed.py):

import csv

totalrows = 0

yesnoTuple = (’Yes ’, ’No ’)
scaleTuple = (’1’, ’2’, ’3’, ’4’, ’5’)

familiar20 = {’Yes ’: 0, ’No ’: 0}
familiarSB = {’Yes ’: 0, ’No ’: 0}
services = {’Facebook ’: 0, ’Delicious ’: 0, ’Linkedin ’: 0,

’Blogger ’: 0, ’Twitter ’: 0,’Couchsurfing ’: 0}
visitGray = {’Yes ’: 0, ’No ’: 0}
browseGray = {’Yes ’: 0, ’No ’: 0}
easybrowseGray = {’1’: 0, ’2’: 0, ’3’: 0, ’4’: 0, ’5’: 0}
addDBGray = {’Yes ’: 0, ’No ’: 0}
easyaddGray = {’1’: 0, ’2’: 0, ’3’: 0, ’4’: 0, ’5’: 0}
doctor = {’Yes ’: 0, ’No ’: 0}
generalscore = {’1’: 0, ’2’: 0, ’3’: 0, ’4’: 0, ’5’: 0}
feedback = []

def analyzer(dictsent , value , params):
""" It counts the number of times the passed value is

in the sent parameters and it is assigned to the
sent dictionary """

newvalues = value.split (",")
for newvalue in newvalues:

for item in params:
if newvalue.strip() == item:

185

dictsent[item] = int(dictsent[item]) + 1
return

def printdic(dictionarysent):
"""It prints the key , value pair of a dictionary

separated by ; """
for key in dictionarysent.keys ():

print str(key) + ";" + str(dictionarysent[key])

csvReader = csv.reader(open(’feedback.csv ’),
delimiter=’,’, quotechar =’"’)

for row in csvReader:
totalrows = totalrows + 1
analyzer (familiar20 , row[1], yesnoTuple)
analyzer (familiarSB , row[2], yesnoTuple)
analyzer (services , row[3], (’Facebook ’, ’Delicious ’,

’Linkedin ’, ’Blogger ’,
’Twitter ’, ’Couchsurfing ’))

analyzer (visitGray , row[4], yesnoTuple)
analyzer (browseGray , row[5], yesnoTuple)
analyzer (easybrowseGray , row[6], scaleTuple)
analyzer (addDBGray , row[7], yesnoTuple)
analyzer (easyaddGray , row[8], scaleTuple)
analyzer (doctor , row[9], yesnoTuple)
if len(row) >= 11:

analyzer (generalscore , row[10], scaleTuple)
if len(row) >= 12:

feedback.append(row [11])

print "Familiar Web 2.0"
printdic (familiar20)
print "Familiar Social Bookmarking"
printdic (familiarSB)
print "Social Services"
printdic (services)
print "Visited Gray"
printdic (visitGray)
print "Browse Gray"
printdic (browseGray)
printdic (easybrowseGray)
print "Add Gray"
printdic (addDBGray)
printdic (easyaddGray)
print "Doctor"
printdic (doctor)
print "General Score"
printdic (generalscore)

186

print "General Feedback"
for item in feedback:

print item
print "totalrows " + str(totalrows)

References

Aldhous, P. (2008). How the myspace mindset can boost medical science. New

Scientist magazine, (2656), 26–27.

Alpert, J., & Haja, N. (2008). We knew the web was big..

URL http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

Angel, E. (2010). Interactive Computer Graphics : A Top-Down Approach with

OpenGL. Boston, MA: Addison Wesley Longman.

Augar, N., Raitman, R., & Zhous, W. (2004). Teaching and learning online with

wikis.

URL http://ascilite.org.au/conferences/perth04/procs/augar.html

Barnes, J. (1954). Class and committees in a norwegian island parish. Human

Relations, 7(1), 39–58.

Barsky, E. (2006). Introducing web 2.0: Rss trends for health librarians. J Can

Health Lib Assoc, (27), 7–8.

Barsky, E., & Purdon, M. (2006). Introducing web 2.0: social networking and social

bookmarking for health librarians. J Can Health Lib Assoc, (27), 65–67.

Bates, D., & Gawande, A. (2003). Improving safety with information technology.

New England Journal of Medicine, (348), 2526–2534.

References 188

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,

R. C., Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D. (2006). Manifesto

for agile software development.

URL http://www.agilemanifesto.org/

Berners-Lee, T. (2008). The website of the world’s first-ever web server.

URL http://info.cern.ch/

Berners-Lee, T., Fielding, R., & Frystyk, H. (1996). Hypertext transfer protocol –

http/1.0.

URL http://www.ietf.org/rfc/rfc1945.txt

Blood, R. (2000). weblogs: a history and perspective.

URL http://www.rebeccablood.net/essays/weblog_history.html

Boulos, M. K., Maramba, I., & Wheeler, S. (2006). Wikis, blogs and podcasts: a

new generation of web-based tools for virtual collaborative clinical practice and

education. BMC Medical Education, (6), 41.

Boyd, D., & Ellison, N. (2007). Social network sites: Definition, history, and schol-

arship. Journal of Computer-Mediated Communication, 11(1), 39–58.

Brain, M. (2003). How spam works.

URL http://computer.howstuffworks.com/spam.htm

Brain, M. (2005). How wikis work.

URL http://computer.howstuffworks.com/wiki.htm

Cadenhead, R., & Smith, G. (2006). The application/rss+xml media type.

URL http://www.rssboard.org/rss-mime-type-application.txt

References 189

Castillo, C., Donato, D., Becchetti, L., Boldi, P., Santini, M., & Vigna, S. (2006). A

reference collection for web spam. SIGIR Forum, 40(2), 11–24.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M.,

Chandra, T., Fikes, A., & Gruber, R. E. (2008). Bigtable: A distributed storage

system for structured data. ACM Trans. Comput. Syst., 26(2).

Codd, E. F. (1970). A relational model of data for large shared data banks. Com-

munications of the ACM, 13(6), 377–387.

comscore (2007). Bebo becomes the most visited social networking site in the uk.

URL http://www.comscore.com/press/release.asp?press=1571

Daly, L. (2007). Next-generation Web Frameworks in Python. O’Reilly.

Darling, D. (2006). The ipod ecosystem.

URL http://www.nytimes.com/2006/02/03/technology/03ipod.htm

delicious.com (2007). Delicious faq.

URL http://www.delicious.com/deliciousfaq.html

Dimov, V. (2006). Top 5 medical podcasts i listen to.

URL http://casesblog.blogspot.com/2006/08/

top-5-medical-podcasts-i-listen-to.html

djangoproject.com (2008). The django project. Last accessed: Apr 30, 2009.

URL http://www.djangoproject.com/

dmoz.org (2009). Dmoz social networking.

URL http://www.dmoz.org/Computers/Internet/On_the_Web/Online_

Communities/Social_Networking/

ec.wmich.edu (2009). List of evaluation glossary terms.

URL http://ec.wmich.edu/glossary/glossaryList.htm

References 190

Fowler, M. (2005). The new methodology.

URL http://martinfowler.com/articles/newMethodology.html

Fowler, M. (2006). Writing the agile manifesto.

URL http://www.martinfowler.com/articles/agileStory.html

Garćıa-Molina, H., & Gyöngyi, Z. (May 2005). Web spam taxonomy. Proceedings

of the 1st International Workshop on Adversarial Information Retrieval on the Web

(AIRWeb).

Garrett, J. (2005). Ajax a new approach to web applications.

URL http://www.adaptivepath.com/publications/essays/archives/000385.

php

Gedda, R. (2009). New twitter app helps with job search.

URL http://www.pcworld.com/businesscenter/article/163391/new_

twitter_app_helps_with_job_search.html

Giles, J. (2005). Internet encyclopaedias go head to head. Nature, 438(7070),

900–1.

Giustini, D. (2006). How web 2.0 is changing medicine. British Medical Journal,

(333), 1283–1284.

Glasner, J. (2001). A brief history of spam, and spam.

URL http://www.wired.com/techbiz/media/news/2001/05/44111

Google.com (2008a). Google app engine - the model class.

URL http://code.google.com/appengine/docs/python/datastore/

modelclass.html

Google.com (2008b). Google app engine - types and properties.

References 191

URL http://code.google.com/appengine/docs/python/datastore/

typesandpropertyclasses.html

Google.com (2008c). Google app engine guide.

URL http://code.google.com/appengine/docs/

Google.com (2008d). Introducing google app engine + blog.

URL http://googleappengine.blogspot.com/2008/04/

introducing-google-app-engine-our-new.html

Gross, R., & Acquisti, A. (2005). Information revelation and privacy in online social

networks (the facebook case). In ACM Workshop on Privacy in the Electronic

Society (WPES), (pp. 71–80). Alexandria.

URL http://www.heinz.cmu.edu/{\~a}cquisti/papers/

privacy-facebook-gross-acquisti.pdf

Halvey, M. J., & Keane, M. T. (2007). An assessment of tag presentation techniques.

In WWW ’07: Proceedings of the 16th international conference on World Wide Web,

(pp. 1313–1314). New York, NY, USA: ACM Press.

Hammond, T., Hannay, T., Lund, B., & Scott, J. (2005). Social bookmarking tools

(i): A general review. D-Lib Magazine, 11.

Heymann, P., Koutrika, G., & Garcia-Molina, H. (2007). Fighting spam on social

websites: A survey of approaches and future challenges. IEEE Internet Computing.

Holovaty, A., & Kaplan-Moss, J. (2007). The Definitive Guide to Django: Web Devel-

opment Done Right. apress.

Horton, W. K. (2000). Designing Web-Based Training: How to Teach Anyone Anything

Anywhere Anytime. John Wiley and Sons.

References 192

Hotho, A., Jaschke, R., Schmitz, C., & Stumme1, G. (2006a). Information retrieval

in folksonomies: Search and ranking. Lecture Notes in Computer Science.

Hotho, A., Jschke, R., Schmitz, C., & Stumme, G. (2006b). Bibsonomy: A so-

cial bookmark and publication sharing system. In Proceedings of the Conceptual

Structures Tool Interoperability Workshop at the 14th International Conference on

Conceptual Structures.

Hourieh, A. (2008). Learning Website Development with Django. Packt Publishing.

IEEE (1998). Ieee standard for software test documentation. Tech. rep.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=741968

ipswitch.com (2006). Ipswitch, inc., warns that spam continues to rise.

URL http://tinyurl.com/ipswitch

ISO/IEC Standard (2003). Software engineering – product quality – part 1: Quality

model. ISO Standard 9126-1, ISO/IEC.

Jacobs, I. (2004). Architecture of the world wide web, volume one.

URL http://www.w3.org/TR/webarch/

Java, A., Song, X., Finin, T., & Tseng, B. (2007). Why we ptwitter: Understanding

microblogging usage and communities. Procedings of the Joint 9th WEBKDD and

1st SNA-KDD.

Kan, S. H. (2003). Metrics and Models in Software Quality Engineering. Addison-

Wesley.

Kohler, D. (2008). Running django on google app engine.

URL http://code.google.com/appengine/articles/django.html

References 193

Kolari, P., Finin, T., & Joshi, A. (2006a). Svms for the blogosphere: Blog identifica-

tion and splog detection. Proceedings of the AAAI Spring Symposium on Computa-

tional Approaches to Analysing Weblogs..

Kolari, P., Java, A., Finin, T., Mayfield, J., Joshi, A., & Martineau, J. (2006b). Blog

track open task - spam blog classification. Technical report TREC 2006 Blog Track..

Koutrika, G., Adjie, F., Gyöngyi, Z., Heymann, P., & Garcia-Molina, H. (May 2007).

Combating spam in tagged systems. Third International Workshop on Adversarial

Information Retrieval on the We.

Krasner, G. E., & Pope, S. T. (1988). A description of the model-view-controller user

interface paradigm in the smalltalk-80 system. ParcPlace Systems, Inc..

Kruchten, P. (2001). What is the rational unified process.

URL http://www.therationaledge.com/content/jan_01/f_rup_pk.html

Kruchten, P. (2003). The rational unified process: an introduction. Addison-Wesley,

3 ed.

Luo, J. S. (2007). Social networking: Now professionally ready. Primary Psychiatry,

14(2), 21–24.

Marlow, C. (2004). Audience, structure and authority in the weblog community.

International Communication Association Conference.

Mathes, A. (2004). Folksonomies - cooperative classification and communication

through shared metadata. Computer Mediated Communication.

Mcafee ICF International (2009). The carbon footprint of email spam report. Tech.

rep.

URL http://img.en25.com/Web/McAfee/CarbonFootprint_12pg_web_REV_NA.

pdf

References 194

McConnell, S. (1996). Rapid Development.. Microsoft Press.

McLean, R., Richards, B., & Wardman, J. (2007). The effect of web 2.0 on the

future of medical practice and education: Darwikinian evolution or folksonomic

revolution. Medical Journal of Australia.

McLellan, D. (2005). Very dynamic web interfaces.

URL http://www.xml.com/pub/a/2005/02/09/xml-http-request.html

medworm.com (2009). Medical blog tag cloud.

URL http://www.medworm.com/rss/blogtags.php

Mind Tree Blog (2008). Most popular web application frameworks.

URL http://www.hurricanesoftwares.com/most-popular-web-application-frameworks/

Molina, S. T., & Borkovec, T. D. (1994). The Penn State worry questionnaire: Psy-

chometric properties and associated characteristics. In G. C. L. Davey, & F. Tallis

(Eds.) Worrying: Perspectives on theory, assessment and treatment, (pp. 265–283).

New York: Wiley.

NCSA University of Illinois (2001). Common gateway interface.

URL http://hoohoo.ncsa.illinois.edu/cgi/intro.html

nexen.net (2008). Php statistics for june 2008.

URL http://www.nexen.net/chiffres_cles/phpversion/18519-php_

statistics_for_june_2008.php

Ofcomp (2008). Social networking, a quantitative and qualitative research report

into attitudes, behaviours and use.

URL http://www.ofcom.org.uk/advice/media_literacy/medlitpub/

medlitpubrss/socialnetworking/report.pdf

References 195

O’Reilly, T. (2005). What is web 2.0.

URL http://www.oreillynet.com/lpt/a/6228

O’Reilly, T. (2006). Web 2.0 compact definition: Trying again.

URL http://radar.oreilly.com/archives/2006/12/web-20-compact.html

Oudot, L. (2003). Fighting spammers with honeypots.

URL http://www.securityfocus.com/infocus/1747

Papadimoulis, A. (2007). The great pyramid of agile.

URL http://thedailywtf.com/Articles/The-Great-Pyramid-of-Agile.aspx

Paulson, L. (2005). Building rich web applications with ajax. IEEE Computer,

38(10), 14–17.

Perkins, A. (2001). The classification of search engine spam.

URL http://www.silverdisc.co.uk/articles/spam-classification/

Pes, C. (2009). Metodologia de la programacion.

URL http://www.carlospes.com/curso_de_ingenieria_del_software/01_02_

metodologia_de_la_programacion.php

postini.com (2008). Postini stattrack.

URL http://tinyurl.com/634m8j

Rahkila, M. (2006). Agent-based Method for Self-study Interactive Web-based Educa-

tion. Ph.D. thesis, Helsinsky University of Technology.

Reardon, M. (2009). At&t uses twitter during service outage.

URL http://www.pcworld.com/businesscenter/article/163391/new_

twitter_app_helps_with_job_search.html

Reed College (2007). Latex your document.

URL http://web.reed.edu/cis/help/LaTeX/index.html

References 196

Risley, C. (2008). Glass box testing.

URL http://www.cse.fau.edu/~maria/COURSES/CEN4010-SE/C13/glass.htm

Royce, W. (1970). Managing the development of large software systems. Proceed-

ings of IEEE WESCON, 26(1), 9.

RSS Advisory Board (2009). Rss 2.0 specification.

URL http://www.rssboard.org/rss-specification

Sanderson, D. (2008). Programming Google App Engine: Rough Cuts Version.

O’Reilly.

Schools, W. (2009). Ajax tutorial.

URL http://www.w3schools.com/ajax/default.asp

Sethi, S. K. (2009). Micro-blogging, latest tool in the web 2.0. Indian Pediatrics,

(46), 188.

Smashing Magazine (2007). Tag clouds gallery: Examples and good practices.

URL http://www.smashingmagazine.com/2007/11/07/

tag-clouds-gallery-examples-and-good-practices/

Smith, G. (2004). Atomiq: Folksonomy: social classification.

URL http://atomiq.org/archives/2004/08/folksonomysocialclassification.

html

spamhaus.org (2008). The definition of spam.

URL http://www.spamhaus.org/definition.html

Sterman, J. (2006). Learning from evidence in a complex world. American Journal

of Public Health, (96), 505–514.

References 197

Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the

few and how collective wisdom shapes business, economies, societies, and nations.

Doubleday Books.

Templeton, B. (2001). Origin of the term spam to mean net abuse.

URL http://www.templetons.com/brad/spamterm.html

Varlamis, I., & Apostolakis, I. (2007). Medical informatics in the web 2.0 era.

URL http://wim.aueb.gr/iraklis/Varlamis-papers/C22.pdf

Westland, J. C. (2002). The cost of errors in software development: evidence from

industry. Journal of Systems and Software, 62(1), 1–9.

Wetzker, R., Zimmermann, C., & Bauckhage, C. (2008). Analyzing social book-

marking systems: A del.icio.us cookbook. In Mining Social Data (MSoDa)

Workshop Proceedings, (pp. 26–30). ECAI 2008.

URL http://robertwetzker.com/wp-content/uploads/2008/06/wetzker_

delicious_ecai2008_final.pdf

Wong, E. (1999). Artistic Rendering of Portrait Photographs. Master’s thesis, Cornell

University.

Wu, B. (2007). Finding and Fighting Search Engine Spam. Ph.d. dissertation, Lehigh

University.

