

Developing a System to Help Programmers

Achieve a Good Coding Style

Haijie Zhao
D05103686

Haijie.zhao1@student.dit.ie

A dissertation submitted in partial fulfillment of the requirements of
Dublin Institute of Technology for the degree of
M.Sc. in Computing (Information Technology)

September 2009

mailto:Haijie.zhao1@student.dit.ie

Developing a System to help programmers achieve a good coding style
__

__

I certify that this dissertation which I now submit for examination for the award of
MSc in Computing (Information Technology), is entirely my own work and has not
been taken from the work of others save and to the extent that such work has been
cited and acknowledged within the test of my work.

This dissertation was prepared according to the regulations for postgraduate study of
the Dublin Institute of Technology and has not been submitted in whole or part for an
award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements
of the Institute’s guidelines for ethics in research.

Signed: _______________________________

Date: _________________________________

Developing a System to help programmers achieve a good coding style
__

___ i __

TABLE OF CONTENTS

TABLE OF CONTENTS.. I

TABLE OF FIGURES ...V

TABLE OF TABLES..VII

ABSTRACT.. VIII

ACKNOWLEDGEMENTS.. IX

1. INTRODUCTION... 1

1.1 PROJECT BACKGROUND...1
1.2 CONTRIBUTION OF THIS PROJECT...2
1.3 PROJECT DESCRIPTION..3
1.4 RESEARCH AIM AND OBJECTIVES ..5

1.4.1 PROJECT AIM..5
1.4.2 PROJECT OBJECTIVES...5

1.5 INTELLECTUAL CHALLENGE ...6
1.6 RESEARCH METHODOLOGY ...7
1.7 SCOPE AND LIMITATIONS ...8

2. CODING STANDARDS ... 9

2.1 INTRODUCTION ..9
2.2 ELEMENTS OF THE CODING STANDARDS..9
2.3 NAMING CONVENTIONS IN CODING STANDARD ...10
2.4 CODING INDENT STYLE IN CODING STYLE...13
2.5 CONCLUSIONS...16

3. CODING STANDARDS TOOLS ...17

3.1 INTRODUCTION ...17
3.2 CODE INSPECTION TECHNOLOGY ...17

3.2.1 CODE INSPECTION TOOLS...17
3.2.2 INTRODUCTION TO SOFTWARE REFACTORING...18
3.2.3 SOFTWARE REFACTORING PROCESS..19
3.2.4 CODING REFACTORING PATTERNS ...20

3.3 CODE REVIEW...21
3.3.1 APPROACHES TO CODE REVIEW...22
3.3.2 CODE REVIEWS ACROSS THE TEAM..23

3.4 CONCLUSIONS...25

4. COMMONLY USED STANDARDS ..26

4.1 INTRODUCTION ...26
4.2 C++ PROGRAMMING STANDARDS...26
4.3 C# PROGRAMMING STANDARDS ...30
4.4 VISUAL BASIC PROGRAMMING STANDARDS...33

Developing a System to help programmers achieve a good coding style
__

___ ii __

4.5 JAVA CODING STANDARDS...33
4.5.1 INTRODUCTION TO JAVA..33
4.5.2 JAVA CODING STANDARDS OVERVIEW ..34
4.5.3 JAVA CODING STANDARDS MODEL..35

4.6 CONCLUSIONS ..37

5. TOWARDS A NEW STANDARD...38

5.1 INTRODUCTION ...38
5.2 NAMING CONVENTIONS..38

5.2.1 INTRODUCTION TO NAMING CONVENTIONS..38
5.2.2 PACKAGE NAMES...42
5.2.3 TYPE NAMES ...43
5.2.4 CLASS NAMES/ INTERFACE NAMES..43
5.2.5 METHOD NAMES ...45
5.2.6 VARIABLE/FIELD/PARAMETER NAMES..46
5.2.7 CONSTANT NAMES ...47

5.3 DOCUMENTATION CONVENTIONS..47
5.3.1 PROGRAMMING STANDARDS FOR COMMENTS..47
5.3.2 LINE COMMENTS...47
5.3.3 BLOCK COMMENTS...48
5.3.4 DOCUMENTATION COMMENTS...48
5.3.5 BLANK LINES AND SINGLE BLANK SPACE..51

5.4 PROGRAMMING CONVENTIONS...53
5.4.1 DESIGN OF JAVA COMPONENTS (CLASS/METHOD/INTERFACE)53
5.4.2 PROGRAMMING STANDARDS IN MULTI-THREAD ...54
5.4.3 CODING STANDARD FOR SYNCHRONIZED..55

5.5 PACKAGE CONVENTIONS ...56
5.5.1 PACKAGE ACCESS PROTECTION..56
5.5.2 REUSABILITY AND MAINTAINABILITY ..57
5.5.3 HOW TO GET WELL-DESIGNED JAVA PACKAGE ...58

5.6 CONCLUSIONS...59

6. TECHNICAL OVERVIEW...60

6.1 THE JAVA PROGRAMMING LANGUAGE..60
6.2 ECLIPSE AND ECLIPSE PLUG-IN DEVELOPMENT...61
6.3 CHECK-STYLE OVERVIEW..63

6.3.1 INTRODUCTION ...63
6.3.2 ADVANTAGES AND LIMITATIONS OF CHECK-STYLE..65
6.3.3 CONFIGURATION OF CHECK-STYLE...66

6.4 CHECKER-STYLE API ..68
6.4.1 CODING PROBLEMS IN THE SOURCE CODE..68
6.4.2 CLASS DESIGN CHECKING..68
6.4.3 BLOCK STYLE CHECKING ...69
6.4.4 DUPLICATE CODE DETECTION..70
6.4.5 NAMING CONVENTION IMPROVEMENTS..70

Developing a System to help programmers achieve a good coding style
__

___ iii __

6.4.6 VISITOR PATTERN IN CHECKSTYLE ..71
6.5 FACTORY METHOD PATTERN...72
6.6 CONCLUSIONS...73

7. IMPLEMENTATION...74

7.1 INTRODUCTION ...74
7.2 DESIGN OF CODE-CHECK ..74

7.2.1 CODE-CHECK ARCHITECTURE ...74
7.2.2 USE CASE DIAGRAMS ...75
7.2.3 SEQUENCE DIAGRAM...76

7.3 CODE-CHECK IMPLEMNTATION OVERVIEW...77
7.4 CODE-CHECK MAIN() ..78
7.5 CUSTOM DEVELOPED CHECK-STYLE MODULE...81

7.5.1 STRUCTURE OF THE MODULE ...82
7.5.2 CONFIGURATION OF THE MODULES...84
7.5.3 BUILDING A JAR FOR THE CHECK MODULES...85

7.6 CODING REVIEW COMPONENT IMPLEMENTATION ...86
7.7 CODE REFACTORING COMPONENT IMPLEMENTATION...90
7.8 PERFORMANCE COMPONENT IMPLEMENTATION ...93
7.9 CODE-CHECK DEPLOYMENT ...95
7.10 CONCLUSIONS ..97

8. EVALUATION..98

8.1 INTRODUCTION ...98
8.2 SURVEY FOR THE PROJECT ..98

8.2.1 DO YOU FEEL THAT CODING STANDARDS ARE IMPORTANT?..98
8.2.2 IF YOU ARE A JAVA DEVELOPER, HOW MANY YEARS HAVE YOU BEEN

PROGRAMMING IN JAVA?..99
8.2.3 DO YOU KNOW THE NAME OF THE JAVA CODING STANDARD YOU ARE CURRENTLY

USING? ..99
8.2.4 WILL YOU FOLLOW THE CODING STANDARD STRICTLY?..99
8.2.5 HOW HAVE YOU LEARNED A SPECIFIED PROGRAMMING STANDARD?.................... 100
8.2.6 IF THERE WAS A TOOL TO HELP YOU WITH THE CODING STANDARDS, WOULD

YOU USE IT?... 100
8.3 INTERVIEW FOR THE PROJECT ... 101

8.3.1 HOW DO YOU ENCOURAGE DEVELOPERS TO FOLLOW CODING STANDARDS IN

YOUR COMPANY? .. 101
8.3.2 HOW DO YOU HANDLE POOR QUALITY CODE FROM YOUR TEAM MEMBERS? 102
8.3.3 DO YOU HAVE ANY SPECIFIED DEVELOPERS WHO WILL CHECK THE CODING

STANDARDS IN YOUR COMPANY?.. 102
8.3.4 WHICH DEVELOPMENT TOOL DO YOU USE IN YOUR COMPANY AND WHAT DO YOU

THINK OF ITS ABILITY TO HANDLE SOURCE CODE?.. 102
8.3.5 IF THERE WAS A TOOL TO HELP YOU WITH STANDARDS, WOULD YOU USE IT? . 103
8.3.6 INTERPRETATION OF RESPONSES ... 103

8.4 CODING STANDARDS AND CODE-CHECK EVALUAION.. 103

Developing a System to help programmers achieve a good coding style
__

___ iv __

8.4.1 CODE-CHECK EVALUATION.. 103
8.4.2 CODE-CHECK FEEDBACK... 104
8.4.3 CODING STANDARDS EVALUATION.. 106

8.5 CONCLUSIONS.. 107

9. CONCLUSIONS AND FUTURE WORK.. 108

9.1 CONCLUSIONS.. 108
9.2 FUTURE WORK .. 109

9.2.1 CODING STANDARDS IMPROVEMENT... 109
9.2.2 CODE CHECKER IMPROVEMENT.. 109

REFERENCES.. 110

APPENDIX A... 119

APPENDIX B... 121

APPENDIX C ... 123

Developing a System to help programmers achieve a good coding style
__

___ v __

TABLE OF FIGURES
FIGURE 1: APPROACHES TO LEARN CODING STANDARDS 2
FIGURE 2: C# DOTNET CODING HANDLER.. 4
FIGURE 3: PROJECT IMPLEMENTATION... 5
FIGURE 4: K&R INDENT STYLE EXAMPLE..13
FIGURE 5: INDENT STYLE EXAMPLE ...14
FIGURE 6: ALLMAN STYLE INDENT STYLE EXAMPLE15
FIGURE 7: GNU STYLE INDENT STYLE EXAMPLE..15
FIGURE 8: BANNER STYLE INDENT STYLE EXAMPLE..16
FIGURE 9: BSD KNF STYLE INDENT STYLE EXAMPLE16
FIGURE 10: CODE INSPECTION TOOLS..18
FIGURE 11: IT’S NECESSARY TO DO CODE REFACTORING...............................19
FIGURE 12: SOME CODING REFLECTING TOOLS..19
FIGURE 13: PROCESS OF SOFTWARE REFACTORING ..20
FIGURE 14: CODE REVIEW BRINGS BENEFITS...21
FIGURE 15: PROCESS OF CODE REVIEW...23
FIGURE 16: CODE WITHOUT CODING REVIEW ..24
FIGURE 17: A LOT OF SOFTWARE WAS DEVELOPED IN C++/C......................26
FIGURE 18: C# PROGRAMMING LANGUAGE..30
FIGURE 19: JAVA PROGRAMMING LANGUAGE DEVELOP HISTORY34
FIGURE 20: ECLIPSE PACKAGE NAME TOOLS...42
FIGURE 21: FREQUENTLY USED JAVA NAMING WAYS43
FIGURE 22: EXAMPLES OF JAVA FILE NAMES...43
FIGURE 23: NAMING THE CLASSES/INTERFACE...44
FIGURE 24: THE NAME OF THE CLASS/INTERFACE SHOULD GROUP

RELATED..44
FIGURE 25: DIFFERENT TYPES OF COMMENT ...46
FIGURE 26: VARIABLES/FIELD/PARAMETER NAMING CONVENTION

EXAMPLE..46
FIGURE 27: SINGLE LINE COMMENT ...48
FIGURE 28: BLOCK COMMENTS...48
FIGURE 29: JAVADOC TOOLS ..51
FIGURE 30: FIGURE: BLANK LINE USED IN .NET (C#) EXAMPLE...................52
FIGURE 31: SUBCLASS DESIGN ..53
FIGURE 32: CODING STANDARD FOR JAVA THREADS55
FIGURE 33: SYNCHRONIZED IS USED WITHIN THE METHOD.........................55
FIGURE 34: JAVA PACKAGE DESIGN...58
FIGURE 35: JAVA PROGRAMMING LANGUAGE ...61
FIGURE 36: ECLIPSE DEVELOPMENT PLATFORM ARCHITECTURE..............62
FIGURE 37: ECLIPSE AND ECLIPSE PLUG-IN ARCHITECTURE62
FIGURE 38: INSTRUCTIONS IN THE CONFIGURATION FILE & A SPECIFIED

PROGRAMMING STANDARD..65
FIGURE 39: EXTENSION PROBLEM CHECKING EXAMPLE68
FIGURE 40: EXTENSION PROBLEM CHECKING EXAMPLE69

Developing a System to help programmers achieve a good coding style
__

___ vi __

FIGURE 41: NESTED BLOCK CHECK CONFIGURATION70
FIGURE 42: IMPROVE THE CODING STYLE TO REDUCE THE DUPLICATE

CODE..70
FIGURE 43: SURVEY FOR THE IMPORTANCE OF PROGRAMMING

STANDARD...72
FIGURE 44: SURVEY FOR TFACTORY METHOD PATTERN CLASS DIAGRAM

...73
FIGURE 45: CODE-CHECK ARCHITECTURE..74
FIGURE 46: USE CASE OF THIS PROJECT ..76
FIGURE 47: SEQUENCE DIAGRAM OF PROJECT..77
FIGURE 48: DEVELOPMENT OF CODE-CHECK..78
FIGURE 49: PLUG-IN FRAMEWORK ARCHITECTURE ...79
FIGURE 50: CLASS DIAGRAM FOR COMPONENT LOADER................................80
FIGURE 51: MODULE ARCHITRAVE..82
FIGURE 52: PLUG-IN COMPONENT ARCHITECTURE ..86
FIGURE 53: STRING FACTORY ARCHITECTURE...88
FIGURE 54: LENGTH CHECK MODULE ARCHITECTURE....................................89
FIGURE 55: MODULE RELATIOION ARCHITECTURE ..92
FIGURE 56: RULEMANAGER ARCHITECTURE...93
FIGURE 57: A PART OF THE CONFIGURATIONS WHICH IS BASED ON THE

CODING STANDARD..95
FIGURE 58: CODE CHECK EXAMPLE...96
FIGURE 59: SURVEY RESULTS (CHINA) ..98
FIGURE 60: SURVEY RESULTS (IRELAND) ...99
FIGURE 61: SURVEY RESULTS (IRELAND) .. 100
FIGURE 62: SURVEY RESULTS (CHINA) ... 100
FIGURE 63: SURVEY RESULTS (IRELAND) .. 101
FIGURE 64: YOUTUBE VIDEO... 105

Developing a System to help programmers achieve a good coding style
__

___ vii __

TABLE OF TABLES
TABLE 1: ELEMENTS OF CODING STANDARDS..10
TABLE 2: COMMON USED LANGUAGE-SPECIFIC CONVENTIONS...................12
TABLE 3: HOW DO WE KNOW WHAT TO REFACTOR...20
TABLE 4: DIFFERENT TYPES OF C++ CODING STANDARDS27
TABLE 5: GENERAL TIPS FOR C++ PROGRAMMING STANDARDS..................29
TABLE 6: DIFFERENT TYPES OF C# CODING STANDARDS...............................31
TABLE 7: A SET OF C# PROGRAMMING LANGUAGE STANDARDS33
TABLE 8: DIFFERENT TYPES OF VISUAL BASIC CODING STANDARDS.........33
TABLE 9: DIFFERENT TYPES OF C# CODING STANDARDS...............................35
TABLE 10: NAMING CONVENTIONS IN JAVA PROGRAMMING LANGUAGE.36
TABLE 11: DETAILS FOR INTERFACE/CLASS DEFINITIONS............................41
TABLE 12: COMMENTS CONTENT DESCRIPTIONS ...49
TABLE 13: A PART OF JAVADOC PARAMETERS ...50
TABLE 14: ACCESS LEVEL DESCRIPTIONS...57
TABLE 155: TIPS ON HOW TO PACKAGE..59
TABLE 16: VERSIONS OF JAVA PLATFORM..60
TABLE 17: PLUS-IN AVAILABLE FOR SEVERAL DIFFERENT IDEs64
TABLE 18: A VERY SMALL SET OF COMMON USED ATTRIBUTES..................67
TABLE 19: COMMON USED PROPERTIES FOR JAVADOC COMMENT

CHECKING ..69
TABLE 20: DESCRIPTIONS OF NAMING CONVENTION MODULES71
TABLE 21: RATEING OF THE CODE-CHECK .. 104
TABLE 22: RATEING OF THE NEW CODING STANDARD 106

Developing a System to help programmers achieve a good coding style
__

___ viii __

ABSTRACT

Software developers tend to believe that coding standards are important in
programming but do not tend to comply with them, thus we need some new strategies
for the software developers to keep them focusing on the style of the code as well as
the development of the application.

This research looks at some common challenges to coding styles are facing and also a
possible solution to help programmers to achieve good coding styles. Simply, the
solution is based on two main factors, improving the existing coding standards and
developing a plug-in in develop toolkit to help programmers following the standard.

This research takes Java for example and detailed analysis the current coding
standards. Based on the research of existing coding standards, a new coding
standard is developed. The new coding standard can be transformed into a
configuration file used by the development toolkit. To achieve this, a new plug-in
called Code-Check is developed and it helps the developers to gain that new coding
standard and thus helps them to write better source code.

Keywords: coding style, coding standard, programmer habit, programming style,
programming standard

Developing a System to help programmers achieve a good coding style
__

___ ix __

ACKNOWLEDGEMENTS
Foremost, I am deeply indebted to my supervisor, Damian Gordon of the School of
Computing, Dublin Institute of Technology for many insightful conversations during
the development of ideas of this thesis. Some stimulating suggestions, constructive
criticisms and encouragement helped me in all the time of research.

I would also like to thank Bryan Duggan for his advice and feedback on my thesis.

I would also like to express my gratitude to friends who give advice in the project.

Finally I would like to thank the developers from CSDN developer forum for
participating in the survey and offering feedback for the generated Java coding
standard.

Developing a System to help programmers achieve a good coding style
__

__ 1 ___

1. INTRODUCTION

1.1 PROJECT BACKGROUND

Coding standards refers to a set of rules or guidelines used when writing source code
for a computer program. The idea is that all code is written in the same style and that
can help a software developer to understand the code better.

 “Coding standards are important because they lead to greater

consistency within your code and code of your team mates” [1].

With the help of a good coding style, the code can show better consistency. Greater
consistency makes the code easier to understand and to follow. It also means it is
easier to develop and maintain the source code which will reduce the overall cost of
the application that the developers have created.

Sometimes, code may be used for a long time with bad coding style and that makes it
hard to maintain. An important goal during the development process is to ensure that
developers can transition their work to another developer or another team of
developers, so that they can continue to maintain and enhance it without having any
problems in understanding the code the former developer writes. Good coding style
can help programmers greatly to maintain and understand without introducing any
inconvenience or errors.

Following a particular coding style when creating an application will help the
programmers to read and understand source code conforming to the style, and help to
avoid introducing errors, besides writing code with a good style can also provide the
following extra benefits. [2]

1. It improves the readability, consistency, and homogeneity of the code, which
makes it easier to understand and maintain.

2. It makes the code easier to trace and debug, because it's clear and consistent.
3. It allows the programmers to continue more easily where some other

programmers stopped working on the code, particularly after a long period of
time.

4. It increases the benefit of a peer code review, because the participants can
focus more on what the code is doing.

The benefits listed above clearly shows that write out code with good style helps ideas
and the thoughts expresses exceptionally clear.

Developing a System to help programmers achieve a good coding style
__

__ 2 ___

1.2 CONTRIBUTION OF THIS PROJECT
Almost all programmers agree that coding standards are important; however, not all
of them can follow coding standards when they develop applications. It also takes
people to make extra effort to gain the code with nice and strict coding standards.

There can be many reasons like coding standards hard to follow or developer’s bad
coding habit. There are even some problems with the language standards. For
example there are several versions of C++ language standards and there are some
different standards even for one definition. Programmers are confused with those
standards. Thus a new common coding style can help with this.

Take the Java programming language for example. There are many resources that are
talking about Java coding standards however most of these resources are books and
articles. When the programmers who want to learn a new programming language they
need to do the approaches as showing below:

FIGURE 1: APPROACHES TO LEARN CODING STANDARDS

The first approaches is the best way, however few developers and students can learn
all the coding style before they learn other things in this programming language.

Most people may have the experience with the second approaches. The traditionally
process of this approach is to look up programming style from a book or search the
rules on internet, and the developers can learn, remember and follow the coding
standard when they are writing source code. In this paper, we will focus on this
approach and improve the learning-approach through the new strategy.

This project is tending to help to solve this problem. The key of the solution is to
work out a simple useful coding standard and an auto-check tool that can be used by
programmers. When the developers write source code the new coding standard and
the tools could help to improve the code quality.

This project focuses on Java programming language. The code style analyses will be
done based on Java language and presents a new plug-in (Coding standard checker)
and configuration files which can help the developers to analyze their source code and
make improvements.

Developing a System to help programmers achieve a good coding style
__

__ 3 ___

1.3 PROJECT DESCRIPTION
Most developers believe that coding standards are very important but they do not
really tend to comply with them. Here are several reasons why people don’t comply
with coding standards:
1. It’s hard to remember all the programming style.
2. It’s very easy to confuse standard for the programmers who can use several

programming languages.
3. Problems with the coding editors.
4. It takes a long time to comply with a coding standard for a short program.

Many developers have the problem mentioned above. However it’s not easy to
resolve those problems for a programmer without any external help.

Professor Xiaosong Li and Christine Prasad from New Zealand have present
effectively teaching coding standards in programming. They list current strategies that
we use for teaching coding standards, and evaluate them for effectiveness. They found
most of the strategies need the students to remember the coding standard
initiatively.[3] This means the programmer not only need to learn programming
language but also need to take a long time to remember complex coding styles. This is
not effectively enough and also that’s a bad news for most of the programmers.
Professor Xiaosong Li and Christine Prasad also propose strategies that are likely to
be effective in teaching coding standards and present suggestions for further studies.
Most of their strategies are very helpful for the students of information technology but
also need take a long time for the people who want to learn programming.

Robert Cecil Martin [4] also did a lot of work in the coding standard area. He found
some particular programming styles that can not only reduce the cost of the
application but also greatly improve the efficiency of the program.

Coding standards can reduce the cost of software maintenance is the most often cited
reason. In the introduction to code conventions for the Java Programming Language,
Sun Microsystems provides the following rationale: [5]

1. 80% of the lifetime cost of a piece of software goes to maintenance.
2. Hardly any software is maintained for its whole life by the original author.
3. Code conventions improve the readability of the software, allowing engineers to

understand new code more quickly and thoroughly.

From the results above we can presume when most of the programmers can handle
those coding standard, there will be a great improvement in information technology.

Microsoft also did some research in coding standard area. They published a lot of
guidelines for DotNet developers which can greatly help the DotNet developers to
deeply understand DotNet technology. Microsoft also implemented some particular

Developing a System to help programmers achieve a good coding style
__

__ 4 ___

coding standard functions in their products. For example, Visual Studios DotNet 2007
can handle some common the coding styles by itself. This makes most of the DotNet
application have the similar coding standard which make the DotNet application
easier to understand and greatly reduce the maintain cost.

FIGURE 2: C# DOTNET CODING HANDLER

This function is a huge step in improving software development. DotNet software
developers don’t need to pay much attention on the coding standard. They can apply
themselves to other parts of the application. Coding style then takes less time.

The research of this paper is based on existing coding standard but not fully carrying
it. The consideration will take place for the ease of use and also the efficiency of the
current coding standard and attempt to get a balanced coding style.
For example:

int getMaxIterations()
int get_max_interations()

These two definitions both are allowed according to the C++ coding standard,
however most of the programmers suggest using the first definition as it’s easy to read.
So the new coding style for C++ will choose the first one and suggest the user to use
the first definitions

The technology used in Visual Studio DotNet has not yet refined. The technology will
be improved in the new coding standard. For example:

1. Provide several different coding structures for the developments which may

improve the performance.
2. Provide different naming structures which are commonly used and easy to read.

Developing a System to help programmers achieve a good coding style
__

__ 5 ___

All of these functions are in the implementation of the new coding style.

Most of those functions are improvements for the coding style, developers don’t need
to remember so many coding style rules, the rules in the plug-in will remind or hint
the developers and the developers can pick up those rules when they use their develop
toolkit with this plug-in.

The idea in this project is much different from that in most of software like Visual
Studios DotNet. The implementation of the new coding style not only helps the
developer to deal with the coding styles it also help the developer to remember the
rules. So the developer can handle these rules well without the plug-in in further
developing works.

1.4 RESEARCH AIM AND OBJECTIVES

1.4.1 PROJECT AIM

This project is aimed at helping programmers to achieve a better coding style. This is
achieved by 2 main part of work. First, a large amount of research and comparison
will be required to work out a coding style that can be generally accepted by most
programmers. Second, a hint/reminder plug-in (Coding-checker) will be implemented
to examine the coding style within the develop toolkit as a guide to make the
programmer use the style in coding.

FIGURE 3: PROJECT IMPLEMENTATION

1.4.2 PROJECT OBJECTIVES

l To research existing Java coding standards, analyze those coding standards from

the elements of coding standards. Generate a new version of the Java coding
standards, all of those rules should be based on the existing valid Java coding
standards. Developers should easily pick up rules.

l To design and develop a coding-checker (Eclipse plug-in), the coding-checker

follows the rules generated from above. This coding-checker is a lightweight,

Developing a System to help programmers achieve a good coding style
__

__ 6 ___

cross-platform Eclipse based plug-in which can give warning and advice when
the developer writes source code.

l Do evaluations for the new Java coding standard and the coding-checker.

In order to achieve the aim, the following approach will be taken:

1. Gathering coding styles for Java
2. Compare different Java coding standards
3. Work out a possible coding style which can be commonly used.

a) Easy to form a habit for the developer.
b) Help the developer pick up the code quickly.

4. Work out some particular coding style which can improve the performance of the
application.

5. Get the coding standard transformed to something that can be implemented in the
development toolkit.

6. Craft a paper based on the research and implementation

1.5 INTELLECTUAL CHALLENGE

In this section the intellectual challenge of the dissertation is discussed on these
challenges: technical, scientific, evaluation and personal challenges.

TECHNICAL CHALLENGE
The technical challenge here is that it requires to a mastery of the Java programming
language, to setup and test the coding-checker and finally to deploy the application. It
also requires well known Java coding standards to be gathered, analyzed and then
generates a new version of Java coding standard.

SCIENTIFIC CHALLENGE
There are many scientific articles and books dealing with coding standards and
particularly in the Java coding standards, however dealing which part of a specified
programming standard to use is a significant challenge. Most people learn Java coding
standards from the official web site of Sun, and nearly all the Java coding standards
articles are talking about Sun version standards, so this dissertation will contribute to
the scientific literature on Java coding standards.

EVALUATION CHALLENGE
The existing coding standards have supplied an efficient way of programming,
however, there are not easy to follow or showing great usability in the real world
coding. This brings additional difficult for coding when there is no way to force the
programmers to follow them strictly. So most of the developers know it is very hard

Developing a System to help programmers achieve a good coding style
__

__ 7 ___

to follow a new coding standard and it is hard to find many experienced developers
who would like to evaluate the coding-checker and programming standards.

PERSONAL CHALLENGE

The analysis of coding standards and forming a new easy-to-follow coding style is a
challenge and what makes this project attractive is that it is looking for a balancing
point between better standardized and easier to follow styles.

The research in this part requires large amount of work in analysis, discussing and
judging and making decision. And then the final version of coding style also needs the
plug-in to help to become real and useable in the development. This is the opportunity
to get coding standards knowledge and combine it with Java application development.

The research on coding style for this dissertation plans several areas.
• Explore the importance of coding standard for the programmer.
• Analysis, discussing and judging the existing coding standards for different

programming language.
• Investigate the usage and popularity of several different Java coding standards.
• Investigate the appropriateness and usefulness of some common used Java coding

conversion for Java coding standards.
• Investigate the advantages that come from the software code reflecting.
• Get communities from both Java developers as well as other domain experts to

evaluate new version of Java coding standard.

1.6 RESEARCH METHODOLOGY

Both primary and secondary research will be performed throughout the duration of
this dissertation. The secondary research comprises of a literature review of material
pertaining to three topics:

l Real-world Coding Standards: its history, importance and how it works in the

reality IT industry.
l Coding Standards: Analyse and compare on different coding standards for

different programming languages.
l The Java Coding Standards: The definition, formats and syntax of Java coding

standards and the role of Java coding standards in the Java programming
language.

The varying sources what will be used to complete the literature review topics: ACM
Digital Library, IEEE Electronic Library, books and journals from DIT library.
The primary research of this project involves many different programming language
standards. A research focus on the existing Java coding standards will be performed.

Developing a System to help programmers achieve a good coding style
__

__ 8 ___

A specified new Java coding standard based on the existing coding standards will be
developed. A secondary survey regarding the usefulness and appropriateness of the
new Java coding standards was conducted in order to exam whether the new coding
standard is working well. Domain experts including lecturers in Ireland colleges, MSc
students and the staff from different companies in IT industry were invited to give
their views and comments on the new Java coding standard.

1.7 SCOPE AND LIMITATIONS

This project focuses on the different coding standards of the various programming
language. In order to make the project be achievable, most of the research will base
on the existing Java coding standards. A number of common used Java coding
standards will be picked up from the existing Java coding standards. The newly
coding standard will be easy to remember and use which will help the programmer to
memorize quickly. There are several limitations for this project:

1. There are a wide range of standards in existences that contribute to this project

will take time.
2. There are several different versions of Java programming language; those

different Java programming languages make the Java coding standards have
different copies. This large amount of different coding standards makes it
impossible to get all the common used conversions from the existing coding
standard.

3. Limitations of resources. The evaluation from programmers from different
companies of IT industry is one of the most important resources for this project.
The number of people can do the evaluation becomes another limitation.

Developing a System to help programmers achieve a good coding style
__

__ 9 ___

2. CODING STANDARDS

2.1 INTRODUCTION

Software programming standards are programming rules for the specified
programming languages. The programming standards can greatly reduce the
probability of introducing errors into applications. Software programming standards
can be used regardless of which software development models are used (iterative,
eXtreme programming, waterfall); it is just used to create that application. [6]

Coding standards come from the intensive study of industry experts. Those industry
experts analyze how bugs or bad code style are generated when source code is written.
After analyze stage, they will correlate the bugs to specific coding practices. A set of
rules can be formed from the correlations between coding practices and bugs. Those
rules are a set of coding standards. Coding standards can provide incredible value to
software development organizations as they can avoid a lot of errors when the
developers writing code. [7]

Coding standards are classified by different types of programming languages and their
usages. Language specified rules and best coding practices are formed by the experts
from the IT industry. The usage types and severity levels for a specified programming
language are formed by the software developers.

The coding standards for a specified programming language can be followed through
two ways: The software developers write the source code by following the specified
programming standard. The developers will be enforced to following the rules when
they are writing source code and this work should be done before the source code is
packaged to the source code repository. The second approach is called “Automated
nightly builds”. [8] The coding standards are enforced for all source code modified
during the day by automatically running and testing the code in "batch mode". [9]

2.2 ELEMENTS OF THE CODING STANDARDS

Different programming languages have different coding standards. The table below
shows the common parts of the coding standards for all of them. A good coding style
is generally to say a good implementation of coding standards elements. [10]

Developing a System to help programmers achieve a good coding style
__

__ 10 ___

CCOODDIINNGG SSTTAANNDDAARRDDSS EELLEEMMEENNTTSS

Introduction
Control Structure
Program Structure
Input and Output
Common Blunders
Efficiency and Instrumentation
Documentation

TABLE 1: ELEMENTS OF CODING STANDARDS

Based on the existing coding standards, this project is aimed to find a better
understandable, more easily picked-up, more reliable coding style that can be
generally used and accepted by programmers. Together with the implantation of the
develop toolkit hint system, the programmer can achieve and form a good coding
habit to improve the efficiency of programming. So that within the elements of a
coding standard, all the elements except the “documentation” will be examined in this
project. In the following sections, some of the main aspects of the coding standard
will be introduced.

2.3 NAMING CONVENTIONS IN CODING STANDARD

“Name conventions are a set of rules for choosing the character sequence to be used
for identifiers which denote variables, types and functions etc in programming.” [11]

Naming conversion is one of the most important concepts in coding standard and it is
also the most widely talked elements in programming standard.

These conventions usually cover indentation, comments, declarations, statements,
white space, programming practices and etc. software developers are highly
recommended to learn the naming conventions before they learn a new programming
language. Conventions can be formalized in a documented set of rules that can affect
the entire IT companies or organizations. Coding conventions are not enforced by the
compilers, however to get a good programming style and a programming habit; it’s
important to learn coding conventions for a specified programming language. [12]

Name conventions are very useful. It improves the readability of the source code. It
also can enhance the appearance of the source code. Good naming conventions can
make the code much profession.

The following table contains some common used language-specific conventions:

Developing a System to help programmers achieve a good coding style
__

__ 11 ___

PPRROOGGRRAAMMMMIINN
GG LLAANNGGUUAAGGEE

SSIIMMPPLLEE DDEESSCCRRIIPPTTIIOONNSS EEXXAAMMPPLLEESS

C/C++ C and C++ preserve case sensitivity in their symbol tables while Fortran by default
does not, a difference that requires attention. Fortunately, you can use the Fortran
directive ATTRIBUTES ALIAS option to resolve discrepancies between names, to
preserve mixed-case names, or to override the automatic conversion of names to all
lowercase by Fortran.

C++ uses the same calling convention and argument-passing techniques as C, but
naming conventions differ because of C++ decoration of external symbols. When
the C++ code resides in a .cpp file (created when you select C/C++ file from the
integrated development environment), C++ name decoration semantics are applied
to external names, often resulting in linker errors. The extern "C" syntax makes it
possible for a C++ module to share data and routines with other languages by
causing C++ to drop name decoration.

Java Classes
Class names should be nouns, in mixed case with the first letter of each internal
word capitalized. Try to keep your class names simple and descriptive. Use whole
words-avoid acronyms and abbreviations (unless the abbreviation is much more
widely used than the long form, such as URL or HTML).

Methods
Methods should be verbs, in mixed case with the first letter lowercase, with the first
letter of each internal word capitalized.

Variables

ccllaassss HHeellllooWWoorrlldd;;
IInntteeffaaccee SSaayyHHeelllloo;;

vvooiidd hheelllloo(());;
vvooiidd ssaayyHHeelllloo(());;

iinntt iinnddeexx;;
cchhaarr tteemmppCChhaarr;;

Developing a System to help programmers achieve a good coding style
__

__ 12 ___

Except for variables, all instance, class, and class constants are in mixed case with a
lowercase first letter. Internal words start with capital letters. Variable names
should not start with underscore _ or dollar sign $ characters, even though both are
allowed.

Variable names should be short yet meaningful. The choice of a variable name
should be mnemonic- that is, designed to indicate to the casual observer the intent
of its use. One-character variable names should be avoided except for temporary
"throwaway" variables. Common names for temporary variables are i, j, k, m, and n
for integers; c, d, and e for characters.

Microsoft
DotNet(c#)

Namespaces
Pascal case no underscores. Use company name, technology name or domain name
as root. Any acronyms of three or more letters should be in pascal case (Xml
instead of XML) instead of all caps.

Classes and structs
Pascal Case, no underscores or leading "C" or "cls". Classes may begin with an "I"
only if the letter following the “I” is not capitalized;

Interface
Follow class naming conventions, but start the name with "I" and capitalize the
letter following the "I"

Attribute Class
Follow class naming conventions, but add Attribute to the end of the name

SSyysstteemm..WWiinnddoowwss..FFoorrmmss;;

ppuubblliicc ccllaassss WWiinnFFoorrmm

ppuubblliicc ddeelleeggaattee vvooiidd
HHeellllooWWoorrllddCCaallllBBaacckk;;

TABLE 2: COMMON USED LANGUAGE-SPECIFIC CONVENTIONS [13, 14 and 15]

Developing a System to help programmers achieve a good coding style
__

__ 13 ___

2.4 CODING INDENT STYLE IN CODING STYLE

An indent style is a convention governing the indentation of blocks of code to convey
the program's structure. It contains some rules which will make the code in a readable
fashion. Indent style is not a requirement for a lot of programming languages and
nearly all the compiler will skip the indent style. So indent style can’t affect the
efficiency of the compiled applications. However indent style will affect the size of
the compiled applications: the larger of indentation is the bigger file is. The size of the
indent is independent of the style. A lot of early program source code used “tab”
characters for indentations, for simplicity and to save the source file size.

There are many different common used indent styles. Different programming
language may required different indent styles which is much suit for that
programming language. The following six indent styles are the most popular used
styles. [16]

1. K&R STYLE

The K&R style is from a book called The “C Programming Language” (by Brian
Kernighan and Denis Ritchie). This indent style is common used in C
programming language in this book. It is also popular for C++ and C#
programming language. It keeps the first opening brace on the same line as the
control statement, indents the statements within the braces, and puts the closing
brace on the same indentation level as the control statement.

FIGURE 4: K&R INDENT STYLE EXAMPLE

2. VARIANT: 1TBS

Variant: 1TBS coding indent style is a set of K&R style, it sometimes refer to
“The one true brace style”. In this style, the constructs that allow insertions of
new code lines are on separate lines, and constructs that prohibit insertions are on
a single line. The benefits of this style are that the first brace don’t need an extra
line by itself and the ending braces line up with the statement it conceptually
belongs to. This will save a lot of space. It will also make the code have a good

Developing a System to help programmers achieve a good coding style
__

__ 14 ___

appearance. [17] This coding indent style makes it difficult to scan the source
code for the opening brace of a block; however it is easy to find the beginning of
the block by locating the first line above the closing brace which is indented to
the same level. This coding indent style is for ActionScript, JavaScript, and Java
along with the Allman style.

FIGURE 5: INDENT STYLE EXAMPLE

3. ALLMAN STYLE

The Allman indent style is named after Eric Allman. It is sometimes referred to as
“ANSI style” for its use in the documents describing the ANIS standards. This
coding indent style has several advantages. The source code written with this
coding indent is clearly set apart from the containing statement by lines that are
almost completely whitespace, it also improve the readability of the source code.
Besides the source code written with this indent style can be easily commented,
removing, editing. [18]

One of the disadvantages of this style is that each of the enclosing braces
occupies the entire line. Though this style can improve the readability, however it
takes too many space and the length of the code for each component in the source
code is very long.

This style is common used in many develop tools: Microsoft VS DotNet 2005
and Apple’s Xcode.

Developing a System to help programmers achieve a good coding style
__

__ 15 ___

FIGURE 6: ALLMAN STYLE INDENT STYLE EXAMPLE

4. GNU STYLE

The GNU coding style was first used by Richard Stallman and other GNU Project
volunteers in order to make the GNU system clean, consistent, and easy to install.
GNU style puts braces on a line by themselves. The braces take up two spaces,
and the contained code is indented by another two spaces. This coding style both
get the advantages from Allman style by removing the possible Whitesmiths
disadvantage of braces not standing out from the block. This coding indent style
also refers to the GNU Coding Standards which cover the minimum of what is
important when writing GUN code.

FIGURE 7: GNU STYLE INDENT STYLE EXAMPLE

5. BANNER STYLE

The banner style is common used in mark-up language like HTML, XML. The
developers can insert closing brackets in the last line of a block. It makes
indentation the only way of distinguishing blocks of code. This style makes visual
scanning easier. This style is similar to K&R and Allman,

Developing a System to help programmers achieve a good coding style
__

__ 16 ___

FIGURE 8: BANNER STYLE INDENT STYLE EXAMPLE

6. BSD KNF STYLE

BSD KNF indent style is also known as Kernel Normal Form style, this coding
indent style is common used in the Berkeley Software Distribution (BSD)
operating system. This indent style is used widely both in userland code and
kernel code. It is a thoroughly-documented variant of K&R style as used in the
Bell Labs UNIX source code (Version 6 and Version 7).

FIGURE 9: BSD KNF STYLE INDENT STYLE EXAMPLE

2.5 CONCLUSIONS
This chapter gives an overview of the coding standards, and discussed the concept of
a coding standard. This chapter also explains the most used and important elements of
a coding standard like naming conversion, indent style. Naming conversion helps
make the program more readable and meaningful naming conversions make the
program easy to understand. Indent style is the style that affects the structure of the
code and a good indent style makes the code easy to read and also show the condition
relationship clearly. It is also a powerful ally for writing good code.

Developing a System to help programmers achieve a good coding style
__

__ 17 ___

3. CODING STANDARDS TOOLS

3.1 INTRODUCTION

Coding standards is a broad topic and people have made a lot of attempts to use it to
achieve better source code. Technologies from different domains have been
developed and used to improve it. In this chapter, technologies such as code
inspection technology, code renew technology and code refactoring technology will
be discussed as matters that affect coding standards. Most of these technologies will
be used in the implementation section of this project.

3.2 CODE INSPECTION TECHNOLOGY

Code inspection is one of the code review practices for the source code of project. The
goal of code inspection is to make all the inspectors achieve consensus on the coding
style of source code. That means code inspection can help the developers to approve
the coding style of the project. A common code inspection typically includes source
code requirement specifications and code review plans. In a code inspection process, a
sample of source code will be selected and a team will work on the source code to
identify defects and improve the coding style of the project. [19]

Benefits of coding inspection:

1. To improve quality of the software design
2. To reduce software decay / software aging, software complexity, software

maintenance costs
3. To increase software understanding, software productivity
4. To facilitate future changes

3.2.1 CODE INSPECTION TOOLS

Currently a lot of tools that can do code inspection automatically tend to focus on
improving code quality from a technical perspective. These tools will do the job from
two perspectives. [20]

1. By checking for the existing source coding.
The fewer bugs that are detected in the source code, the higher quality of that code is.
There are also two levels from this perspective: low-level-bug-detect and
high-level-bug-detect. The Low-level-bug-detect focuses on the source code itself, the
High-level-bug-detect focuses on run-time bugs. When the applications encounters
errors, the related source code will be detected and shown to the developer.

Developing a System to help programmers achieve a good coding style
__

__ 18 ___

2. Improve the coding style of the source code.
The code inspected tools also work on the programming style of the source code.
Different code inspection tools contain different versions of programming standards.
A good source code inspecting tool can convert the source code to a good style and
have good appearance.

FIGURE 10: CODE INSPECTION TOOLS

3.2.2 INTRODUCTION TO SOFTWARE REFACTORING

Software refactoring is a specific implementation of code inspection. It is a process of
changing software source code. It does not alter the external behaviour of the source
code but it can improve internal non-functional properties of the software. Software
refactoring improves the code from the following perspectives [21]:

l Improve source code readability
l Change code style to a given programming paradigm
l Simplify code structure, to improve maintainability of the source code
l Improve performance or improve code extensibility.

Software code refactoring is one of the best practices for programmers who would
like to improve their source code quality.

Developing a System to help programmers achieve a good coding style
__

__ 19 ___

FIGURE 11: IT’S NECESSARY TO DO CODE REFACTORING

As software refactoring has many benefits, software refactoring becomes one of the
most important steps in software development cycle such as extreme programming
and agile methodologies.

FIGURE 12: SOME CODING REFLECTING TOOLS

3.2.3 SOFTWARE REFACTORING PROCESS

Software refactoring contains several transformation steps: [22]

1. Try to set up a goal-reasoning model.
2. According to the software metrics, decide which alternative soft-goal should be
applied first.
3. Picking an effective refactoring among the source code to achieve soft-goal;
4. Applying the selected refactoring technique.

Developing a System to help programmers achieve a good coding style
__

__ 20 ___

FIGURE 13: PROCESS OF SOFTWARE REFACTORING [24]

When software developers attempt to do code refactoring for source code, they may
have a problem: “When and how to do code refactoring”. In most cases, code
refactoring can be done after each component is released. The maintainability of the
source code is also arguably a problem of subjectivity. Many developers may find it is
much easier to maintain a software system which is developed by themselves than
maintaining other programmers' code. Sometimes the developers may feel
maintaining other developers’ source code is just as hard as re-write that part of
program. This means that whether the source code should be refactored is often
subjective. The changes that made from the code refactoring are called
"transformations" by Martin Fowler who has written a famous book about refactoring.
Individually, simple transformations may make small improvements while a lot of
transformations may make a far improvement to the source code. Code refactoring
commonly includes several different aspects: reducing scope (Do changes in every
piece of code), replacing complex instructions (make the code looks simple and
clearly) and combining multiple statements into one statement. [21]

BBAADD SSMMEELLLL PPRROOPPOOSSEEDD RREEFFAACCTTOORRIINNGG
Duplicated code Extract method pull up variable form template method

substitute algorithm
Long method Extract method replace temp with query introduce parameter

object preserve whole object replace method with method object
large class Extract class extract subclass
Lazy class Move method
Feature envy Collapse hierarchy inline class

TABLE 3: HOW DO WE KNOW WHAT TO REFACTOR

3.2.4 CODING REFACTORING PATTERNS

Many refactoring patterns have been designed since Martin Fowler published his
book which is about coding refactoring. Coding refactoring patterns is a design

Developing a System to help programmers achieve a good coding style
__

__ 21 ___

pattern that can improve the design of existing code. Using design patterns to improve
an existing design is better than using patterns early in a new design which will be
improved. So Joshua Kerievsky said: “The developers can improve designs with
patterns by applying sequences of low-level design transformations.” [25]

Combining the techniques of design patterns and coding refactoring can make great
improvements in the project’s source code. With pattern-based refactoring applied,
developers can get an improved source code structure. The new structure then allows
the existing capabilities to be modified and improved. It also benefit from adding new
features by localizing the efforts. Pattern-based refactoring also can reduce the cost
and the most important contribution of pattern-base refactoring is that it can generate
high quality source code which has a good coding style, and the time spent on
refactoring the source code has laid the groundwork for future business. [26]

3.3 CODE REVIEW

“Code review is systematic examination of computer source code intended to find and
fix mistakes overlooked in the initial development phase.” [27]

Find and fix mistakes is one of its benefits. Code review is very useful for improving
the style of source code which will make the source code look more professional.
Code review can be divided into two main categories: formal code review and
lightweight code review. [28]

FIGURE 14: CODE REVIEW BRINGS BENEFITS

1 Formal code review

Formal code review involves a careful and detailed process with multiple
participants and multiple phases.

2 Lightweight code review
Lightweight code review requires less overhead than formal code inspections,
though it can be equally effective when done properly.

Developing a System to help programmers achieve a good coding style
__

__ 22 ___

3.3.1 APPROACHES TO CODE REVIEW
There are many different approaches to code reviewing which are based on different
code review modules, however most code review modules have the same components.
Those components are;

1. Structure
2. Techniques
3. Inputs
4. Environment
5. Technology

Most code review modules are designed based on these components. One of the
famous examples is security code review model. In a security-related model, the
approach to code review depending on model components. With the help of this
model, code reviews can show additional values by improving other security tasks
such as testing and design. [29]

SECURITY CODE REVIEW MODEL [30]

There are four steps to achieve a security code review

• Step 1: Establish the goals and code review object objectives for the code review.
• Step 2: Perform a full code scan, to find bugs and improve the style of the code,

the most important step for code styles.
• Step 3: Use the results of Step 2, performing another analysis.
• Step 4: Review for coding style according to the software source code architecture.

Developing a System to help programmers achieve a good coding style
__

__ 23 ___

FIGURE 15: PROCESS OF CODE REVIEW [31]

Other models have the similar approaches, besides, there are also some particular tips
for achieve good code review.

1. Review fewer than 200-400 lines of code at a time.
2. Aim for an inspection rate of less than 300-500 LOC/hour.
3. Take enough time for a proper, slow review, but not more than 60-90 minutes.
4. Authors should annotate source code before the review begins.
6. Checklists substantially improve results for both authors and reviewers.
7. Verify that defects are actually fixed!
8. Managers must foster a good code review culture in which finding defects is
viewed positively.
9. Beware the “Big Brother” effect.
10. Lightweight-style code reviews are efficient, practical, and effective at finding
bugs.

Good code review can help software developers to identify bugs, encourage
collaboration, make code more maintainable and improve the appearance of source
code; this can make the source code to reach high quality.

3.3.2 CODE REVIEWS ACROSS THE TEAM

There are many teams in the same company or organizations. People who are in the
same team can follow programming standards easily, however different teams may
have different skills. One of resolutions is to have a team leader meeting and develop

Developing a System to help programmers achieve a good coding style
__

__ 24 ___

the same coding standard document for the company or the organization. All the staff
in the company can use this document as a reference which will be used in every team,
and then distributed to everybody at the coding standard meeting. All of the members
of the same team should go to the meeting and be prepared to discuss the various
points in the document. After discussing all points in the programming standards,
people may have different opinions about each point, at the end of the meeting, all
members must agree upon the coding standards define the uncertain parts. If there are
a lot of staffs who don’t agree on some points, a new team leader meeting should be
held. In the team leader meeting, those points will be discussed again. So a new
version of coding standard document with appropriate changes based on the
suggestions from all of the team members can then be generated. [32]

FIGURE 16: CODE WITHOUT CODING REVIEW

It’s not enough for the team leader to do the above jobs. According to research
regarding this problem, the researcher found about 70% of the code follows the
specified coding standard, 18% of the source code follows other standards
(Developer’s familiar coding standards) and 12% of the source code is in bad coding
style. In order to resolve this problem, it’s necessary to hold code renew meetings.
[14]

When the development of the project starts, code review meetings should be held, to
ensure that everybody follows the rules. There are three types of code reviews are
recommended when developing the software: [33]

l Peer-Peer review

The members from other developing teams review the code to ensure that the
code follows the coding standards and meets requirements which are indicated in
the coding standard. This type of coding review can also contain some unit
testing. Every file in the developing project should go through this process.

l Architect review

Developing a System to help programmers achieve a good coding style
__

__ 25 ___

The architect of the team should review the core components of the project to
ensure that the coding follows the coding standard and meets requirements, and
the application also reaches the requirements of the design. Make sure that there
are no “big” mistakes that can affect the project in the long run.

l Group review

The team leader or the architect of the team should select one or more files from
the core components of the product and ask the team members to review the
source code. After the members review the source code, a team meeting should
be held in order to let members show problems. In the review meeting, every
section of the source code should be gone through and every member should give
their own suggestions on how to improve the code quality. Group review can be
held 1-2 times every week. [34]

3.4 CONCLUSIONS
This chapter introduces several different types of coding technologies which can
affect the quality of the code and the attempt that people have made to achieve better
source code. Because of the coding standards can’t be strictly followed and used in
real life, it cost people more to get the better code and along with the technology
developed, people had found several ways combined with coding standards to get
programmers writing good ,readable, consistent code. With the helps of those coding
technologies, it will greatly help programmers to do code review or code refactoring.

Developing a System to help programmers achieve a good coding style
__

__ 26 ___

4. COMMONLY USED STANDARDS

4.1 INTRODUCTION

It is less important which programming standard is chosen during the development
process, than that the selected process is consistently applied throughout the process.
The members in the same team should also follow the same specified coding
standards, otherwise, reading code that follows different coding standards can become
very difficult. In the follow sections, some commonly used programming standards
will be discussed.

4.2 C++ PROGRAMMING STANDARDS

C++ programming was developed by Bjarne Stroustrup at Bell Labs; the reason it was
developed was to enhance to the C programming language. It was originally named
"C with Classes" and was renamed to C++ in 1989. [35]

C++ is a middle-level programming language as it has both high-level and low-level
language features. It is widely used in the IT industry. There are a lot of software
developed in C++, including application software, systems software, low-level device
drivers, embedded software, hardware software, entertainment software and server
and client software. The ISO/IEC JTC1/SC22/WG21 working group standardized
C++ and published the international standard ISO/IEC 14882:1998 (known as C++98)
in 1998. After several years, the working group processed defect reports, and
published a new version of the C++ standard, ISO/IEC 14882:2003, in 2003. That
standard is still current, but it was re-mended in 2005 (Known as Library Technical
Report), however while it is not an official part of the standard, this version of the
C++ programming standards specifies a number of extensions to the standard library,
which were expected to be included in the next version of C++. The next version of
the C++ programming standard is still under development. [36]

FIGURE 17: A LOT OF SOFTWARE WAS DEVELOPED IN C++/C

Developing a System to help programmers achieve a good coding style
__

__ 27 ___

After C++ was developed, a lot of different C++ programming standards were created,
most of those programming standards are a subset of the C++ programming standards
which was formed in 1998 (ISO/IEC 14882:1998).

NNAAMMEE AAUUTTHHOORRSS ((OORRGGAANNIIZZAATTIIOONNSS))
C++ Coding Standard Geotechnical Software Services
C++ Coding Standards Alan Bridger&Jim Pisano
High Integrity C++ Coding Standard
Manual

www.Programmingresearch.com

C++ Coding Standards Herb Sutter&Andrei Alexandrescu
C++ Coding Standards www.arcticlabs.com
C++ Programming Standards and
Guidelines

Science Infusion and Software
Engineering Process Group (SISEPG)

Google C++ Style Guide www.google.com
Apache C++ Coding Standard www.apache.com
C++ Coding Style Albert Sandberg

TABLE 4: DIFFERENT TYPES OF C++ CODING STANDARDS

The most popular programming style for the C++ (and C) language is the Kernighan
and Ritchie (K&R) style. K&R programming style provide a solution which can solve
the following problems.

1. Reusability

a) Self documenting code
b) Internationalization
c) Maintainability
d) Portability

2. Optimization
3. Build process
4. Error avoidance
5. Security

The K&R programming style is far too general in its scope, so more specific rules
needed to be established. This programming standard also has an annotated form that
makes it far easier to use during project code reviews than many other existing
programming styles. In addition, programming recommendations generally tend to
mix style issues with language technical issues in some confusing manners. [37]

http://www.Programmingresearch.com
http://www.arcticlabs.com
http://www.google.com
http://www.apache.com

Developing a System to help programmers achieve a good coding style
__

__ 28 ___

CCOOMMPPOONNEENNTTSS SSHHOORRTT DDEESSCCRRIIPPTTIIOONNSS
Layout of the Recommendations 1. Guide-lines should contains motivation, background and additional information

The Importance of
Recommendation

1. Most of the violations to the recommendations are allowed if it enhances readability

Naming Conventions in C++ 1. Names of types should be in mixed case starting with upper case.
2. The names of the namespaces should be all in lower-case.
3. Private class variables should have underscore suffix.
4. Generic variables should have the same name as their type.
5. Variable names should be in mixed case starting with lower case.
6. The name of the constants should be all in upper-case with underscore to separate words.

Specific Naming Conventions 1. The key words (get & set) should be use used where an attribute is accessed directly.

2. If there is an object or a concept is established, the key words (initialize) can be used

C++ Source Files 1. C++ header files should have the extension .h or .hpp.
2. File content must be kept within 80 columns.
3. Special characters like page break can be avoided.
4. All definitions should be in source files.

Types 1. Types that are local to one file should only be declared in that file.

2. Type conversions must always be done explicitly.
The Statements in C++ source files

Variables 1. Variables should be initialized as soon as they are declared.
2. It’s good habit to use as few global variables as possible
3. Variables should be declared in the smallest scope possible.
4. The meaning of the variables should be clearly.

Developing a System to help programmers achieve a good coding style
__

__ 29 ___

5. Class variables can’t be declared public.

Loops 1. The variables in the loop statement should be initialized immediately before the loop.
2. The use of break and continue in loops should be avoided
3. do-while loops can be avoided in the source code file of C++

Layout and Comments 1. Method definitions should have the specified forms, all the methods in the source file or in the same
project should be I the same forms.

2. Class and method document or head comments should follow the JavaDoc comment convention.

TABLE 5: GENERAL TIPS FOR C++ PROGRAMMING STANDARDS [38]

Developing a System to help programmers achieve a good coding style
__

__ 30 ___

4.3 C# PROGRAMMING STANDARDS

C# is an object oriented, simple, and type-safe programming language which was
developed by Microsoft in 2000 and is known as Microsoft's primary developing
language. Its principal designer and lead architecture is Anders Hejlsberg who works
in Microsoft. He was previously involved with the design of several different
programming languages like TurboPascal, Borland Delphi, and Visual J++. C# first
appeared in Microsoft Visual Studios 2003. [39]

FIGURE 18: C# PROGRAMMING LANGUAGE

C# reflects the underlying Common Language Infrastructure (CLI). CLI is an open
specification which is developed by Microsoft. It describes the executable code and
runtime environment which forms the core for a number of runtimes (the
Microsoft .NET Framework, Mono, and Portable.NET). CLI implements most of the
C# runtime intrinsic types which correspond to value-types. However Microsoft does
not state that a C# compiler must target a Common Language Runtime or generate a
CLI. That means C# compiler could generate machine code like traditional compilers
of C++ or C. [40]
Some features of C#: [41]

1. Memory address pointers must be used within specifically marked which

indicated that the code is unsafe and programs with unsafe code need some
appropriate permissions to run

2. The local variables in C# programming language can't attack variables of the
enclosing block

Developing a System to help programmers achieve a good coding style
__

__ 31 ___

3. C# doesn’t define global variables or method so all the methods and members
must be declared within classes.

4. C# programming language provides full type reflection and discovery.
5. Same to Java programming, multiple inheritances is not supported in c#, however

the class can implement many interfaces.
6. As there is some permission for using the memory address pointers so C# is more

type-safe than C++ and C programming language.

Like C++, after C# has been developed, there are many different types of C# coding
standards appearing. Most of the C# coding standards are designed based on the same
models (Microsoft generated the model). The organizations or companies define their
own rules in each section. This model contains: [42]
l Relationship to the Common Type System and the Common Language

Specification
l Naming Guidelines
l Class Member Usage Guidelines
l Type Usage Guidelines
l Guidelines for Exposing Functionality to COM
l Error Raising and Handling Guidelines
l Array Usage Guidelines
l Operator Overloading Usage Guidelines
l Guidelines for Implementing Equals and the Equality Operator
l Guidelines for Casting Types
l Common Design Patterns
l Security in Class Libraries
l Threading Design Guidelines
l Guidelines for Asynchronous Programming

NNAAMMEE AAUUTTHHOORRSS ((OORRGGAANNIIZZAATTIIOONNSS))
C# programming standards Microsoft
C# Naming Conventions Kingsoft.com
C# Coding Style Guide Mike Krüger
Naming Conventions for C# Paulo Morgado
IDesign C# Coding Standard www.idesign.net
C# coding standards Jeff Key
Coding Standard: C# Vic Hartog and Dennis Doomen

TABLE 6: DIFFERENT TYPES OF C# CODING STANDARDS
Although there are many types of C# coding standards, most of them are designed
based on C# programming standards (Microsoft Version), so the Microsoft version C#
coding standard has become the most commonly used C# coding standard in IT
industry. This version is also based on the design of the C# DotNet model. A set of
important rules in this standard are listed below.

http://www.idesign.net

Developing a System to help programmers achieve a good coding style
__

__ 32 ___

TTYYPPEE SSTTAANNDDAARRDDSS ((SSTTAANNDDAARRDD BBAASSEEDD UUPPOONN
MMIICCRROOSSOOFFTT ..NNEETT LLIIBBRRAARRYY SSTTAANNDDAARRDDSS))

Classes and Structs

Pascal Case, no underscores or leading "C" or "cls".
Classes may begin with an "I" only if the letter
following the “I” is not capitalized; otherwise it looks
like an Interface. Classes should not have the same
name as the namespace in which they reside. Any
acronyms of three or more letters should be pascal-case,
not all caps. Try to avoid abbreviations, and try to
always use nouns.

Collection Classes Follow class naming conventions, but add Collection to
the end of the name

Parameters Camel Case. Try to avoid abbreviations. Parameters
must differ by more than case to be usable from
case-insensitive languages like Visual Basic .NET.

Delegate Classes Follow class naming conventions, but add Delegate to
the end of the name

Exception Classes Follow class naming conventions, but add Exception to
the end of the name

Class-Level Private and
Protected Variables

Camel Case with Leading Underscore. In VB.NET,
always indicate "Protected" or "Private", do not use
"Dim". Use of "m_" is discouraged, as is use of a
variable name that differs from the property by only
case, especially with protected variables as that violates
compliance, and will make your life a pain if you
program in VB.NET, as you would have to name your
members something different from the accessor/mutator
properties. Of all the items here, the leading underscore
is really the only controversial one. I personally prefer it
over Straight underscore-less camel case for my
private variables so that I don't have to qualify variable
names with "this." to distinguish from parameters in
constructors or elsewhere where I likely will have a
naming collision. With VB.NET's case insensitivity, this
is even more important as your accessory properties will
usually have the same name as your private member
variables except for the underscore.

Interfaces Follow class naming conventions, but start the name
with "I" and capitalize the letter following the "I"

Functions and Subs Pascal-Case no underscores except in the event
handlers. Try to avoid abbreviations. Many
programmers have a nasty habit of overly abbreviating
everything. This should be discouraged. We're not
designing license plates or being charged by the letter

Developing a System to help programmers achieve a good coding style
__

__ 33 ___

TABLE 7: A SET OF C# PROGRAMMING LANGUAGE STANDARDS [43]

4.4 VISUAL BASIC PROGRAMMING STANDARDS
The latest version of Visual Basic (VB), it is also called Visual Basic .NET (VB.NET).
Visual Basic (VB) is an object-oriented computer programming language
programming language which is developed by Microsoft. Visual Basic also contains
an integrated development environment (IDE) for its COM programming model. The
first version of Visual Basic was introduced in 1991. Up to now there have been 10
versions of Visual Basic programming language. Version 6 and the earlier versions
are event-derived programming language while the later versions are object-oriented.
There are also many programming standards for Visual Basic. The first version of the
Visual Basic programming standards were published by Microsoft in 1991, as it is
widely used in the early 1990s; many companies or organization also published their
own VB coding standards. [44]

NNAAMMEE AAUUTTHHOORRSS ((OORRGGAANNIIZZAATTIIOONNSS))
Microsoft Consulting Services Naming
Conventions for Visual Basic

Microsoft

VB6 Naming Conventions www.vb6.us
Visual Basic/Coding Standards www.kingsoft.com
Visual Basic Coding Standards www.opfro.org

TABLE 8: DIFFERENT TYPES OF VISUAL BASIC CODING STANDARDS

Like C#.Net, Visual Basic coding standards also has its own coding model. The
coding standard model contains seven sections: [45]

l Naming Procedures
l Modifier Tables
l Data Type Modifiers
l Scope Modifiers
l Miscellaneous Modifiers
l Control Modifiers
l Data Access Objects

All Visual Basic coding standards should based on this coding standard model, the
rules defined in the coding standards also should be include in this seven sections.

4.5 JAVA CODING STANDARDS

4.5.1 INTRODUCTION TO JAVA

Java is an object oriented, simple, and type-safe programming language originally
developed by James Gosling from Sun Microsystems. The first version of the Java

http://www.vb6.us
http://www.kingsoft.com
http://www.opfro.org

Developing a System to help programmers achieve a good coding style
__

__ 34 ___

programming language was released in 1995 as a core component of Sun
Microsystems' Java platform. The Java programming Language evolved from another
programming language Oak which was also developed by Sun Microsystems. The
Java programming Language is a platform-independent language which is aimed at
allowing entertainment appliances to communicate [46]. The first version of Java
promised “Write once, run anywhere” (WORA). This means it can prove no-cost
run-times on the popular platforms. Java is a secure programming language as it
allows network and file access restrictions. The new version of Java (Java 2) was
released in December of 1998, the new version of Java provides multiple
configurations to be built for different platforms. For the marketing purposes, Sun
Microsystems renamed Java 2 to Java 2 EE, Java 2 ME and Java 2 SE. [47]

FIGURE 19: JAVA PROGRAMMING LANGUAGE DEVELOP HISTORY

4.5.2 JAVA CODING STANDARDS OVERVIEW

Java is widely used since 1995, and up to now there are more than 4000 different
versions of Java programming standards. The most important and famous one is Code
Conventions for the Java Programming Language which is published by Sun
Microsystems. This version of the Java programming standards contains the standard
conventions which are used in Sun Microsystems Inc. It covers filenames, file
organization, indentation, comments, declarations, statements, white space, naming
conventions, programming practices and includes a code example [48]. Most other
versions of Java programming standards are based on this version. In this research,
the new generated Java programming coding standard is also based on this coding
standard. [49]

Developing a System to help programmers achieve a good coding style
__

__ 35 ___

NNAAMMEE AAUUTTHHOORRSS ((OORRGGAANNIIZZAATTIIOONNSS))
Code Conventions for the Java
Programming Language

Sun Microsystems

Java Programming Language coding
guidelines and standards

IBM

Coding Standards for Java AmbySoft Inc.
Java Programming Style Guidelines Geotechnical Software Services
JavaCoding Standards ESA Board for SoftwareStandardisation

and Control(BSSC)
Java Coding Standards Ray Ontko
Java Coding Standard Arnaud Blandin

TABLE 9: DIFFERENT TYPES OF C# CODING STANDARDS

4.5.3 JAVA CODING STANDARDS MODEL

The Java coding standards model which is designed by Sun Microsystems contains
the following sections:

l filenames
l file organization
l indentation
l comments
l declarations
l statements
l white space
l naming conventions

Filenames mean the name of the Java source code file. Here it also contains File
Suffixes and Common File Names.

File organization also can be called package organization; it introduces the source
code file saved path and source code file information.

Indentation gives the advice on Line Length and Wrapping Lines.

The section which introduces the comment in Java is one of the most important parts
in the coding standard. In this section, the engineers introduce two types of comments
in Java: Implementation Comment Formats and Documentation Comments.

Declarations introduce the variable, class, interface definition in Java.
Statements tell the programmer how to write source code. The statements section also
includes the following aspects.

Developing a System to help programmers achieve a good coding style
__

__ 36 ___

1. Simple Statements
2. Compound Statements
3. return Statements
4. if, if-else, if else-if else Statements
5. for Statements
6. while Statements
7. do-while Statements
8. switch Statements
9. try-catch Statements

Naming conventions is the most important section in Java. They make source code
more understandable by making it easier to read. They can also give information
about the method of the identifier [50].

IIDDEENNTTIIFFIIEERR TTYYPPEE EEXXAAMMPPLLEESS
Packages com.apple.quicktime.v2

edu.cmu.cs.bovik.cheese
Classes class Raster;

class ImageSprite;
Interfaces interface RasterDelegate;

interface Storing;
Methods runFast();

getBackground();
Variables char c;

float myWidth;
Constants static final int MAX_WIDTH = 999;

TABLE 10: NAMING CONVENTIONS IN JAVA PROGRAMMING LANGUAGE

The Sun Microsystems’ version of coding model is the most famous and important
coding model for Java, however it is also one of the most complex coding models.
There are also some simple models. For example:

Watts Humphrey’s model which is mentioned in his book “A Discipline for Software
Engineering” [51]
l Structure and Documentation
l Naming conventions
l Recommendations
l Related Documents

Scott Ambler’s model [52]
l General Recommendations
l Naming Conventions
l Files
l Statements

Developing a System to help programmers achieve a good coding style
__

__ 37 ___

l Layout and Comments

In this project, the model from “The Elements of Java Style” will be used.
l Formatting Conventions
l Naming Conventions
l Documentation Conventions
l Programming Conventions
l Package Conventions

4.6 CONCLUSIONS

This chapter discussed the coding standard from different programming languages.
C++, C# and Java are commonly used and thus there are a lot of coding standards. For
different programming languages, the coding standard is different and this is
determined by the programming language itself. Based on the different features and
advantages, this project takes Java as the programming language to study and improve
its coding standard. This is because Java is one of the most widely used programming
languages with many different coding standards.

Developing a System to help programmers achieve a good coding style
__

__ 38 ___

5. TOWARDS A NEW STANDARD

5.1 INTRODUCTION

Some reasons why Java coding standards are important for programming [53]
l 80% of the lifetime cost of a piece of software goes to maintenance.
l Hardly any software is maintained for its whole life by the original author.
l Code conventions improve the readability of the software, allowing engineers to

understand new code more quickly and thoroughly.
l Facilitates sharing of source coding among different developers, especially teams

of programmers working on the same project.
l If you ship your source code as a product, you need to make sure it is as well

packaged and clean as any other product you create.

The results above show that a good Java coding standard is important. However, as
there are several different versions of Java coding standards, some of them are very
difficult to learn. According to the survey undertaken in this research of Java
programming standards, more than 20% people don’t know which version of the Java
programming standard they are using, and more than 35% of developers agree that
more than 30% of their code doesn’t following any programming standard. This
survey shows that a large number of developers can’t deal with programming
standards well. Many of these developers think that it is easy to get confused with the
existing coding standards; they are difficult to learn and to remember. A survey for
some simple and short Java programming standards which are based on the existing
Java convention standard shows that more than 40% developers think it is necessary
to get such version of the Java programming standard and 30% of them are willing to
learn. Most of them are students or new programmers. [54]

This new version of the Java programming standard comes from the existing Java
programming standards. The tips or rules are generated from the most commonly used
rules and tips. More than 60% of the developers are using these tips and rules. They
are correct, good and easy to learn. A survey shows that more than 50% of developers
agree that code following this version of the Java programming standard is good and
the coding standard is easy to learn.

5.2 NAMING CONVENTIONS

5.2.1 INTRODUCTION TO NAMING CONVENTIONS

Naming conventions are one of the most important aspects of writing java source
code. Good naming conventions can help the programmer to read and understand the

Developing a System to help programmers achieve a good coding style
__

__ 39 ___

code. It can also help the developer to maintain the source code. For the naming
conventions of different components we can set the stage with a few basics: [55]

1. Use meaningful English descriptors which can describe the variables, methods,
classes, interfaces, packages and other components clearly. This can make the
code easy to understand, maintain and enhance.

2. Use mixed infix-caps case to make the names readable. Different components
have different naming conversions; however most of them should follow the
mixed infix-caps case.

3. Use meaningful abbreviations sparingly, make sure that people who read the
source code can understand them easily.

4. Avoid long names and strange characters, the length of the name should be less
than 15. Avoid using some string characters like underscores (_).

Most naming conventions in Java should follow the ways above. A good naming
convention can make the source code professional.

Developing a System to help programmers achieve a good coding style
__

__ 40 ___

IIDDEENNTTIIFFIIEE
RR TTYYPPEE

RRUULLEESS FFOORR NNAAMMIINNGG EEXXAAMMPPLLEESS

Packages The prefix of a unique package name is always written in all-lowercase
ASCII letters and should be one of the top-level domain names,
currently com, edu, gov, mil, net, org, or one of the English two-letter
codes identifying countries as specified in ISO Standard 3166, 1981.
Subsequent components of the package name vary according to an
organization's own internal naming conventions. Such conventions
might specify that certain directory name components be division,
department, project, machine, or login names.

com.apple.quicktime.v2
edu.cmu.cs.bovik.cheese

Classes Class names should be nouns, in mixed case with the first letter of each
internal word capitalized. Try to keep your class names simple and
descriptive. Use whole words-avoid acronyms and abbreviations (unless
the abbreviation is much more widely used than the long form, such as
URL or HTML).

class Raster;
class ImageSprite;

Interfaces Interface names should be capitalized like class names.

interface RasterDelegate;
interface Storing;

Methods

Methods should be verbs, in mixed case with the first letter lowercase,
with the first letter of each internal word capitalized.

run();
runFast();
getBackground();

Variables

Except for variables, all instance, class, and class constants are in mixed
case with a lowercase first letter. Internal words start with capital letters.

Int i;
Char c;

Developing a System to help programmers achieve a good coding style
__

__ 41 ___

Variable names should not start with underscore _ or dollar sign $
characters, even though both are allowed.
Variable names should be short yet meaningful. The choice of a variable
name should be mnemonic- that is, designed to indicate to the casual
observer the intent of its use. One-character variable names should be
avoided except for temporary "throwaway" variables. Common names
for temporary variables are i, j, k, m, and n for integers; c, d, and e for
characters.

Float myWidth;

Constants

The names of variables declared class constants and of ANSI constants
should be all uppercase with words separated by underscores ("_").
(ANSI constants should be avoided, for ease of debugging.)

static final int MIN_WIDTH = 4;
static final int MAX_WIDTH = 999;
static final int GET_THE_CPU = 1;

TABLE 11: DETAILS FOR INTERFACE/CLASS DEFINITIONS [56]

Developing a System to help programmers achieve a good coding style
__

__ 42 ___

5.2.2 PACKAGE NAMES

In most object-oriented programming languages, the package names which can used
to distribute to other organizations should include the lowercase domain. It is the
same in Java coding standards. Commonly used Java coding standards require the
programmer to use the reversed, lower-case from of the organization’s internet
domain names as the root qualifier for the package names. [57]

Examples (Java version):

Sun Microsystems has also reserved the use of the package names: java and javax.
All the package names starting with java and javax are published by the Sun
Microsystems.

The qualified portion of a package name should use a single, lowercase, meaningful
English word as the root name. However the name of the package may consist of
several meaningful words. A common solution is to use one of the meaningful words
which may present the meaning of the package. [58]

FIGURE 20: ECLIPSE PACKAGE NAME TOOLS

If there is a newly released version package, the new package should have the same
name as the previous one. A new package with a lot of contents changed should have
a new name.

com.java.helloworld.v1
com.java.helloworld.v2

Developing a System to help programmers achieve a good coding style
__

__ 43 ___

5.2.3 TYPE NAMES

The type name is also a very important part for the Java coding style. Many C++/C
programmers may use C++/C programming style to name Java type names. There are
several different ways of naming types in Java, however the key thing is to focus on
“meaningful naming”. When the developer defines a class, variable, method or
interface, meaningful names will help the programmers to understand meaning of the
code. [59]

FIGURE 21: FREQUENTLY USED JAVA NAMING WAYS

The name of a Java source file should be same as the public class that contains its
source file. All type names should use the infix-caps style. The name should start with
an upper-case letter and capitalize the first letter of any subsequent word in the name.
All the words in the name should be meaningful. Source file / Class name should be
nouns or noun phrases and never use underscores to separate words. The name of the
interface can depend on the purpose of the interface. [60]

FIGURE 22: EXAMPLES OF JAVA FILE NAMES

5.2.4 CLASS NAMES/ INTERFACE NAMES

The class or interface declarations contain at least two parts: the Java keywords
(Class/Interface) and the name of the Class/Interface to be created.
An interface definition can have two more parts: the access specification (public) and
a list of super-interfaces. So the full interface declaration can be like this:

Developing a System to help programmers achieve a good coding style
__

__ 44 ___

The access specification (public) indicates that the interface can be accessed by any
other classes (both in the same package or different packages). The commonly used
approach to naming the classes and interfaces is to capitalize the first letter of each
word that appears in a class or interface. [61]

FIGURE 23: NAMING THE CLASSES/INTERFACE

According to the commonly used naming convention, the class/interface name also
should use nouns or adjectives. The name of the classes/interfaces should relate to the
attributes, static service or constants. Give classes/interface that related attributes,
static services or constants a name that corresponds to the plural form of the attribute,
service, or constant type defined by the class. [62]

FIGURE 24: THE NAME OF THE CLASS/INTERFACE SHOULD GROUP RELATED

Alternatives: [63]

1. Interface name can start with letter “I”.
Coad and Mayfield (1997) suggest appending the letter ‘I’ for the first
letter of interface names, so the name of interface can be
IInterfaceName or IIterfaceNewName. This approach helps to
distinguish interface names from class and package names. This potential
naming convention makes the class diagrams easier to read. This interface

[Public] interface Name-Of-The-Interface [extends
SuperInterface1, SuperInterface2]

Developing a System to help programmers achieve a good coding style
__

__ 45 ___

naming convention is also popular for Microsoft’s COM/DCOM
architecture.

2. Interface name can end with letter “Ifc” as the last part of the name.

Lea (1996) suggests appending ‘Ifc’ to the end of an interface name, so
interface name following this naming conversion will be like
NewInterfaceIfc or ThreadInterfaceIfc. This approach is not
common used in the really IT industry.

When define the abstract class, public and protected interface. It is important to
minimize the size of the types. There are several reasons for this:

1. Learn ability.
2. Reduced coupling.
3. Greater flexibility.

Minimizing the size of the types can help the programmers to learn how to use a class;
the only thing they need to do is just to understand it's a public interface. The smaller
the public interface, the easier it is to learn a class. The smaller the public interface is,
the greater the encapsulation and the flexibility are.

5.2.5 METHOD NAMES

Method names should be also in infix-caps style, and start with a lower-case letter,
and capitalize the first letter of any subsequent word in the name. All other characters
except the first letter of any subsequent word in the name are lower-case. The Sun
Java coding conventions recommend not using underscores to separate words. This is
identical to the naming convention for non-constant fields; however, it should always
be easy to distinguish the two from context [64].

The method name also should be verbs which can define the actions or operations for
the methods. The JavaBeans specification establishes standard naming conventions
for methods that give access to the properties of a JavaBeans implementation. These
conventions should be applied when naming methods in any class, regardless of
whether it implements a Bean [65].

Developing a System to help programmers achieve a good coding style
__

__ 46 ___

FIGURE 25: DIFFERENT TYPES OF COMMENT

5.2.6 VARIABLE/FIELD/PARAMETER NAMES

According to the Sun Java coding standards, variable/field/parameter names should
use lowercase for the first word and capitalize only the first letter of each subsequent
word that appears in a variable name. The name of those components also should be
nouns. Give collections of objects a name that corresponds to the plural form of the
object type. This enables programmers who read the source code to distinguish
between variables representing multiple values from those representing single values.
[66]

Qualify field variables with “this” key words when using them; this will help the
developer who will read the code to distinguish the field variables from local
variables which make the code much easier to understand and the code become more
clearly.

FIGURE 26: VARIABLES/FIELD/PARAMETER NAMING CONVENTION EXAMPLE

Developing a System to help programmers achieve a good coding style
__

__ 47 ___

5.2.7 CONSTANT NAMES

Same as C++/C, according to several different versions of Java coding standards, the
names of constant variables should use uppercase letters for each word and separate
each pair of words with an underscore when naming constants.

5.3 DOCUMENTATION CONVENTIONS

Java source files contain all the code for the applications. A Java source file should
contain only one public class or interface definition and it may contain several
non-public classes. According to the Sun Java standards, there is no limit to the source
file size; however it is better to keep it less than 2000 lines. The size of the method
should also be kept to less than 200 lines. For the most trivial Java projects, it is better
to keep the source files in a version management system. [67]

5.3.1 PROGRAMMING STANDARDS FOR COMMENTS

Comments can give an overview of the code and provide additional information that
is not obviously shown in the source code. The comments should contain information
that is relevant to reading and understanding the program. It is a good habit to put
Java comments in the source code to make the code easier to enhance and improve
readability. Comments in Java code are only used for readability. The Java compiler
doesn’t deal with the contents of comments, so the size and efficiency of the complied
application won’t be affected by the volume of comments in the source code. Java
programs can have two kinds of comments: Implementation comments and
Documentation comments. [68]

Implementation comments are the comments which are used for commenting out
source code or the comments about the particular implementation. It has two different
formats: Line comments and Block comments. Documentation comments are used for
commenting out the information (usage, functionality) for a particular piece of source
code. [69]

5.3.2 LINE COMMENTS

Line comments are always very short. The line comments can appear on a single line
which is indented to the level of the code that follows. They shouldn’t be used on
consecutive lines for text comments; however, they can be used in consecutive
multiple lines for commenting out a block of code. [70]

Developing a System to help programmers achieve a good coding style
__

__ 48 ___

FIGURE 27: SINGLE LINE COMMENT

5.3.3 BLOCK COMMENTS

Block comments start with a block comment type "/*". Everything after the forward
"/*" will be treated as comment until the characters "*/" end the comment. Block
comments are used to provide descriptions of files, methods, data structures and
algorithms. Block comments can be used at the beginning of each Class and before
each method. They can also be used in other places, such as within methods. Block
comments inside a method should be indented to the same level as the code they
describe. Block comments can’t be nested as they will cause compile errors. [71]

FIGURE 28: BLOCK COMMENTS

The length of each line of the comment can’t be very long. There is no need to
describe every line in the source code. It is a good habit to indent the comments and
keep comments relevant. It is necessary to update the comments after modifying code.
If a comment is no longer relevant, the user should either modify or remove it. [72]

5.3.4 DOCUMENTATION COMMENTS

Java documentation comments are used to describe Java classes, interfaces,
constructors, methods and fields. Each fragment of Java documentation comments are
placed inside the comment delimiters /*…..*/, and all the Java documentation
comments should appear just before the declaration of methods, classes and interfaces.
Java documentation comments can’t be put into a method or constructor definition
block. It is very important and useful to identify and describe any outstanding
problems which associate with a class or method. Indicate any replacements or

Developing a System to help programmers achieve a good coding style
__

__ 49 ___

workarounds that exist would bring a lot of benefit to the user or client. It is greatly
helpful to solve issues and maintain programs if indicate the information. [73]
Java documentation comments should contains public, protected, package, and private
members. A basic supply of documentation comments for all members in the source
file should include packages name and access details. The comments will help the
user or client to gain better control of the project and also improve the lower level
documentation. [74]

SUMMARY DETAILS
Summary
description for
class, field,
interface, and
method

Provide a summary description for each class, interface, field,
and method. Every class, interface, field, and method should be
preceded by a documentation comment that contains at least one
sentence that acts as a summary description of that entity.

Describe the
signature of each
method

Fully describe the signature of each method. The documentation
for each method should always include a description for each
parameter; each checked exception, any relevant unchecked
exceptions, and any return value.

Coding examples One of the easiest ways to explain and understand how to use
software is by giving specific examples. Try to include a simple
example in each nontrivial class and method description. Use
the HTML <pre>…</pre> tags to maintain the formatting of
each example:

Document public,
protected, package,
and private
members

Supply documentation comments for all members, including
those with package, protected, and private access. This allows
for the generation of detailed, implementation level
documentation. The developer who must learn and understand
your code before implementing an enhancement or bug fix will
appreciate your foresight in providing quality documentation for
all class members, not just for the public ones.

Provide a summary
description and
overview for each
package.

The JavaDoc utility provides a mechanism for including
package descriptions in the documentation it generates. Use this
capability to provide a summary description and overview for
each package you create.

TABLE 11: COMMENTS CONTENT DESCRIPTIONS [75]

“A good description of a type and its methods and fields should be as apparent as
better.” [76] The description should include the purpose, usage and the role it plays in
the project. For the same type, same method or fields, a different developer may have
a different way of implementation and with the clear definition of the types, methods
and fields it will help greatly and reduce the work to do. [77]

Developing a System to help programmers achieve a good coding style
__

__ 50 ___

ATTRIBUTE DESCRIPTION AVAILABILITY REQUIRED
sourcepath Specify where to find source

files
All

sourcepathref Specify where to find source
files by reference to a PATH
defined elsewhere.

All

sourcefiles Comma separated list of
source files -- see also the
nested source element.

All

At least one
of the three or
nested
<sourcepath>,
<fileset> or
<packageset>

destdir Destination directory for
output files

All Yes, unless a
doclet has

been
specified.

maxmemory Max amount of memory to
allocate to the javadoc VM

All No

packagenames Comma separated list of
package files (with terminating
wildcard) -- see also the nested
package element.

All No

packageList The name of a file containing
the packages to process

All No

classpath Specify where to find user
class files

All No

Bootclasspath Override location of class files
loaded by the bootstrap class
loader

All No

Classpathref Specify where to find user
class files by reference to a
PATH defined elsewhere.

All No

TABLE 12: A PART OF JAVADOC PARAMETERS [78]

It is good habit to describe the program before writing the code. Simply said, design
before working. It is much better to get a reference document well prepared before the
development. Documenting everything will save lots of time and effort. With clearly
documented purpose, usage and behavior definitions of each class, method and
interface, the development will be much easier and more standardized.

Developing a System to help programmers achieve a good coding style
__

__ 51 ___

FIGURE 29: JAVADOC TOOLS

It is good to provide a summary description and overview for each package. Java
documentation comments with an overview of the project structure and package in it
is also useful. With this capability, the developer can easily provide a summary
description and overview for each project crafted.

5.3.5 BLANK LINES AND SINGLE BLANK SPACE

Blank lines are an important part of the source code. Blank lines can improve
readability by grouping sections of the code that are logically related.

Developing a System to help programmers achieve a good coding style
__

__ 52 ___

FIGURE 30: FIGURE: BLANK LINE USED IN .NET (C#) EXAMPLE

The related coding can be grouped together by using the blank lines. It is easier for
the developer to understand the coding and the programmer can relate the coding by
checking the blank lines positions.

A blank line should also be used in the following places: [79]

1. After the copyright block comment, package declaration, and import section.
2. Using the blank lines between class declarations.
3. Using the blank lines between method declarations.
4. Using the blank lines between the last field declaration and the first method
declaration in a class.
5. Using the blank lines between before a block or single-line comment, unless it is
the first line in a block.

A single blank space also can improve the readability of the source code. A single
blank can be used in the following cases.

1. Between two adjacent keywords.
2. Between a keyword or closing parenthesis, and an opening brace” {”.
3. Before and after binary operators.
4. After a comma in a list.
5. After the semicolons in a for statement

Developing a System to help programmers achieve a good coding style
__

__ 53 ___

6. A single blank space can’t be used in several different cases. If a single blank is
used in these cases, some coding errors will occur.

7. A single blank space can’t be used between a method name and its opening
parenthesis.

It should not be used between a unary operator and its operand. Using white space
correctly and properly will make it easier to understand the source code.

5.4 PROGRAMMING CONVENTIONS

5.4.1 DESIGN OF JAVA COMPONENTS (CLASS/METHOD/INTERFACE)

It is a good habit and necessary to implement classes and methods as small as possible.
Small classes and methods are easy to design, understand, test, document, implement
and use. Small classes generally have fewer methods and represent simpler functions.
Interfaces or a high-level abstract class of those classes tend to exhibit better
flexibility. [80]

A Java subclass is a class which inherits a method or methods from a Java super-class.
Subclasses are very important, the principle of designing a good subclasses is
“Subclass may be used anywhere their super-classes may be used” [81]. A subclass
can change or restrict its behaviors by changing inherited state and behavior from its
super-class. It can only use the component inherited from its super-class but the
subclass can modify or override it. As the developer drops down in the hierarchy, the
classes become more and more specialized. [82]

FIGURE 31: SUBCLASS DESIGN

It is important to make all fields private to protect the consistency of Java components.
The Private keyword makes only the class itself who can make changes to it. The

Developing a System to help programmers achieve a good coding style
__

__ 54 ___

developers can make some methods for each private field; those methods are called
field-access-method. [83]

All the member data in the class can be accessed through methods which are in the
object. This minimizes coupling between Java objects, which enhances
maintainability of the applications.

5.4.2 PROGRAMMING STANDARDS IN MULTI-THREAD

“In computer science, concurrency is a property of systems in which several
computations are executing simultaneously, and potentially interacting with each
other. The computations may be executing on multiple cores in the same chip,
preemptively time-shared threads on the same processor, or executed on physically
separated processors.” [84]

Java also supports multi-thread processing. In Java, concurrency is implemented as
threads and a lot of software can benefit from the use of multi-threads in their
implementations. In a concurrent model of execution, the concurrency component of
the software are divided into two or more processes or threads by the Java Virtual
Machine (JVM) and each thread or process is in its own sequence of statements. [85]

The software which includes concurrency functionality may consist of one or more
processes and a process may consist of one or more threads. Each thread will run on
two or more Java Virtual Machines on two or more processors in a single machine, or
interleaved on a single processor. Multiple-thread has a lot of advantages: [86]

1. Better resource utilization.
2. Simpler program design in some situations.
3. More responsive programs.

private int i;

public int getI(){
 return this.i;
}

public void setI(int i){
 this.i = i;
}

Developing a System to help programmers achieve a good coding style
__

__ 55 ___

FIGURE 32: CODING STANDARD FOR JAVA THREADS

5.4.3 CODING STANDARD FOR SYNCHRONIZED

Good programming standards can also improve the performance of a multiple-thread
for Java source code. “Synchronized” is one of the most important key words for
Java multiple-thread programming. How to use it (when, where) is important for
improving the performance and coding appearance. Use the key word
“Synchronized” wrappers to provide synchronized classes. A class with
“Synchronized” provides the same interface as the original one, but its methods
are synchronized, which means it is thread-safe. A static method of the
synchronized-wrapped class also provides access to the synchronized by default. [87]

FIGURE 33: SYNCHRONIZED IS USED WITHIN THE METHOD

Deciding when to use the key word “Synchronized” for a method is a problem for
developers. The developers should try to avoid synchronizing an entire method if the

Developing a System to help programmers achieve a good coding style
__

__ 56 ___

method contains significant operations that do not need synchronization, a better way
is just to synchronize a part of the code in the method. A method with the
synchronized keyword acquires a lock on the related components at the beginning of
the method and holds that lock until the end of the method. The “Synchronized”
keyword may lock the code where synchronized is not required. In most of the
methods in Java source code, only a few operations within a method may require
synchronization. In these situations, the method-level synchronization should not be
used as it will greatly reduce the performance of the source code. [88]

5.5 PACKAGE CONVENTIONS

“A Java package is a used for organizing Java classes into namespaces similar to the
modules of Modula.” [89]

Typically source code files or compiled Java files in one directory would have
different functionality from those in other directories. In a GUI application, it is very
common to find a directory with the name "UI" (user interface); it means that this
directory contains files related to the presentation part of the application. It is same in
a Java package, the related source files or files from the same organization can be
packaged together. A package should provide a unique namespace for the types which
it contains, this keeps the package distinct from other packages. There are three
aspects to consider when working with packages [90]

1. Publishing interfaces

It is necessary to keep the size of the published interfaces small. This can make
sure that the published interfaces will actually be from third-parties.

2. Granularity
Granularity is one of the most important points for defining package behaviour.
Both too fine-grained and too coarse-grained behaviour are not good for defining
a package. Those defining package behaviour make the package hard to use even
unusable. So determining the property granularity is very important for defining a
package.

3. Units in large size
If the size of the unit is very large, a package is necessary which can reduce the
size of the unit.

5.5.1 PACKAGE ACCESS PROTECTION

Classes can access all the classes and members within the same package if the visited
class and members are declared with default access level or higher level. Default

Developing a System to help programmers achieve a good coding style
__

__ 57 ___

access is enforced when neither the public, protected nor private access level is
specified in the declaration. Classes can not visit the members declared with default
access if these two members are not in the same package. When choosing the
accessing level, there are points that should be taken into consideration: It’s important
to make sure that using the most restrictive access level which makes sense for a
specified Java component. In most cases the private level should be used as the
access modifier unless there is a good reason not to. Avoid public fields except for
constants. This is necessary as the public access level tend to link the implementation
of the class which will limit the flexibility in changing the source code. [91]

AACCCCEESSSS LLEEVVEELL CCLLAASSSS PPAACCKKAAGGEE SSUUBBCCLLAASSSS WWOORRLLDD
Public Y Y Y Y

Protected Y Y Y N
default Y Y N N
private Y N N N

TABLE 13: ACCESS LEVEL DESCRIPTIONS

Well-designed Java software consist of a lot of Java files, Java APIs and other Java
elements and all of these items should be clearly defined individual tasks in the
system's overall purpose. Such software is more extensible and flexible than a system
with bad design. In order to develop the software with such good extensible and
flexible, package the property Java file, Java API and other Java elements are
necessary. [92]

5.5.2 REUSABILITY AND MAINTAINABILITY

Reusability is one of the most important purposes of object-oriented software design.
When designing the software, it is important to place classes and interfaces what will
be usually used together in the same package. In most cases such classes are so
closely coupled that the developer can't use one class without usually using the other
and placing tightly coupled classes in the same package results in a more cohesive
package.

Here are some examples whose classes are so closely coupled. [93]

• Containers and iterations.
• Database tables, rows, and columns.
• Calendars, dates, and times.
• Points, lines, and polygons.

Those classes are closely coupled, so most developers will package the related classes
to the same package which is reusable in the future.

Developing a System to help programmers achieve a good coding style
__

__ 58 ___

5.5.3 HOW TO GET WELL-DESIGNED JAVA PACKAGE

Sometimes, placing these classes in the same package when some classes are not
closely coupled, however they are still jointly affected by a required change to system
behaviours. This is because the non-closely coupled classes may need some changes
and they may work to provide a coarse-grained service, in this case, these classes may
not be closely coupled. So if the class needs some changes, they should be as closely
located to each other as possible which requires them to be in the same package.

By packaging classes appropriately not only can this make the software component
reusable, it also can make the system easy to maintain. As the package can help to
reduce the changes made to the system, it results in more timely and reliable software
modifications. [94]

Classes which change together should be in the same package and classes that are
closely coupled to each other are likely affected by some changes or their
functionality. If any changes are made to the interface, abstract class or high level
abstracted class this will lead to a lot of changes to the related classes. Placing the
closely coupled classes, files and other Java components to the same package can help
mitigate the change-management risk. [95]

FIGURE 34: JAVA PACKAGE DESIGN

A class which can’t be reused should be placed in a separate package. In most cases
those Java components don't change frequently, packaging these classes separately
means multiple packages use the individual classes. It makes the Java component
more stable.

Developing a System to help programmers achieve a good coding style
__

__ 59 ___

In order to get well-designed software, the top-level design must stabilize as quickly
as possible. No software development manager can achieve a good design plan,
estimate, schedule, and allocate resources if the architecture of the software is always
changing.

Once the design of the high-level architecture of the software is complete, the
software development manager can use packages to separate the stable parts of the
design from the volatile implementation. Placing the property files, APIs and Java
components into Java packages and capturing the high-level abstractions of the design.
And then the programmers should create packages by placing the implementation of
those abstractions into separate packages which relate to the high-level abstract
packages. [96]

When designing a Java package, besides the three aspects discussed above. The
following points are also very important.

STATE ACTIONS
Containing
Change

Placing closely coupled classes in a single package can limit all
changes to a single package. Containing changes to a single package
favours maintainability

Class
coupling

When placing closely coupled classes in the same package, the related
classes also should be placed to those packages. Ignoring overall
system coupling may actually increase the coupling between packages.

Contention During development of the source code, it's common to morph the
package structure accordingly.

Early in the
life of the
application

The developer may choose to facilitate development and aid
maintenance by creating smaller packages. The package structure
should be designed to have the goal of reusability.

TABLE 145: TIPS ON HOW TO PACKAGE [97]

5.6 CONCLUSIONS

This chapter explains how different elements of the new Java coding standard have
been defined and improved. This coding standard contains four parts which are the
naming conversion, the documentation conversion, the programming conversion and
package conversion. With the detailed explanation of each concept above, the new
coding standard has been articulated.

Developing a System to help programmers achieve a good coding style
__

__ 60 ___

6. TECHNICAL OVERVIEW

6.1 THE JAVA PROGRAMMING LANGUAGE

“Java is a programming language originally developed by James Gosling at Sun
Microsystems and released in 1995 as a core component of Sun Microsystems' Java
platform” [98] and Java programming language contains 5 primary goals. [99]

1. The Java programming language is simple, object oriented, and familiar.
2. The Java programming language is robust and secure.
3. The Java programming language is architecture neutral and portable.
4. The performance of the Java programming language is high.
5. The Java programming language is interpreted, threaded, and dynamic.
In this project, the implemented CODE-CHECK also attains those goals.

The Java platform allows developers to create and run programs which are written in
the Java programming language. As one of the primal goals of the Java programming
language is “Write once, run anywhere”, the Java platform is not specific to any
processor or operating system. A set of standard libraries have been developed for
various hardware and operating systems which makes Java programs can run nearly
on all operating systems. [100]

VVEERRSSIIOONN DDEESSCCRRIIPPTTIIOONNSS
Java Card Java card refers to a technology that allows small Java-based

applications (applets) to be run securely on smart cards and similar
small memory footprint devices.

Java 2 ME J2ME specifies several different sets of libraries (known as profiles) for
devices which are sufficiently limited that supplying the full set of Java
libraries would take up unacceptably large amounts of storage.

Java 2 SE J2SE is general for purpose use on desktop PCs, servers and similar
devices.

Java 2 EE A number of libraries are implemented which is useful for multi-tier
client-server enterprise applications

TABLE 15: VERSIONS OF JAVA PLATFORM [101]

The Java platform consists of several components; different components in the Java
platform can provide different usages. The core components in the platform are the
Java language compiler, the Java language libraries (APIs) and the runtime
environment. [102]

Developing a System to help programmers achieve a good coding style
__

__ 61 ___

FIGURE 35: JAVA PROGRAMMING LANGUAGE [103]

All these components run on the Java virtual machine. The JVM is an implementation
of the Java Virtual Machine Specification (a "virtual machine" that executes Java byte
code programs). The Java virtual machine interprets compiled Java binary code for a
computer's processor or hardware platform. This byte code is the same no matter what
operating system the program is running on. The Java programming language is
designed to allow the applications which are written in Java to run on any hardware or
operating systems without rewritten or recompiled for each separate platform. A Java
virtual machine makes this possible because it is aware of the specific instruction
lengths and other particularities of the platform. [104]

6.2 ECLIPSE AND ECLIPSE PLUG-IN DEVELOPMENT

Eclipse is a multi-language software development platform that was donated to the
open source community by IBM. It provides plug-in architectures which can provide
additional functionality for the platform, and most of the plug-ins runs on the top level
of the runtime system. However, the platform can also be used to develop software in
other programming languages (C/C++, Python, COBOL, Perl and PHP). As it is
developed in Java, Eclipse can run on almost any operating system. [105]

Developing a System to help programmers achieve a good coding style
__

__ 62 ___

FIGURE 36: ECLIPSE DEVELOPMENT PLATFORM ARCHITECTURE

Eclipse has a lightweight software component framework which allows Eclipse to be
extended with other functions. So the plug-in development for Eclipse becomes one
of the most important and valuable functions-extended approaches for Eclipse.
Eclipse also supports developing any desired extension to the environment with the
help provided by the Eclipse SDK. [106]

FIGURE 37: ECLIPSE AND ECLIPSE PLUG-IN ARCHITECTURE

The Plug-in development has a specified approach. In most cases, those approaches
include:

1. Create Project
2. Create Extensions
3. Create the plug-in function code

Developing a System to help programmers achieve a good coding style
__

__ 63 ___

4. Restrict the extension
5. Create makers
6. Deploying a plug-in.

In this project, the implementation of the CODE-CHECK will follow these steps.
Besides, the architecture of the check-style plug-in is very important, as the
development of CODE-CHECK will based it.

6.3 CHECK-STYLE OVERVIEW

6.3.1 INTRODUCTION

Check-style is a source code analysis tool used in software development. It helps
developers to write Java source code in a specified coding standard. Check-style
checks the source code file in the tool panel and enforces the source code to follow
specified coding rules. The Check-style plug-in can do a lot of other jobs as well on
the source code. Based on the configuration file, it can affect many aspects of the Java
source code. Its main function is to check coding style issues, the latest version of
Check-style can find source code design problems, duplicate code, or source code
errors. [107]

The Check-style plug-in provides different functions for many different versions of
Java coding development tools like Eclipse

IDE / BUILD
TOOL

MAIN/INITIAL
AUTHOR

AVAILABLE FROM REMARKS

Eclipse/WSAD David Schneider Eclipse-CS Home Page
Eclipse/WSAD Marco van

Meegen
Checklipse Home Page

IntelliJ IDEA James Shiell Checkstyle-idea Project
Page

Provides
real-time and
on-demand
scanning.

IntelliJ IDEA Mark Lussier JetStyle Project Page
NetBeans Petr Hejl Checkstyle Beans Problems with

source code are
displayed as
annotations of
the source

NetBeans Paul Goulbourn nbCheckStyle
BlueJ Rick Giles bluejcheckstyle home

Developing a System to help programmers achieve a good coding style
__

__ 64 ___

page
tIDE Built in
Emacs JDE Markus Mohnen Part of the standard

JDEE distribution

jEdit Todd
Papaioannou

JEdit CheckStylePlugin

Vim editor Xandy Johnson Plugin Homepage Vim file-type
plug-in

Krysalis
Centipede

unknown Checkstyle supported
out of the box

Maven Vincent Massol Checkstyle supported
out of the box

example report

TABLE 16: PLUS-IN AVAILABLE FOR SEVERAL DIFFERENT IDEs [108]

Developing a System to help programmers achieve a good coding style
__

__ 65 ___

6.3.2 ADVANTAGES AND LIMITATIONS OF CHECK-STYLE

The specified programming standards adopted by Check-style can help to comply
with good programming practices which can greatly improve the code quality,
re-usability, readability, and reduce the cost of development and maintenance. The
source code which has been checked by the Check-style tool is predictable in its
semantics and understood in the same manner across the development team.

FIGURE 38: INSTRUCTIONS IN THE CONFIGURATION FILE & A SPECIFIED

PROGRAMMING STANDARD

The main limitation of the Check-style is the configuration file. The configuration file
contains a lot of instructions; however those instructions can’t include anything that
comes from a specified programming standard. As shown in the figure above, only a
part of the specified programming standards can be implemented in the configuration
file. However this part of the specified programming standards is the most important
set of the standards. So the generated code will be in well-styled-form. The following
instance can be edited in the configuration file. [109]

l JavaDoc comments for classes, attributes and methods;
l Naming conventions of attributes and methods;
l Limit of the number of function parameters, line lengths;
l Presence of mandatory headers;
l The use of packets imports, of classes, of scope modifiers and of instructions

blocks;
l The spaces between some characters;
l The good practices of class construction;
l The duplicated code sections;
l Multiple complexity measurements, among which expressions.

Developing a System to help programmers achieve a good coding style
__

__ 66 ___

6.3.3 CONFIGURATION OF CHECK-STYLE

Check-style checks Java source code based on the configuration file. It allows the
developers to define a set of instructions which come from a specified coding standard
and listed in the XML configuration file. The component of check-style parses the
instructions defined in the configuration file and checks the input source code against
the specified coding standard. According to the results of the source code checking,
the check-style will provide errors, warnings and other messages related to the results.
The configuration file uses a DTD XML definition within it. The set of instructions
which deal with some particular type of code checking is called a module; the module
is always defined like a class. [110]

In the configuration file, there are a lot of attributes, the value of which will be
provided to the checking-component. The most common used attributes are listed
below:

Developing a System to help programmers achieve a good coding style
__

__ 67 ___

NAME DESCRIPTIONS TYPE VALUE
Module A module element in the

configuration XML document
specifies a module identified by the
element's name attribute

Null The value of a module property is a
command line.

Basedir base directory name; stripped off in
messages about files

String null

localeCountry locale country for messages String; either the empty string
or an uppercase ISO 3166
2-letter code

default locale country for the Java
Virtual Machine

charset name of the file charset string System property "file.encoding"
cacheFile caches information about files that

have checked ok; used to avoid
repeated checks of the same files

string

null

file the name of the suppressions XML
document file

String null

messageFormat message pattern to suppress regular expression null
checkFormat check pattern to suppress regular expression .* (all checks)
influenceFormat a negative/zero/positive value that

defines the number of lines
preceding/at/following the
suppression comment

regular expression 0 (the line containing the comment)

tokens tokens to check subset of tokens
PARAMETER_DEF,
VARIABLE_DEF

VARIABLE_DEF

ignoreAbstractMeth
ods

Controls whether to ignore
parameters of abstract methods.

Boolean false

classes Classes that should not be
instantiated

String set {}

TABLE 17: A VERY SMALL SET OF COMMON USED ATTRIBUTES [111]

Developing a System to help programmers achieve a good coding style
__

__ 68 ___

6.4 CHECKER-STYLE API
The implementation of this project is based on the Style-check plug-in. The Eclipse
plug-in is used as the main component. However, the plug-in itself is not efficient,
extended features and styles are to be added into this. As the plug-in uses the
configuration file, the new coding standard will be extracted and form a properly
formed XML file.

6.4.1 CODING PROBLEMS IN THE SOURCE CODE

Coding problems like coding errors are not included in the programming standard;
however coding problems will affect the code quality and compiled result. So in the
implementation, this problem also will be analysed and resolved. Only one module is
provided for resolving this problem. [112]

Equals & Hash-code Problems
In most cases, if the equals() method is overridden for an object, the hashCode()
method should be also overridden for the same object.

6.4.2 CLASS DESIGN CHECKING

Class design is one of the most important things for developing. In this project the
most commonly used checking will be implemented. [113]

1. Extension problems check
This module checks whether the class is designed for extension, this attribute will
enforce the subclass to implement the abstract method. The checking will be based on
the access level of the method and class. It must also ensure that all the non-private,
non-static methods of classes that can be extended must have one of abstract, final or
having an empty implementation.

FIGURE 39: EXTENSION PROBLEM CHECKING EXAMPLE

JavaDoc comment checking
This module is used to check for JavaDoc comments for Object source code
definitions (Class or interface). Typically, the developer can specify the following
properties for the JavaDoc comments

a) Scope

The scope is used to check the visibility scope of JavaDoc comments

b) Author format and version format

Developing a System to help programmers achieve a good coding style
__

__ 69 ___

By default, it doesn't check for author or version tags. In order to active these, the
developer should set the property author format or version format respectively to
a regular expression

NAME DESCRIPTION TYPE DEFAULT VALUE

lineSeparator type of line separator One of "system" (system

default), "crlf"

(Windows-style), "cr"

(Mac-style) and "lf"

(Unix-style)

system default

fileExtensions File type extension of

the files to check.

String Set all files

TABLE 18: COMMON USED PROPERTIES FOR JAVADOC COMMENT CHECKING [114]

 6.4.3 BLOCK STYLE CHECKING

There are several different kinds of blocks styles for Java. The specified programming
standard has a specified block style. In the Style-check tool, several different types of
block check can be defined. According to coding styles, two of the defined block
styles checked will be implemented in this project. [115]

1. Empty block check
Typically, the empty block is useless in Java. Removing the useless empty block can
improve the appearance of the Java source code. Defining the proper empty block
instructions in the configuration file can resolve this problem.

FIGURE 40: EXTENSION PROBLEM CHECKING EXAMPLE

2. Nested blocks check
Blocks are a piece of source code which is grouped together. Blocks consist of one or
more statements. Blocks within another block will result in nested blocks. Nested
blocks can break up programs into several logical work units and proper statements of
nested blocks make code more readable and flexible. However sometimes, nested
blocks also reduce the performance or readability. So the nested blocks check is
necessary.

Developing a System to help programmers achieve a good coding style
__

__ 70 ___

FIGURE 41: NESTED BLOCK CHECK CONFIGURATION

 6.4.4 DUPLICATE CODE DETECTION

“Code duplication is generally considered a mark of poor or lazy programming
style.” [116]

In judging a good coding standard, the most common aspects are reusability,
flexibility and maintenance ability of the code. One big issue that affects the quality of
the code is the removal of duplicate code. There are three types of problems related to
duplicate code:

1. Code bulk affects comprehension
2. Purpose masking
3. Update anomalies

One problem the developers will face is how to avoid duplicate code. Duplicate code
detection helps the developer to find duplicate code that has been generated by
cloning (Copy/Paste) or other duplicate actions. Reducing duplicate code through
improving the coding style of the source code is one of the best ways.

The check-style tool provides an attribute: StrictDuplicateCode, which is used
to facilitate checking large amounts of code. It supports multiple languages, but needs
very high performance. In order to reduce duplicate code in the source file, the
attribute StrictDuplicateCode should be used in the configuration file.

FIGURE 42: IMPROVE THE CODING STYLE TO REDUCE THE DUPLICATE CODE

With the help of the attribute StrictDuplicateCode, most of the source code
issues related to duplicate code is improved, and the style of that code is greatly
improved.

6.4.5 NAMING CONVENTION IMPROVEMENTS

The check-style tool provides intelligent functionally that can improve the naming
convention of the source code. Naming conventions are one of the most important
parts of a specified programming language, and improving the naming conventions
can greatly improve the coding style. According to the generated coding standard, a
series of definitions can be configured to the XML file. There are several different

Developing a System to help programmers achieve a good coding style
__

__ 71 ___

modules included in the check-style components. Each of these naming convention
modules can validate identifiers for specific Java source code elements and the valid
identifiers for a naming convention module are specified by its format. [117]

MMOODDUULLEE VVAALLIIDDAATTEESS
IIDDEENNTTIIFFIIEERRSS FFOORR

DDEEFFAAUULLTT VVAALLUUEE OOFF
FFOORRMMAATT

AbstractClassNa
me

abstract classes ^Abstract.*$|^.*Fac
tory$

ClassTypeParame
terName

class type parameters ^[A-Z]$

ConstantName constants (static, final fields) ^[A-Z][A-Z0-9]*(_[A
-Z0-9]+)*$

LocalFinalVaria
bleName

local, final variables,
including catch parameters

^[a-z][a-zA-Z0-9]*$

LocalVariableNa
me

local, non-final variables,
including catch parameters

^[a-z][a-zA-Z0-9]*$

MemberName non-static fields ^[a-z][a-zA-Z0-9]*$
MethodName methods ^[a-z][a-zA-Z0-9]*$
MethodTypeParam
eterName

method type parameters ^[A-Z]$

PackageName packages ^[a-z]+(\.[a-zA-Z_]
[a-zA-Z0-9_]*)*$

ParameterName parameters ^[a-z][a-zA-Z0-9]*$
StaticVariableN
ame

static, non-final fields ^[a-z][a-zA-Z0-9]*$

TypeName classes and interfaces ^[A-Z][a-zA-Z0-9]*$
TABLE 19: DESCRIPTIONS OF NAMING CONVENTION MODULES [118]

According to the setting of the XML configuration file, different naming convention
will be checked in the source. Invalid or bad naming convention will be notified to the
developer by a warning from the check-style plug-in.

6.4.6 VISITOR PATTERN IN CHECKSTYLE

The Visitor design pattern is a pattern for separating an algorithm from an object
structure upon which it operates. The result of this separation is the ability to add new
operations to existing object structures without modifying those structures. So with
the help of the visitor pattern, the source code can follow the open/closed principle.
[119]

Developing a System to help programmers achieve a good coding style
__

__ 72 ___

FIGURE 43: SURVEY FOR THE IMPORTANCE OF PROGRAMMING STANDARD [120]

The Check style's kernel does not implement any functionality that can check the
coding style of the source code. Instead, the Check style's kernel needs a set of
modules that contains several Check interfaces. The interface provides some helper
methods. With the help of the visitor design pattern, the Check provides methods that
takes an AST as an argument and performs the checking process for that AST. In this
project, a number of visitor patterns will be used when implementing the new plug-in
called CODE-CHECK. As the CODE-CHECK needs to use and extend the function
of the check-style APIs, A specified pattern is necessary. [121]

6.5 FACTORY METHOD PATTERN

“The factory method pattern is an object-oriented design pattern. Like other
creational patterns, it deals with the problem of creating objects (products) without
specifying the exact class of object that will be created.”[122]

The factory method pattern separates the creating actions from the major class, this
makes the source code more flexible. A Factory method pattern is a simplified version
of an abstract factory pattern. A normal Factory method pattern contains three parts:
Creator, ConcreteCreator and Product. [123]

Developing a System to help programmers achieve a good coding style
__

__ 73 ___

FIGURE 44: SURVEY FOR TFACTORY METHOD PATTERN CLASS DIAGRAM [124]

• Product: Product is the object which is created by the factory method in

ConcreteCreator.
• Creator: Creator is an interface which defines the factory method. The factory

method returns an object of type Product.
• ConcreteCreator: ConcreteCreator is a class that implements the Creator interface.

It overrides the factory method and returns an instance of a Product.

The benefits of this design pattern is [125]

l The Factory method pattern can extract the object creating code from the source,

this improves the flexibility of the code.

l It enables the subclasses to get extended functions; this means the extended

version of subclasses can be created without change the code in
ConcreteCreator.

In this project, a number of factory method patterns will be used in the function
module development, as this pattern provides a more flexible structure which allows
the developer to add new features without changing any other code.

6.6 CONCLUSIONS

This chapter introduces the technical background which will be used in the
implementation of this project. The first two sections introduce the Java development
environment, the Eclipse development environment and the Eclipse plug-in. The third
and fourth sections introduce the check-style APIs and the check-style module
development; these two sections give an overview on how to use check-style APIs
and how to develop a check-style structured module. This project use a number of
design patterns, a frequently used design pattern is described in the last section, which
gives a “factory method pattern”. Based on those patterns, the new plug-in is
implemented to match the new coding standard.

Developing a System to help programmers achieve a good coding style
__

__ 74 ___

7. IMPLEMENTATION

7.1 INTRODUCTION

Based on the coding standard from the research in Chapter 5, an Eclipse plug-in
which is called CODE-CHECK will be implemented. CODE-CHECK is a plug-in
which can not only check the code style; it also can do code refactoring and improve
the performance of the Java source code. CODE-CHECK will use the APIs from a
similar plug-in which is called Check-style. However, CODE-CHECK provides more
functions. Code-Check has three components: a coding review component, a code
refactoring component and a performance component. The coding review component
can perform a code structure check based on the existing coding standard. This
component extends to functions of check-style. The other two components provide
new functions: code refactoring and performance improvement. Code-check is more
powerful and helpful with these functions.

7.2 DESIGN OF CODE-CHECK

7.2.1 CODE-CHECK ARCHITECTURE

The Code-Check implementation is based on an Eclipse plug-in called Check-style.
Check-style is an Eclipse plug-in that provides coding review functions, however
Check-style provides only the reviewing for the Sun Microsystems version of Java. In
this project, extended functions are implemented to fit into the new improved coding
standard. The new Code-Check plug-in provides more functions and also many
self-defined rules and styles have been added. Below is an architecture that explains
the relationship between the check-style plug-in and the Code-Check plug-in and also
the main extended functions that the Code-Check provides.

FIGURE 45: CODE-CHECK ARCHITECTURE

Extended functions of Code-Check:

Developing a System to help programmers achieve a good coding style
__

__ 75 ___

1. Provide a coding review for self-defined rules and style.
2. Provide functions that can improve the performance of source code by using the

pre-existing design patterns.
3. Provide a code refactoring function (A good coding refactoring tool is intelligent

and complex, in this project a model with three rule-checks will be implemented
and the improvement of more intelligent should be implemented in future work).

Code refactoring components provides:
1. Warning the developers to rename a method, variable, class or other Java

elements if the source code has naming problems.
2. Warning the developers to do “Code moving” if the source code has structure

problems.
3. Warning the developers to extract methods or classes if there are too many

lines in them.

As the Code-Check has three major functions, the system will be designed to have
three components: the Coding review component, the code refactoring component and
the performance component.

The “Coding review component”, this is the most important component in this project.
The component is used to do coding reviews, and then it provides warnings and
simple advice to the Java developers. The coding reviews will be done based on the
coding standards as crafted in Chapter 5.

The “Code refactoring component”, this is a complex component. The challenge of
this component comes from its high intelligence and rule indeterminacy. The
component in this project does the code refactoring based on the rules from the book
“Refactoring”. [126]

The “Performance component” is a component that can give advice on the existing
source code. This component can be also very complex as the existing design patterns
are complex.

7.2.2 USE CASE DIAGRAMS

There are two user roles involved in this project; one is a new version of the Java
programming standards provider, and the other is the software developers who will
use the implemented source coding standard. The Java programming standards
provider is supposed to find anything that can improve the quality of the programming
standard. At the same time, she should also update the Code-Check configuration file
which affects the implementation of the programming standards.
With the limitation of the Code-Check plug-in, the programming standards provider
should also add new features to the Code-Check configuration file. Another user is the
software developer who is willing to use the new version of the standard. When she

Developing a System to help programmers achieve a good coding style
__

__ 76 ___

writes the source code, the Code-Check plug-in will provide warnings and errors if
the source doesn’t following the specified coding standard. She can then edit the code
as soon as the warning appears or do code refactoring after she is finished writing the
source code.

 FIGURE 46: USE CASE OF THIS PROJECT

7.2.3 SEQUENCE DIAGRAM

In this project, there are five different objects. The programming standard provider
will analyze and sum-up the existing Java programming standard and generate a new
version of the Java programming standard. According to the generated Java
programming standard, the configuration file of the Code-Check plug-in can be
specified. This XML configuration file is used as a set of rules that represent the
coding standard. The Code-Check plug-in should then check the source code against
the configuration within the XML file. The developer who follows this Java coding
standard can get error messages or warnings if her source code doesn’t fulfil the
requirement of the specified coding standard. However, she can also give any
feedback to the coding standard provider for any improvements or changing the
code-style plug-in setting. With this feedback, the coding standard provider can
improve the coding standards and XML configuration files.

There are many different types of Java coding standards and each standard also have
lots of rules. Based on different requirements, the coding standard and the

Developing a System to help programmers achieve a good coding style
__

__ 77 ___

Code-Check settings should be changed as well. However, one thing that won’t
change is that the coding standard should be easy to remember, simple to use and
widely understand by the software developers.

FIGURE 47: SEQUENCE DIAGRAM OF PROJECT

7.3 CODE-CHECK IMPLEMNTATION OVERVIEW

As the Code-Check has three major functions, the system will be designed to have
three major components: Coding review component, code refactoring component and
performance component. The implementation of Code-Check will be divided to four
stages as shown below.

Developing a System to help programmers achieve a good coding style
__

__ 78 ___

FIGURE 48: DEVELOPMENT OF CODE-CHECK

Stage 1: The Code-Check main application structure design
Stage 2: Coding review component design and develop
Stage 3: Code refactoring component and performance component design and develop
Stage 4: Combined the components and main application platform together

7.4 CODE-CHECK MAIN()

In this project, the component will be designed as plug-in for the main application of
the Code-Check. So the Code-Check not only needs to follow the check-style API
structure, it also has to follow the plug-in design pattern. The Code-Check main
program contains: a plug-in loader, a class loader, a library finder and a class finder.

Developing a System to help programmers achieve a good coding style
__

__ 79 ___

FIGURE 49: PLUG-IN FRAMEWORK ARCHITECTURE

The Plug-in loader is used to load the files of the component. The file contains
component_info.xml and a component compiled files package. The
component_info.xml file contains the information of the component, such as
name, version, path and id.

The Class loader can find the compiled Java file from the package. Those Java classes
must have the same structure which means they should be implementing the same
interface. In this project this interface is called “MyComponent”.

The Library finder is aimed to find the related resource that will be used in the
component. For example the coding review component will use the API from
check-style. Then the library finder will find those APIs and tell the class loader about
the objects to load the library. The Class finder object will find the component from
Java files and pass those messages to the class loader. The Library finder and class
finder can be designed together, however as they find the different types of resources.
Individual design makes the class smaller and easier to understand.

Developing a System to help programmers achieve a good coding style
__

__ 80 ___

FIGURE 50: CLASS DIAGRAM FOR COMPONENT LOADER.

Code Example:

//**//
//** EExxaammppllee ooff IICCoommppoonneennttLLooaaddeerr **//
//**//
ppuubblliicc iinntteerrffaaccee IICCoommppoonneennttLLooaaddeerr {{

ppuubblliicc LLooaaddCCllaassss [[]] ccllaassssAArrrraayy;;
ppuubblliicc bbooooll ccllaassssLLooaaddeerr((SSttrriinngg nnaammee,, SSttrriinngg ppaatthh));;

}}

//**//
//** EExxaammppllee ooff LLiibbrraarryyFFiinnddeerr **//
//**//
PPuubblliicc ccllaassss LLiibbrraarryyFFiinnddeerr eexxtteennddss UURRLLCCllaassssLLooaaddeerr iimmpplleemmeennttss
IICCoommppoonneennttLLooaaddeerr{{

ppuubblliicc SSttrriinngg ffiinnddLLiibbrraarryy((SSttrriinngg nnaammee)) {{
 HHaasshhttaabbllee lliibbss == ssaavveeddLLiibb..ggeettLLiibbrraarryyss(());;
 iiff ((lliibbss..ccoonnttaaiinnssKKeeyy((nnaammee)))) {{
 rreettuurrnn lliibbss..ggeett((nnaammee));;
 }} eellssee {{
 rreettuurrnn """";;
 }}
}}

......

Developing a System to help programmers achieve a good coding style
__

__ 81 ___

7.5 CUSTOM DEVELOPED CHECK-STYLE MODULE

The components of this project will use a number of APIs from check-style, it also
needs to follow the pre-defined structure from check-style development organization.
The component contains modules called custom developed check-style modules. The
modules should follow the pre-defined structure from the check-style development
organization if they want to be used by the check-style APIs. When the source code of
a specified structure is developed, a new function can be added by using the visitor
pattern which has been introduced in Chapter 6. When the module is released, it can
automate the process of checking the Java code to help developers get rid of this
tedious task.

//**//
//** EExxaammppllee ooff CCllaassssFFiinnddeerr **//
//**//

PPuubblliicc ccllaassss CCllaassssFFiinnddeerr eexxtteennddss UURRLLCCllaassssLLooaaddeerr iimmpplleemmeennttss
IICCoommppoonneennttLLooaaddeerr{{

ppuubblliicc CCllaassss<<??>> ffiinnddCCllaassss((SSttrriinngg nnaammee)){{
 CCllaassss<<??>> ccllaassssAAiimm == nnuullll;;
 ttrryy {{
 ccllaassssAAiimm == ssuuppeerr..ffiinnddCCllaassss((nnaammee));;
 }} ccaattcchh ((CCllaassssNNoottFFoouunnddEExxcceeppttiioonn ee)) {{
 iiff ((CCllaassssAArrrraayy ==== nnuullll))
 tthhrrooww nneeww CCllaassssNNoottFFoouunnddEExxcceeppttiioonn(());;
 eellssee {{
 ffoorr ((iinntt ii==00;; ii<<CCllaassssAArrrraayy..lleennggtthh;; ii++++)){{
 ttrryy {{

ccllaassssAAiimm==CCllaassssAArrrraayy[[ii]]..llooaaddCCllaassss((nnaammee));;
 }} ccaattcchh ((CCllaassssNNoottFFoouunnddEExxcceeppttiioonn eexx)) {{}}
 }}

 iiff ((CCllaassssAArrrraayy ==== nnuullll)) {{
 tthhrrooww nneeww CCllaassssNNoottFFoouunnddEExxcceeppttiioonn(());;
 }}
 }}
 }}

 rreettuurrnn ccllaassssAAiimm;;

}}
......

Developing a System to help programmers achieve a good coding style
__

__ 82 ___

FIGURE 51: MODULE ARCHITRAVE

7.5.1 STRUCTURE OF THE MODULE

A normal module contains three parts: a pom.xml file, a packagenames.xml and some
Java code with a specified structure.

POM.XML
The Pom.xml file includes information about the modules, such as module version,
module name, module ID and so on.

PACKAGENAMES.XML
The Packagenames.xml includes the implementation of the modules. It describes the
functions and the coding structure of the Java source code file.

Developing a System to help programmers achieve a good coding style
__

__ 83 ___

JAVASOURCEFILE.JAVA

The Java source code file contains the code that does the check actions. According to
the check-style document, a check method needs an argument whose type is
DetailAST. The following code is an example from this project.

<<??xxmmll vveerrssiioonn==""11..00"" eennccooddiinngg==""UUTTFF--88""??>>

<<!!DDOOCCTTYYPPEE cchheecckkssttyyllee--ppaacckkaaggeess PPUUBBLLIICC
 ""--////PPuuppppyy CCrraawwll////DDTTDD PPaacckkaaggee NNaammeess 11..00////EENN""

""hhttttpp::////wwwwww..ppuuppppyyccrraawwll..ccoomm//ddttddss//ppaacckkaaggeess__11__00..
ddttdd"">>

<<cchheecckkssttyyllee--ppaacckkaaggeess>>
 <<ppaacckkaaggee nnaammee==""ccoomm..mmyyccoommppaannyy..cchheecckkss""//>>
 <<ppaacckkaaggee
nnaammee==""ccoomm..ppuuppppyyccrraawwll..ttoooollss..cchheecckkssttyyllee"">>
 <<ppaacckkaaggee nnaammee==""cchheecckkss"">>
 <<ppaacckkaaggee nnaammee==""bblloocckkss""//>>
 <<ppaacckkaaggee nnaammee==""dduupplliiccaatteess""//>>
 <<ppaacckkaaggee nnaammee==""hheeaaddeerr""//>>
 <<ppaacckkaaggee nnaammee==""iimmppoorrttss""//>>
 <<ppaacckkaaggee nnaammee==""jjaavvaaddoocc""//>>
 <<ppaacckkaaggee nnaammee==""mmeettrriiccss""//>>
 <<ppaacckkaaggee nnaammee==""mmooddiiffiieerr""//>>
 <<ppaacckkaaggee nnaammee==""nnaammiinngg""//>>
 <<//ppaacckkaaggee>>
 <<ppaacckkaaggee nnaammee==""ffiilltteerrss""//>>
 <<//ppaacckkaaggee>>
<<//cchheecckkssttyyllee--ppaacckkaaggeess>>

Developing a System to help programmers achieve a good coding style
__

__ 84 ___

Some specific modules can also be the containers for other modules. The structure of
these modules are formed in a tree structure; the top-level module is the kernel of the
functions and other modules included in this module are used to implement the
sub-functions.

The extended functions in this project are implemented in Java. After the source code
is compiled, the generated APIs will be used in the source code which follows a
specified structure. The implementation of the extended functions will be described in
the component develop sections.

7.5.2 CONFIGURATION OF THE MODULES

A Check-style configuration file specifies which modules to plug in and apply to the
Java source files. The modules are structured in a tree style, the root of this tree is the
check module and the second level of tree can be fileSetChecks, filters,
auditListeners.

There are two steps for creating the configuration file in this project.

Step 1. Create the file checkstyle.xml in the root of the project that wants to use
the check modules.

ppuubblliicc ccllaassss NNuummbbeerrOOffMMeetthhooddCChheecckk eexxtteennddss CChheecckk
{{
 iinntt mmeetthhooddNNuummbbeerr==00;;
 ppuubblliicc iinntt[[]] ggeettDDeeffaauullttTTookkeennss(()){{
 rreettuurrnn nneeww iinntt[[]]{{TTookkeennTTyyppeess..CCLLAASSSS__DDEEFF,,
TTookkeennTTyyppeess..IINNTTEERRFFAACCEE__DDEEFF}};;

}}

 ppuubblliicc vvooiidd vviissiittTTookkeenn((DDeettaaiillAASSTT aasstt)){{
 DDeettaaiillAASSTT oobbjjBBlloocckk ==
aasstt..ffiinnddFFiirrssttTTookkeenn((TTookkeennTTyyppeess..OOBBJJBBLLOOCCKK));;
 mmeetthhooddNNuummbbeerr ==
oobbjjBBlloocckk..ggeettCChhiillddCCoouunntt((TTookkeennTTyyppeess..MMEETTHHOODD__DDEEFF));;

 lloogg((aasstt..ggeettLLiinneeNNoo(()),,
 ""TThheerree aarree"" ++ mmeetthhooddNNuummbbeerr ++ ""iinn tthhiiss ssoouurrccee ccooddee
ffiillee""));;

}}
}}

Developing a System to help programmers achieve a good coding style
__

__ 85 ___

Step 2. Configure the check-style plug-in to use the check modules that are developed
in this project.

This step tells the check-style how to use the custom developed modules. The
configurations should be defined in the POM.XML file.

7.5.3 BUILDING A JAR FOR THE CHECK MODULES

In order to use the check modules in other projects, check module packages need a
specified structure. The structure is listed below:

<<??xxmmll vveerrssiioonn==""11..00"" ??>>
<<pprroojjeecctt>>
… <<bbuuiilldd>>
 <<pplluuggiinnss>>
 <<pplluuggiinn>>
 <<ggrroouuppIIdd>>oorrgg..aappaacchhee..mmaavveenn..pplluuggiinnss<<//ggrroouuppIIdd>>

<<aarrttiiffaaccttIIdd>>mmaavveenn--cchheecckkssttyyllee--pplluuggiinn<<//aarrttiiffaaccttIIdd>>
 <<vveerrssiioonn>>22..33<<//vveerrssiioonn>>
 <<ddeeppeennddeenncciieess>>
 <<ddeeppeennddeennccyy>>
 <<ggrroouuppIIdd>>DDiisssseerrttaattiioonnPPrroojjeecctt<<//ggrroouuppIIdd>>
 <<aarrttiiffaaccttIIdd>>cchheecckk--mmoodduulleess<<//aarrttiiffaaccttIIdd>>
 <<//ddeeppeennddeennccyy>>
 <<//ddeeppeennddeenncciieess>>
 <<//pplluuggiinn>>
 …

<<??xxmmll vveerrssiioonn==""11..00"" ??>>
//// hheerree iiss ccoommee XXMMLL ffiillee ddeeffiinniittiioonnss
<<mmoodduullee nnaammee==""CChheecckkeerr"">>
 <<mmoodduullee nnaammee==""DDiisssseerrttaattiioonnPPrroojjeecctt"">>
 <<mmoodduullee nnaammee==""NNuummbbeerrOOffMMeetthhoodd""//>>
 <<//mmoodduullee>>
<<//mmoodduullee>>

Developing a System to help programmers achieve a good coding style
__

__ 86 ___

7.6 CODING REVIEW COMPONENT IMPLEMENTATION

The Coding review component is the most important component in this project. The
coding review component has three parts: the configuration file, the component
framework and the functions modules.

FIGURE 52: PLUG-IN COMPONENT ARCHITECTURE

The first part is the development of the configuration file. A component configuration
file describes the information about the component; the information contains
component id, name, version and author. It also contains function module information
which tells the component framework how to load and use the modules. The
configuration file contains more information; however the structure of this file should
follow an XML file format. The component framework will deal with the variables in
this file. In this project, a configuration file for the coding review component is
defined:

NNuummbbeerrOOffMMeetthhooddCChheecckk--11..00..jjaarr
||---- PPOOMM..XXMMLL
||---- MMEETTAA--IINNFF
|| ||---- MMAANNIIFFEESSTT..MMFF
|| `̀---- mmaavveenn
|| ---- NNuummbbeerrOOffMMeetthhooddCChheecckk
|| ||---- PPOOMM..XXMMLL
|| `̀---- PPOOMM..PPRROOPPEERRTTIIEESS
||---- cchheecckkss
 ||---- ppaacckkaaggeennaammeess..xxmmll
 `̀---- MMeetthhooddLLiimmiittCChheecckk..ccllaassss

Developing a System to help programmers achieve a good coding style
__

__ 87 ___

The Component framework is code which follows a plug-in structure. The code deals
with the functions implemented in the modules. Most of the classes in the component
framework should implement the interface IMyComponent:

This interface provides five methods which describe the behaviours of a component.
The following code is an example of one of the component classes. The class is used
to check the lines in the source code; the structure follows the module implementation
structure and also the component plug-in structure.

ppuubblliicc iinntteerrffaaccee IIMMyyCCoommppoonneenntt {{
 ppuubblliicc vvooiidd ccoommppoonneennttIInniitt(());;
 ppuubblliicc vvooiidd ccoommppoonneennttSSttaarrtt(());;

ppuubblliicc vvooiidd ccoommppoonneennttDDeessttoorryy(());;
ppuubblliicc vvooiidd ccoommppoonneennttIInnffoo(());;
ppuubblliicc IIEExxtteennssiioonn ggeettEExxtteennssiioonn((SSttrriinngg ccoommppoonneennttIIdd));;
ppuubblliicc SSttrriinngg iinnffoorr;;
ppuubblliicc SSttrriinngg ccoommppoonneennttIIdd;;

}}

<<??xxmmll vveerrssiioonn==""11..00"" eennccooddiinngg==""uuttff--88""??>>
<<pplluuggiinn iidd==""CCooddiinnggVViieewwCCoommppoonneenntt"" nnaammee==""CCVVCC"" vveerrssiioonn==""CCVVCC11""
aauutthhoorr==""DDIITTSSttuuddeenntt"">>
 <<rruunnttiimmee ppaatthh==""CCooddiinnggVViieewwCCoommppoonneenntt..jjaarr""//>>
<<//pplluuggiinn>>

ppuubblliicc ccllaassss CCRRLLeennggtthhCChheecckk eexxtteennddss CChheecckk iimmpplleemmeennttss
IIMMyyccoommppoonneenntt{{

iinntt nnuummbbeerrOOffLLiinneess==00;;
SSttrrTToooollFFaaccttoorryy ssttff == nneeww SSttrrTToooollFFaaccttoorryy(());;

 ppuubblliicc iinntt ggeettLLiinneess((SSttrriinngg ssoouurrcceeCCooddee)){{
 rreettuurrnn IInntteeggeerr..vvaalluueeOOff((ssttff..
ccrreeaatteeSSttrriinnggTTooooll(())))..iinnttVVaalluuee(());;
 }}

public void componentInit(){}
 public void componentStart(){}

public void componentDestory(){}
public void componentInfo(){
 return this.info;
}
public IExtension getExtension(String componentId){
 this.componentId = componentId;
}

Developing a System to help programmers achieve a good coding style
__

__ 88 ___

The sample code above is to do the length checking for the source code. The
RTLengthCheck class is extended from the Check class, besides it also
implements IMycomponent. This means that CRLengthCheck can be used by
both the check-style module and the component plug-in framework. The example also
follows the “Factory method pattern” for creating objects.

FIGURE 53: STRING FACTORY ARCHITECTURE

PPuubblliicc iinntteerrffaaccee IIMMyySSttrriinnggTTooooll{{
 ppuubblliicc SSttrriinngg ddeeaallWWiitthhSSttrr((SSttrriinngg ssttrr));;
 ppuubblliicc SSttrriinngg ssttrr;;
}}

ppuubblliicc ccllaassss CCRRSSttrrLLiinneessCChheecckk iimmpplleemmeennttss IIMMyySSttrriinnggTTooooll{{

iinntt ccoouunntt == 00;;
ppuubblliicc SSttrriinngg ddeeaallWWiitthhSSttrr((SSttrriinngg ssttrr)){{

ffoorr((iinntt ii==00;; ii<<ssttrr..lleennggtthh(());; ii++++)){{
iiff((ssttrr..cchhaarrAAtt((ii)) ==== ''\\nn'' |||| ssttrr..cchhaarrAAtt((ii)) ==== ''\\rr'')){{

 ccoouunntt++++;;
}}

}}
 rreettuurrnn ccoouunntt++"""";;

}}
}}

ppuubblliicc iinntteerrffaaccee IIAAbbssttrraaccttSSttrrTToooollFFaaccttoorryy {{

ppuubblliicc IIMMyySSttrriinnggTTooooll ccrreeaatteeSSttrriinnggTTooooll(());;
}}

ppuubblliicc ccllaassss SSttrrTToooollFFaaccttoorryy iimmpplleemmeennttss
IIAAbbssttrraaccttSSttrrTToooollFFaaccttoorryy {{

ppuubblliicc IIMMyySSttrriinnggTTooooll ccrreeaatteeSSttrriinnggTTooooll (()) {{
 rreettuurrnn nneeww CCRRSSttrrLLiinneessCChheecckk (());;

}}
}}

Developing a System to help programmers achieve a good coding style
__

__ 89 ___

IAbstractStrToolFactory is an interface which contains the functions of a
ToolFactory, and StrToolFactory should implement the interface.
StrToolFactory should create a CRStrLinesCheck object. As the object
creating action is encapsulated in IAbstracStrToolFactory, when changes the
behaviours of CRStrlineScheck. This means that this component has a flexible
design, the developers can update the component by modifying the code in the
function class.

FIGURE 54: LENGTH CHECK MODULE ARCHITECTURE

CRLengthCheck gets the function from the StrToolFactory class, and all of
the classes in the class diagram make a functional unit which is used in a module. All
of the modules in this project will follow this design structure. With the help of this
design structure, the component not only implements the pre-defined functions, it also
has a very flexible structure: “updating the component by changing only one method”.

The code review component has a number of modules, some of those modules are:
l CRBlockCheck:

Block check; include nested block check and empty block check.

l CRDumplicateCodeCheck:
Duplicate code detection

l CRClassDesignCheck:
Class design checking

These modules build the functions of the component. Eclipse will give warnings to
the developer if any problems are detected.

Developing a System to help programmers achieve a good coding style
__

__ 90 ___

7.7 CODE REFACTORING COMPONENT IMPLEMENTATION

The Code refactoring component has the same architecture as the coding review
component. It is also designed to use the “Factory method design pattern”, and all of
its functions are created from the factory class. There are three modules in this
component.

l CRefactoringNaming

Warning the developers to rename a method, variable, class or other Java
elements if the source code has naming problems

l CRefactoringCodeMoving
Warning the developers to do “Code moving” if the source code has structure
problems

l CRefactoringCodeExtract
Warning the developers to extract methods or classes if there are too many lines
in them

Take the CRefactoringCodeExtract implementation as an example. This module has
the same structure as other modules in this project. However it has more function
factories. The development challenge from this module also comes from its functional
development. This component development includes functional module development
and component module development. Component module has the same architecture as
the code review component module, and the functional module will go thought the
following processes.

1. Generate rules for extract code.

Code extract is a high intelligent process. The problems are which code need to be
extracted and how to extract the code. The first problem will be resolved by
checking the general rules for extracting code. Those rules can be:

• Check the length of the code (class, method and other fields). For example if

the length of the class is more than 200 lines, the code should be extracted.

• Check the number of elements (methods, field, inner classes or other

elements in the source code). A large number of elements will make the code
hard to read and to understand, and that will make the functions provided by
this class complicated and messy. So extraction of the code is necessary.

• Proper use of structure based key words (e.g. while, do, for, if, try, catch).

These key words may make the code messy; code extraction could improve
the coding style.

Developing a System to help programmers achieve a good coding style
__

__ 91 ___

• Check code structure (e.g. the position of variable definition, method
implementation, inner class). Determine where to define the variables,
methods, inner classes and other Java elements.

• There are also many other rules for code extraction. Those rules can be

implemented as modules in this component.

2. Analyse the rules, extract the rules to small unit.
In this section, each rule will be divided into several smaller units. Take the check
code structure as an example.

Check code structure (e.g. the position of variable definition, method
implementation, inner class).
The aim of this rule is to check the location of the variable definition, the method
implementation and the inner class. This rule can be divided into three parts;
• Check position of variables
• Check position of methods
• Check position of inner class.

And those small units give a solution to the interface design.

3. Implement the rules

Rules can be implemented by creating the subclass of its related interface.
Take the check code structure module as an example.
According to the related interface designed, the subclass of this interface can be
designed to implement the functions only. With the help of the factory method, the
function module is independent of the component module.

public interface ICECodeStructure{
 public int[] variablePosition();
 public int[] methodPosition();
 public int[] innerClassPosition();

 ArrayList sourceCode = new ArrayList();
}

ppuubblliicc ccllaassss CCooddeeSSttrruuccttuurree iimmpplleemmeennttss IICCEECCooddeeSSttrruuccttuurree{{
 AArrrraayyLLiisstt ccoouunnttss == nneeww AArrrraayyLLiisstt(());;
 ppuubblliicc iinntt[[]] vvaarriiaabblleePPoossiittiioonn(()){{
 ccoouunnttss..cclleeaarr(());;
 ffoorr((iinntt ii==00;; ii<<ssoouurrcceeCCooddee..ssiizzee(());; ii++++)){{

 iiff((SSttrruuccttCChheecckkeerr..iissVVaarriiaabbllee((iissssoouurrcceeCCooddee..ggeett((ii))..ttooSSttrr
iinngg(()))))){{
 ccoouunnttss..aadddd((ii++11));;
 }}
 }}
 rreettuurrnn tthhiiss..aarrrraayyLLiissttTTooIInnttAArrrraayy((ccoouunnttss));;
 }}

Developing a System to help programmers achieve a good coding style
__

__ 92 ___

4. Link the function modules to the component modules.

Rules are implemented in the function modules. In order to combine the function
modules with the component modules, the factory method pattern are also used in
this step.

FIGURE 55: MODULE RELATIOION ARCHITECTURE

ppuubblliicc iinntt[[]] mmeetthhooddPPoossiittiioonn(()){{
 ccoouunnttss..cclleeaarr(());;
 ffoorr((iinntt ii==00;; ii<<ssoouurrcceeCCooddee..ssiizzee(());; ii++++)){{

 iiff((SSttrruuccttCChheecckkeerr..iissMMeetthhoodd((iissssoouurrcceeCCooddee..ggeett((ii))..ttooSSttrriinn
gg(()))))){{
 ccoouunnttss..aadddd((ii++11));;
 }}
 }}

 rreettuurrnn tthhiiss..aarrrraayyLLiissttTTooIInnttAArrrraayy((ccoouunnttss));;
 }}

 ppuubblliicc iinntt[[]] iinnnneerrCCllaassssPPoossiittiioonn(()){{
 ccoouunnttss..cclleeaarr(());;
 ffoorr((iinntt ii==00;; ii<<ssoouurrcceeCCooddee..ssiizzee(());; ii++++)){{

 iiff((SSttrruuccttCChheecckkeerr..iissSSuubbCCllaassss((iissssoouurrcceeCCooddee..ggeett((ii))..ttooSSttrr
iinngg(()))))){{
 ccoouunnttss..aadddd((ii++11));;
 }}
 }}
 rreettuurrnn tthhiiss..aarrrraayyLLiissttTTooIInnttAArrrraayy((ccoouunnttss));;
 }}
}}

Developing a System to help programmers achieve a good coding style
__

__ 93 ___

A related class FMCodeStructure is a class that extends the Check class, and that
means the class follows a check-style API Style and it can be used by both check-style
APIs and the component module class. This class also implements the plug-in module
structure, besides; there are many other functional factory methods in it. This class
links the functional module to the component module.

While all the component modules and functional modules are implemented, the whole
component can be used as a plug-in for the code checker.

7.8 PERFORMANCE COMPONENT IMPLEMENTATION

As mentioned above, most components in this project have the same architecture. The
performance component also has the same architecture, it has two major parts: one is
the component module which links the component to the Code-Check and it will also
deal with the functional modules in the other part. The other is the functional module.
This module also contains sub-modules which provide related functions to its
super-module. The implementation of this component has a lot of challenges. The
challenge comes from the design pattern implementation and code improvement
advice. There are many design patterns, but in this project only one pattern will be
implemented. The name of this design pattern is “Flyweight pattern”. As the detail of
this pattern has been introduced above, the “Flyweight pattern” can minimize memory
usage by sharing as much data as possible with other similar objects. This means it
can improve the performance of the application.

In order to implement the functional module (“Flyweight pattern” based function
module), it is important to know when to use this design pattern. One of the solutions
is to create a rule library. The rule library contains the situations about when to use the
design. There is also a class which will deal with those rules. When the source code
meets the requirement of the rules, the Code-Check should offer advice.

FIGURE 56: RULEMANAGER ARCHITECTURE

One rule in this project is:

Developing a System to help programmers achieve a good coding style
__

__ 94 ___

When the developer creates an object which has the same type with another object,
the developer may use the “Flyweight pattern”. The following source code creates
two objects with the same type “MyClass”, and they don’t change any behaviours of
the object. This indicates that the developers can use the flyweight pattern here. The
functional module will then create a “flyweight pattern” framework with the existing
source code, and give the developer a warning message.

//******************** UUppddaatteedd CCllaassss ************************//
ppuubblliicc ccllaassss MMyyCCllaassssFFaaccttoorryy {{
 pprriivvaattee HHaasshhttaabbllee mmyyCCllaassss == nneeww HHaasshhttaabbllee(());;
 ppuubblliicc MMyyCCllaassss ggeettMMyyCCllaassss((OObbjjeecctt kkeeyy)) {{
 MMyyCCllaassss nneewwCCllaassss == ((MMyyCCllaassss)) mmyyCCllaassss..ggeett((kkeeyy));;
 iiff((nneewwCCllaassss ==== nnuullll)) {{
 nneewwCCllaassss == nneeww MMyyCCllaassss(());;
 mmyyCCllaassss..ppuutt((kkeeyy,, nneewwCCllaassss));;
 }}
 rreettuurrnn nneewwCCllaassss;;
 }}
}}

ppuubblliicc ccllaassss aannootthheerrCCllaassss{{
 ppuubblliicc ssttaattiicc vvooiidd MMaaiinn((SSttrriinngg [[]] aarrggss)){{
 MMyyCCllaassssFFaaccttoorryy mmccff == nneeww MMyyCCllaassssFFaaccttoorryy (());;
 mmccff..ggeett MMyyCCllaassss((““kkeeyy11””))..pprriinnttHHeelllloo(());;

 mmccff..ggeett MMyyCCllaassss((““kkeeyy22””))..pprriinnttHHeelllloo(());;
 }}
}}

ppuubblliicc ccllaassss MMyyCCllaassss{{
 ppuubblliicc vvooiidd pprriinnttHHeelllloo(()){{
 SSyysstteemm..oouutt..pprriinntt((""hheelllloo""));;
 }}
}}

ppuubblliicc ccllaassss aannootthheerrCCllaassss{{
 ppuubblliicc ssttaattiicc vvooiidd MMaaiinn((SSttrriinngg [[]] aarrggss)){{
 MMyyCCllaassss mmcc11 == nneeww MMyyCCllaassss(());;
 mmcc11..pprriinnttHHeelllloo(());;

 MMyyCCllaassss mmcc22 == nneeww MMyyCCllaassss(());;
 mmcc22..pprriinnttHHeelllloo(());;

 }}
}}

Developing a System to help programmers achieve a good coding style
__

__ 95 ___

As there is a time limit on this project, the rules used are very simple while there
should be a lot more complicated situations in real-world programming. As the
component has a very complex design, it gives the ability to allow the user to change
and extend the features in the future. When the developer wants to add new rules or
features, what she should do is to implement a new rule, and put the compiled class
into the specified package.

7.9 CODE-CHECK DEPLOYMENT

The Code-Check deployment includes component deployment and module
deployment. The component modules are implemented based on the check-style APIs,
so the configuration of deployment also follows the check-style configuration format.
There are two types of configuration file in the component modules. The first type of
configuration file includes the definitions of the specified coding standard; this file is
used in the coding review component. This file should include all the definitions that
the Java coding standards will use. And this makes the coding review component able
to check the source code in the coding panel of Eclipse. Below is part of the
configuration file.

FIGURE 57: A PART OF THE CONFIGURATIONS WHICH IS BASED ON THE CODING

STANDARD

Developing a System to help programmers achieve a good coding style
__

__ 96 ___

Another type of configuration file is the plug-in configuration file, this type of
configuration tells the Code-Check framework how to handle the components.

When all of the configuration files, Java packages and libraries have been packaged
together, the Code-Check can be deployed. The packaged Code-Check should be put
to the Eclipse plug-in folder, besides; the check-style package also should be installed
as the Code-Check will use a lot of APIs from that package.

FIGURE 58: CODE CHECK EXAMPLE

.

<?xml version="1.0" encoding="utf-8"?>
<plugin id="CodeRefactoringComponent" name="CRC" version="CRC1"
author="DITStudent">
 <runtime path=" CodeRefactoringComponent.jar"/>
</plugin>

Developing a System to help programmers achieve a good coding style
__

__ 97 ___

7.10 CONCLUSIONS

This chapter explained the use cases for this project and a sequence of actions that the
user undertakes. It then discusses the implementation of the Code-Check plug-in for
Eclipse. The plug-in is an implementation of the new version of the Java coding
standard. The Code-Check plug-in uses an XML file as the reference of rules.
Based on the configuration file supplied, Eclipse can perform the code checking,
coding review, code refactoring and performance checking for Java. This plug-in is
aimed to help the developers to improve their programming habits and source code
quality.

Developing a System to help programmers achieve a good coding style
__

__ 98 ___

8. EVALUATION

8.1 INTRODUCTION

This chapter discusses the evaluation of the project. The evaluation has been carried
out by both survey and interview. The survey concerns the coding standards reality
and attitude of developers towards new coding standards and the Code-Check. Some
developers and students from DIT were asked to do the interviews for evaluation and
feedback.

8.2 SURVEY FOR THE PROJECT

The evaluation was carried out by two parts. The first survey was published on a
survey website at: http://www.surveymonkey.com/ with the following link:
http://surveymonkey.com/s.aspx?sm=DUTYQm7kshyrVgEFpIufGQ_3d_3d and
the second one is Chinese version which is published at
http://www.zdiao.com/vtest_show.asp?testid=113773

In this survey, the questions are supplied as shown in Appendix C about how people
feel about their current coding style and if they are willing to engage in a new coding
standard. The survey was distributed through e-mail to the people that work in the
software industry. There were a total of 678 responses (Chinese 646, Ireland 32), and
they came from students from DIT, programmers current working in Ireland, China
and Singapore.

8.2.1 DO YOU FEEL THAT CODING STANDARDS ARE IMPORTANT?

Results (Ireland): Most people gave 3, 4 and 5 in the Ireland version.
Results (China): Half of the respondents gave 3, 4, and 5 in the Chinese version.

FIGURE 59: SURVEY RESULTS (CHINA)

The results from the Chinese and Ireland version are very different. From this
feedback, it could be verified that the developers in Ireland pay more attention to

http://www.surveymonkey.com/
http://surveymonkey.com/s.aspx?sm=DUTYQm7kshyrVgEFpIufGQ_3d_3d
http://www.zdiao.com/vtest_show.asp?testid=113773

Developing a System to help programmers achieve a good coding style
__

__ 99 ___

software code quality. Potentially, the reason for this difference can also be explained
by the following question.

8.2.2 IF YOU ARE A JAVA DEVELOPER, HOW MANY YEARS HAVE YOU BEEN
PROGRAMMING IN JAVA?

Results (Ireland): 1/3 of the respondents gave 1-2 years, and 1/3 of the respondents
gave 2-5 years
Results (China): More than 1/2 of the respondents gave 0-1 years.

As the above result shows, it appears that the coding standards are more important for
those developers with more experience. More experienced developers realize coding
standards are important, however, many developers even don’t know the name or
publisher of the coding standards they are using.

8.2.3 DO YOU KNOW THE NAME OF THE JAVA CODING STANDARD YOU ARE
CURRENTLY USING?

Results (Ireland): More than 1/3 of the respondents don’t know the name of the
coding standards that they are using.
Results (China): More than 1/3 of the respondents don’t know the name of the coding
standards they are using.

FIGURE 60: SURVEY RESULTS (IRELAND)

According to the results, developers don’t tend to know their coding standards’ names
and also the standard publishers are not that important to them. What really matter is
the coding standard itself and if it is easy to use.

8.2.4 WILL YOU FOLLOW THE CODING STANDARD STRICTLY?

Most of the respondents who are experienced developers provide the following
answer “70%-90% of the code follows the coding standard.”, also some
developers with 0-1 years coding experience provide “Less than 30% of the code
follows the coding standard.” The results show that most of the developers can’t
follow coding standards strictly and it is necessary to provide a new approach to help
them to achieve source code which follows coding standards strictly.

Developing a System to help programmers achieve a good coding style
__

__ 100 ___

8.2.5 HOW HAVE YOU LEARNED A SPECIFIED PROGRAMMING STANDARD?

FIGURE 61: SURVEY RESULTS (IRELAND)

Results (Ireland): Nearly all of the developers learn coding standards through four
approaches, but “Learn from book (articles)” is the most popular approach.

FIGURE 62: SURVEY RESULTS (CHINA)

Results (China): Nearly all the developers learn coding standards through two
approaches and “Learn from teachers” is the most popular approach to Chinese
developers.

The above results show that “learning from teachers” and “learning from books
(articles)” are the most common methods for the developers to learn coding standards.
The developers can handle most of the coding standards from those two approaches;
however they can’t deal with the remaining 20% of the coding standards. In this
project, a solution will be provided to resolve this problem. The solution is to provide
a coding-tool which will help the developer to improve the quality of the source code.

8.2.6 IF THERE WAS A TOOL TO HELP YOU WITH THE CODING STANDARDS,
WOULD YOU USE IT?

Results (Ireland): Nearly all of the respondents are positive about using the tool
(27/30)
Results (China): Nearly 500 of the respondents would like to use it while 145 of the
respondents will never use it.

Developing a System to help programmers achieve a good coding style
__

__ 101 ___

FIGURE 63: SURVEY RESULTS (IRELAND)

The results show that a positive attitude towards the tool and people are happy to try
the new tool to help them improve. Although there are still a certain number of people
who are uncertain about using the tool, they may be users in the future.

8.3 INTERVIEW FOR THE PROJECT

In undertaking this evaluation five interview questions were asked to the developers
(1 from CR2 Ltd., 1 from VirtualAccess Ltd. and 1 from a Chinese software company
UFIDA software ltd.). The first three questions focused on the existing coding
standards problems in the companies.
l How do you encourage developers to follow coding standards in your company?
l How do you handle poor quality code from your team members?
l Do you have any specified developers who will check the coding standards in

your company?

The other two questions focused on coding-tools.

l Which development tool do you use in your company and what do you think of

its ability to handle source code?
l If there was a tool to help you with standards, would you use it?

8.3.1 HOW DO YOU ENCOURAGE DEVELOPERS TO FOLLOW CODING
STANDARDS IN YOUR COMPANY?

In response to the first question one of the developers had the following response:
“… By reviewing the coding standards with the staffs in team ...”

The second developer gives a similar response:
“… our team leader will give us the coding standards document …”
The third developer provided the following comments:
“… we use StyleCop analyzes our C# source code, besides, we also have our own
coding standards document …”

Developing a System to help programmers achieve a good coding style
__

__ 102 ___

The feedback shows that many IT companies have their own coding standards. They
encourage developers to follow coding standards by providing a coding standards
document and ask them to follow this document. Several companies also provide
coding-tools like StyleCop which can improve their source code quality.

8.3.2 HOW DO YOU HANDLE POOR QUALITY CODE FROM YOUR TEAM
MEMBERS?

In responding to the second question, the developer from UFIDA Software Ltd gave
the following response:
“… Our team leader will check our code quality, if the quality of the source code is
too bad; we have to rewrite the code…”

The developers from the Irish company gave a similar response:
“… We need to do code review and our QA also help us …”

8.3.3 DO YOU HAVE ANY SPECIFIED DEVELOPERS WHO WILL CHECK THE
CODING STANDARDS IN YOUR COMPANY?

In response to the third question a developer from UFIDA responded:
“… no, I need to do code review by myself, however, my team leader may check my
source code …”

The developer from CR2 gave the following comments:
“… we don’t have any specified developers who will check my code, but I will do code
review and QA may help us …”

The developer from VirtualAccess provided the comment:
“… I check the code by myself …”

The responses from second and third question show that code reviews are a common
way to help the developer to handle the poor quality source code. Code reviews are
done by the developers or QA in their organisation. These three developers also
indicate that few developers in their organisations use a code review tool. This means,
a good code review tool may help developers to improve their source code quality.

8.3.4 WHICH DEVELOPMENT TOOL DO YOU USE IN YOUR COMPANY AND WHAT
DO YOU THINK OF ITS ABILITY TO HANDLE SOURCE CODE?

In response to the fourth question:
The developer from UFIDA provided the following response:
“… My group focuses on ERP development. Most of us use VB and C# as the
programming language and my company provide Visual Studios as our develop tool.

Developing a System to help programmers achieve a good coding style
__

__ 103 ___

It is a very good developer tool, it can deal with the code structure, however I need to
do code review by myself …”

The developer from VirtualAccess gave the following response:
“… We use Visual Studio 2005 and it has great ability on code check. I know there
are some plug-ins for coding check, but never tried …”

The above feedback shows that many companies use Visual Studio as their
development tool, however the Visual Studio plug-in for code checking is not
commonly used. In order to make those tools popular, it requires a considerable
amount of training using the plug-in.

8.3.5 IF THERE WAS A TOOL TO HELP YOU WITH STANDARDS, WOULD YOU USE
IT?

In response to the fifth question:
Three developers gave similar answers. They would like to use the tool; however, the
tool should be easy to use.

8.3.6 INTERPRETATION OF RESPONSES

From the feedback in the interviews, it is verified that most developers in IT
companies realize that coding standards are important; however, they do not put too
much effort in improving their coding style. Visual Studio coding-tools also are not
very popular in these companies; most developers do coding check by themselves.

8.4 CODING STANDARDS AND CODE-CHECK EVALUAION

8.4.1 CODE-CHECK EVALUATION

The evaluation was done based on the results from the four Code-Check testers (3
developers and 1 student). The Code-Check testers are from:

l A software developer from CR2 in Ireland
l A software developer from VirtualAccess in Ireland
l A software developer from UFIDA in Beijin
l A student from DIT in Ireland

They used the Code-Check for 2-3 days and gave marks to the Code-Check from four
aspects of the Code-Check, besides, an interview about Code-Check are also
performed.

Coverage: how the Code-Check works on the rules of the coding standards, e.g. it
deals with 60% of the rules defined in the new coding standards (good).

Developing a System to help programmers achieve a good coding style
__

__ 104 ___

Correctness: how the Code-Check works on the rules, whether it works correctly, e.g.
when it checks the length of the method, it gives the wrong result (weak).

Efficiency: how quickly it deals with the source code, e.g. it takes 20 minutes to deal
with 100 lines Java code (weak)

Easy-of-use: how easy it is to use, e.g. everybody who can use Eclipse plug-in can
use it. (Very good)

The following results are average results:

 1-weak 2-ok 3-good 4-very good 5- excellent
Coverage 3.1
Correctness 3.3
Efficiency 3.9
Easy-of-use 2.25

TABLE 20: RATEING OF THE CODE-CHECK

The results above show that the Code-Check is a good tool with room to improve. It
covers most of the rules of the coding standards and most of those rules can be
checked correctly. Especially its efficiency, it can deal with the source code very
quickly. However, the Code-Check is not that easy to use, as the configuration is
complex and a good understanding of the elements is needed.

8.4.2 CODE-CHECK FEEDBACK

An interview about the Code-Check also has been done and the four testers had given
their feedback. There are four questions in this interview:
l Do you think it is easy to configure the Code-Check?
l Did you get any benefit from the Code-Check?
l If you could extend the functionality of the Code-Check, how would you change

it?
l Would you be willing to use this Code-Check in future?

DCR2: A software developer from CR2 in Ireland
DVA: A software developer from VirtualAccess in Ireland
DUFIDA: A software developer from UFIDA in Beijin
SDIT: A student from DIT in Ireland

In responding to the first question, the tester gave the follow comment:
DUFIDA: “… it is very hard to configure the Code-Check, but it is very easy to
use …”
DCR2: “… I don’t know how to configure the plug-in …“

Developing a System to help programmers achieve a good coding style
__

__ 105 ___

SDIT: “… it is not very hard to configure by following your help document …”
DVA: “… not easy and you should improve it …”

Four testers gave the similar results. From the result, it is verified that the Code-Check
is too complex to configure. The developer from DUFIDA also gave some advice
DUFIDA: “…your helps is also hard to follow, I think you should do a video on how
to configure the code-check…”

According to this advice, a video “Deploy and test CODE-CHECK” has been crafted
and uploaded to http://www.youtube.com/watch?v=BIYC2TvEemU. This video
introduces how to configure the CODE-CHECK and also includes some testing on
CODE-CHECK. The video got 333 views in one month.

FIGURE 64: YOUTUBE VIDEO

In responding to the second question, the testers gave the follow comments:
DUFIDA: “… it is helpful and I like the code-review function, I can do less work on
code-review with it now…”
DVA: “… it is a good idea to develop this tool, but I would like to get a Visual
Studios version …“
DCR2: “…self code review is good and the code refactoring can be improved …”
SDIT: “… it is helpful. I learned some design pattern with it …”

The results show that the four testers all got benefits from CODE-CHECK. Three of
them indicate that the code-review function is very helpful, they can save a lot of time
with the CODE-CHECK; however the CODE-CHECK should be improved. The
student from DIT also gave advice: “… Make sure that the advice is correct, it would
be a waste of time if the coding standard is not correct …”

http://www.youtube.com/watch?v=BIYC2TvEemU

Developing a System to help programmers achieve a good coding style
__

__ 106 ___

In responding to the third question, the testers gave the follow advice:
l Provide Visual Studios Version (C#)
l Make sure the advice is correct
l Develop a self-install package
l The code refactoring is not clever enough, need to improve the algorithm
l Provide more design patterns in performance component, and the algorithm also

should be improved.
l Fix bugs.
l Giving advice is not enough; the CODE-CHECK should automatically change the

structure of the code if necessary.

In responding to the fourth question, the testers all would like to use the
CODE-CHECK in future if it is improved. They feel that a good CODE-CHECK
saves them a lot of time on doing code reviews. And they are glad to have the tool to
improve the structure of the source code, and also give good advice on improving the
performance and design of the source code.

8.4.3 CODING STANDARDS EVALUATION

Together with CODE-CHECK evaluation, an XML file that contains the standard
element has been supplied to the four testers. For those four people who experienced
using the new coding standard, they were asked to rate the coding standard from the
following areas with 5 marks given for each fields (0 is bad and 5 is excellent):
1. Correction of the coding standard
2. Difficulties in using the coding standard
3. Easy to remember
4. How it works with CODE-CHECK

 CORRECTION DIFFICULTIES EASY TO
REMEMBER

HOW IT
WORKS

Average
Points

4.2 2.3 2.6 3.6

TABLE 21: RATEING OF THE NEW CODING STANDARD

As shown in the rating of the new coding standard, the new coding standard got high
marks in the “Correction” which means the coding standards meet the common
requirement of Java coding conventions. The “Difficulties” show bad results and the
marks for “How it works” and “Easy to Remember” are average. The testers all agree
that this version of the coding standards is good, but it also need improvements.
Compared to learning coding standards without the tool, it has made a lot of
improvements though it is still not that easy to use. The large number of rules in
coding standards determines that there is no coding standard which is very easy to
remember, what can be done is to improve the coding standards and find the
balancing point between them.

Developing a System to help programmers achieve a good coding style
__

__ 107 ___

8.5 CONCLUSIONS

This chapter discusses the project evaluation and the future work of the project. The
project evaluation is carried out by surveys and interviews. The survey is for
gathering people’s attitude against the current coding standard and if they are willing
to accept new coding standards. And the interview is using software developers that
has or will experience the new standard and give their responses. As the surveys show,
people would like to accept a new coding standard once it is easy to follow and simple
to use. And there are is good feedback for the new standard which is encouraging.
However, to make the new coding standard accepted by more people, a lot of work
still needs to be done to achieve it.

Developing a System to help programmers achieve a good coding style
__

__ 108 ___

9. CONCLUSIONS AND FUTURE WORK

9.1 CONCLUSIONS

This project is aimed to help developers gain a better coding standard and so to make
them write code with better consistency. There is no doubt that writing good code
following the standard bring a lot of benefits to the programmer himself and also the
whole team. However, many programmers also complain about the standard that it is
so hard to follow the specific rules and also sometime especially when people work in
a team; it became very hard for them to work under a unique coding standard.

Take Java for example, so many programming standards existed like standard from
Sun Microsystems, IBM which makes it hard to gain a unique and simple coding
standard. With this issue existed, it takes much effort to get code reviewed once the
code has been written.

In aim to help to improve with the situation, this project has analysed the basic
elements of a coding standard. Take Java for example, trying to work out a simple but
useful coding standard that can fit in the most requirements in the programming. With
the understanding of the existing coding standards, the project is trying to abstract the
useful rules and force them to be used in the programming.

With the coding standard that researched from this project, an XML file with a
checklist of elements is supplied. This XML file can be imported to a plug-in that
developed for ECLIPESE. The plug-in called CODE-CHECK is aimed to force the
developers to follow the rules that have been defined in the XML file. Those rules are
based on the coding standard that is achieved in this project. And then when the
programmers use this plug-in during their coding, he will get the prompt or warnings
wherever appropriate. It is designed so as to help the developers get familiar with the
coding standard and use it automatically in a near future.

There is a survey for programmers that is used to find out the current usage of the
coding standards, and as the survey shows, people is willing to follow the coding
standards but it is hard to do so in reality. And also they hold positive opinions in
trying the new tool to help them gain better a coding standard. Followed by a more
detailed interview, it shows that different companies have different ways of dealing
with bad codes that not following the coding standards, and thus the interviewers are
invited to test the new plug-in and return with their rating and comments. From their
comments, it shows good feedback and interests on this helping tool. Also they have
give suggestions for improvements. From the comments collected from the developers,
it shows the positive future but there is still things need to be done in the future work.

The future work is made of two parts. First is the improvement of the current version
of Java coding standard. It can be extended and become a lot more complicated. As
the current algorithm used is simple for code refactoring, it can be made more

Developing a System to help programmers achieve a good coding style
__

__ 109 ___

intelligence and complex. And the other part is to get coding standard for other widely
used languages like C++, VB, etc.

9.2 FUTURE WORK

9.2.1 CODING STANDARDS IMPROVEMENT

Within this project, several existing coding standards are examined and based on all
of the analysis on the existing ones; a new coding standard was developed. However,
due to time limitations, there is more work to be done. For example, the name
checking, it works for checking the length of the naming, however, it is still not
possible to check if the naming is meaningful and appropriate.

Also the tool could be extended to other programming languages like C++, C# that
are widely used. The feedback from the testers also shows that the coding standards
can be improved in “easy to use and easy to remember”. This work based on a good
understanding of specified coding standards. In the future work, the existing rules also
will be analyzed again in order to make it easier to follow.

9.2.2 CODE CHECKER IMPROVEMENT

The CODE-CHECK is the implementation of the coding standards defined in this
project. It works well now, however there are still many issues. According to the
CODE-CHECK testers’ comments and advices, the following work can be done in
future;

l Do more testing and fix the bugs.
l Provide Visual Studios Version
l Improve the advice given by the CODE-CHECK
l Develop a self-install package, make the installation easy
l Improve the algorithm of the code refactoring component
l Add more rules in code refactoring component
l Provide more design patterns in performance component
l Improve the algorithm of performance component
l Provide “automatically improve code structure” function in CODE-CHECK.

Developing a System to help programmers achieve a good coding style
__

__ 110 ___

REFERENCES

[1] Coding Standard Definitions
 Website: http://code.google.com

[2] Steven, D., Programming Standards-wikipedia-parser, 2007

Website: http://code.google.com/

[3] Xiaosong Li, Advance Technical Program, 2007

[4] Robert C. Martin : Design Principles and Design Patterns

[5] Scott W. Ambler, Software process mentor, Writing Robust Java Code
 The Ambysoft Inc. Coding standards for Java
 Version: January 15.2000

[6] Science Infusion Software Engineering Process Group
 General Software Development Standards and Guidelines Version 3.5

[7] Programming styles

http://en.wikipedia.org/wiki/Programming_style

[8] Michael Perry, Automated Nightly Build System

[9] Batch program
 http://encyclopedia2.thefreedictionary.com/batch+program

[10] Vermeulen, Ambler, Bumgardner, Metz, Misfeldt, Shur, & Thompson

Cambridge University Press, 2000
The Elements of Java Style

[11] Naming conventions

http://en.wikipedia.org/wiki/Naming_conventions_(programming)

[12] Jonathan Nagler. Coding Style and Good Computing Practices. The Political

Methodologist, Vol. 6, No. 2 (Spring 1995).

[13] Herb Sutter & Andrei Alexandrescu, C++ Coding Standards

[14] Doug Lea, Draft Java Coding Standard

[15] .NET Programming Standards and Naming Conventions

http://www.irritatedvowel.com/Programming/Standards.aspx

http://code.google.com
http://code.google.com/
http://en.wikipedia.org/wiki/Programming_style
http://encyclopedia2.thefreedictionary.com/batch+program
http://en.wikipedia.org/wiki/Naming_conventions_(programming)
http://www.irritatedvowel.com/Programming/Standards.aspx

Developing a System to help programmers achieve a good coding style
__

__ 111 ___

[16] Indent style
http://en.wikipedia.org/wiki/Indent_style#K.26R_style

[17] Variant: 1TBS

http://en.wikipedia.org/wiki/Indent_style#Variant:_1TBS

[18] Allman style

http://en.wikipedia.org/wiki/Indent_style#Allman_style_.28bsd_in_Emacs.29

[19] G. W. Russell. Experience with inspection in ultralarge-scale developments.

IEEE Software.

[20] S. Chiba Campus, Building Coding Inspection Technology
 Last version 2002

[21] Tom Mens, Tom Tourw´, A Survey of Software Refactoring

[22] Yijun Yu John Mylopoulos Eric Yu Julio Cesar Leite Linda Lin Liu Erik

D'Hollander , Software refactoring guided by multiple soft-goals

[23] Tom Mens, An introduction toSoftware Refactoring

[24] Code refactoring
 Website: http://en.wikipedia.org

[25] Joshua Kerievsky , Refactoring To Patterns published by Addison Wesley in

August 2004

[26] Mark Tabladillo, Application Refactoring With Design Patterns

[27] Code review

http://en.wikipedia.org/wiki/Code_review

[28] Adam Shostack, Code Review Guidelines

[29] Performing a Security Code Review

http://msdn.microsoft.com

[30] Michael Howard, Microsoft, A Process for Performing Security Code Reviews

[31] J.D. Meier, Alex Mackman, Blaine Wastell, Prashant Ban

How To: Perform a Security Code Review for Managed Code

[32] Development Team/Code Review

http://wiki.sugarlabs.org/go/Development_Team/Code_Review

http://en.wikipedia.org/wiki/Indent_style#K.26R_style
http://en.wikipedia.org/wiki/Indent_style#Variant:_1TBS
http://en.wikipedia.org/wiki/Indent_style#Allman_style_.28bsd_in_Emacs.29
http://en.wikipedia.org
http://en.wikipedia.org/wiki/Code_review
http://msdn.microsoft.com
http://wiki.sugarlabs.org/go/Development_Team/Code_Review

Developing a System to help programmers achieve a good coding style
__

__ 112 ___

[33] Deborah A. Trytten University of Oklahoma
 A design for team peer code review

[34] Project Review Group (PRG) – Process and Code of Practice

http://www.hm-treasury.gov.uk/d/prg_code_of_practice_v3_2009.pdf

[35] Published by Juan Soulie, C++ Language Tutorial

[36] Rob Miller, David Clark,Bob White

An Introduction to the Imperative Part of C++

[37] The C Programming Language

http://en.wikipedia.org/wiki/The_C_Programming_Language_%28book%29

[38] The C++ standards committee (the ISO/IEC JTC1/SC22/WG21 working group),

Standard for ProgrammingLanguage C++

[39] Anders Hejlsberg, Scott Wiltamuth, Peter Golde

The C# Programming Language

[40] Microsoft developer center, Visual C# Highlights

[41] Scott Guthrie, C# 3.0 Language Features

[41] Anders Hejlsberg, Scott Wiltamuth, Peter Golde C# Language Specification
 Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA

[42] Microsoft developer center

C#.NET Programming Standards and Naming Conventions

[44] Microsoft developer center

Microsoft Visual Basic for Developers

[45] Microsoft developer center

Visual Basic Coding Conventions

[46] Roy W. Miller IBM, Introduction to Java programming

[47] Nick Parlante, Java Introduction

[48] Sun Macrosystems, Code Conventions for the Java Programming Language

Website: http://java.sun.com

[49] Grand, M. (1997). Java Language Reference. Sebastopol, CA: OReilly &

Associates, Inc.

http://www.hm-treasury.gov.uk/d/prg_code_of_practice_v3_2009.pdf
http://en.wikipedia.org/wiki/The_C_Programming_Language_%28book%29
http://java.sun.com

Developing a System to help programmers achieve a good coding style
__

__ 113 ___

[50] Ray Ontko, Java Coding Standards

[51] Watts S. Humphrey

A Discipline for Software Engineering

[52] Scott Ambler

AmbySoft Inc. Coding Standards

[53] Sun Microsystems, Inc.

Code Conventions for the Java Programming Language

[54] G Bracha, Sun Microsystems

Software Reality: Coding Style

[55] The coding style of Java programming language
 Website: http://en.wikipedia.org

[56] Strunk, W., Jr., E. B. White.

The Elements of Coding Style.

[57] Sun Microsystems, Inc.

Package Naming Conventions

[58] Geotechnical Software Services

Java Programming Style Guidelines

[59] Scott W. Ambler , Practice Leader, Agile Development, Rational Methods Group,

IBM，Java naming conventions

[60] Eng.Omar H. Al-Nahal, Java Programming I - Laboratory Course
 Faculty of Engineering & IT Software Engineering Department

[61] The coding style of Java programming language

http://en.wikipedia.org

[62] Paul Leahy, Using Java Naming Conventions
http://java.about.com

[63] Raffle, Interface Naming Conventions

[64] Sun Macrosystems, Method Naming Conventions for the Java Programming

Language

[65] The coding style of Java programming language
 http://en.wikipedia.org

http://en.wikipedia.org
http://en.wikipedia.org
http://java.about.com
http://en.wikipedia.org

Developing a System to help programmers achieve a good coding style
__

__ 114 ___

[66] Sun Microsystems, Inc.
Code Conventions for the Java Programming Language Version 2

[67] Tips for Java Doc Comments
 Website: http://linux2-cs.johnabbott.qc.ca

[68] Sun Macrosystems, How to Write Doc Comments for the Javadoc Tool

[69] David Flanagan , Java Programming and Documentation Conventions
 Java™ in a Nutshell: A Deskop Quick Reference

[70] Sun Macrosystems, Comments Conventions for the Java Programming Language

[71] Aron Roberts , Java Source Files - Beginning Comments Block

[72] Sun Microsystems, Comments Conventions for the Java Programming Language

[73] David Flanagan, Java Documentation Comments

[74] Sun Microsystems, Inc. Developer Resources for Java Programming Language

Documentation Comments

[75] Sun Macrosystems, Comments Conventions for the Java Programming Language

[76] Strunk, W., Jr., and E. B. White. The Elements of Coding Style.

New York: Macmillan, 1979.

[77] Colin Depradine, Javadoc Tutorial, Java Document Comments

[78] David Flanagan, Java Documentation Comments, Java in a nutshell]

[79] Sun Microsystems, Blank line convention for the Java Programming Language

[80] Code Project Group, Software Programming Standards Introductions.

[81] Sun Microsystems, Inc. Developer Resources for Java Programming Language

The Java Platform Class Hierarchy

[82] Y. Daniel Liang, Introduction to Java Programming: Comprehensive Version

[83] Bill Venners, Java Design Issues: A Conversation with Ken Arnold

[84] Concurrency

http://en.wikipedia.org/wiki/Concurrency_%28computer_science%29
[85] McGraw-Hill, Osborne, Multithreading in Java

http://linux2-cs.johnabbott.qc.ca
http://en.wikipedia.org/wiki/Concurrency_%28computer_science%29

Developing a System to help programmers achieve a good coding style
__

__ 115 ___

[86] Incheon Paik,Computer Industry Lab.
Programming Java Multithreaded Programming

[87] Sun Microsystems, Inc. Developer Resources for Java Programming Language

Synchronized Methods

[88] Brian Goetz, Software consultant, Quiotix

Threading lightly, Part 1: Synchronization is not the enemy

[89] Sun Microsystems, Inc. Developer Resources for Java Programming Language

Java package

[90] Sun Microsystems, Inc. Developer Resources for Java Programming Language

Lesson: Packages

[91] Sun Microsystems, Inc. Java Packages Programming, Java Language

Specification

[92] Sun Microsystems, Inc.

Java Packages Access Protection

[93] Java Reuse Tutorials

http://www.tutorialhero.com/tag-14-Reuse.php

[94] Doug Lea, Draft Java Coding Standard

[95] Patrick Bouklee, Java Package Tutorial

[96] Sun Microsystems, Inc. Developer Resources for Java Programming Language

Creating and Using Packages

[97] Mary Smiley , The Java Package Tutorial

[98] Java (programming language)

http://en.wikipedia.org/wiki/Java_%28programming_language%29

[99] Sun Microsystems, Inc.

Code Conventions for the Java Programming Language

[100] Jan Tobochnik, Harvey Gould, Introduction to Java

[101] Sun Microsystems, Inc., Introducing Java

[102] Java (software platform)

http://en.wikipedia.org/wiki/Java_%28software_platform%29

http://www.tutorialhero.com/tag-14-Reuse.php
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Java_%28software_platform%29

Developing a System to help programmers achieve a good coding style
__

__ 116 ___

[103] Sun Microsystems, Inc.
Understanding the Java Platform Architecture

[104] Sun Microsystems, Inc. Developer Resources for Java Programming Language

The Java Platform, Standard Edition (Java SE)

[105] Eclipse Plugin Central, Eclipse Plug-in Architecture

[106] Chris Aniszczyk, Software Engineer, IBM, Software Group,

Eclipse Plugin Development TUTORIAL

[107] Oliver Burn, Check-style Overview

[108] Oliver Burn, Check-style plugin for IDEs

[109] Check-Style Group, Features of Check-Style

[110] Check-Style Group, Checkstyle configuration
 http://checkstyle.sourceforge.net/config.html

[111] Check-Style Group, Checkstyle Modules configuration

[112] Check-Style Group, Checkstyle APIs Document

[113] Check-Style Group, Checkstyle Class Design introduction

[114] Check-Style Group, Checkstyle Class Design APIs descriptions

[115] Check-Style Group, Checkstyle Block Check introduction

[116] Diomidis Spinellis, The Bad Code Spotter's Guide

[117] Check-Style Group, Checkstyle Modules API descriptions

[118] Check-Style Group, Checkstyle APIs Document

[119] Check-Style Group, Develop check-style self-designed modules.

[120] Visitor pattern introductions

http://en.wikipedia.org/wiki/Visitor_pattern

[121] Lea, D. Concurrent Programming in Java Design Principles and Patterns.

Reading

[122] Factory method pattern

http://en.wikipedia.org/wiki/Factory_method_pattern

http://checkstyle.sourceforge.net/config.html
http://en.wikipedia.org/wiki/Visitor_pattern
http://en.wikipedia.org/wiki/Factory_method_pattern

Developing a System to help programmers achieve a good coding style
__

__ 117 ___

[123] Mark Grand, Pattern Summaries: Factory Method

[124] A&P Web Consulting Corp.

GoF Pattterns Introductions, Factory Method Design Pattern, UML diagram

[125] Gopalan Suresh Raj, The Factory Method (Creational) Design Pattern

[126] Martin Fowler, Kent Beck

Refactoring: improving the design of existing code

Developing a System to help programmers achieve a good coding style
__

__ 118 ___

APPENDIX A

Developing a System to help programmers achieve a good coding style
__

__ 119 ___

APPENDIX A

Developing a System to help programmers achieve a good coding style
__

__ 120 ___

Developing a System to help programmers achieve a good coding style
__

__ 121 ___

APPENDIX B

Developing a System to help programmers achieve a good coding style
__

__ 122 ___

Developing a System to help programmers achieve a good coding style
__

__ 123 ___

APPENDIX C

Developing a System to help programmers achieve a good coding style
__

__ 124 ___

Developing a System to help programmers achieve a good coding style
__

__ 125 ___

