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ABSTRACT 

 

Software testing is a key part of the software development process, irrespective of the 

development methodology being followed. Estimates suggest that testing can account 

for more than 50% of the cost of a software development project.  However, the cost of 

inadequate testing or verifying software can be far greater; this can result in losses that 

could total more than 10% of an organisation’s turnover.  It is clear that software 

testing is essential; but while many companies implement different forms of testing, 

there is often no structure or best practice followed to this testing.  There appears to be 

a gap in terms of research into software testing best practice.   

 

It has been shown in previous research that qualitative research methods can be used 

successfully when conducting research in the software engineering domain.  In 

particular Grounded Theory was seen as very suitable for research in this area.  The 

basis of Grounded Theory is in the formation of a theory from the data that is gathered.  

As such it is considered reflective of the reality of situations.  

 

This dissertation aimed to create a model for testing best practice in the 

telecommunications industry using a qualitative research methodology.  It aimed to 

develop a Grounded Theory that could be used to guide testing within a large 

telecommunications company.  

 

Results suggested that the Grounded Theory developed could be used to improve 

project quality and reduce time to market for projects within this organisation. 

 

 

 

Key words: grounded theory, software testing, telecommunications, user acceptance 

testing, qualitative research methods 
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1. INTRODUCTION 

1.1  Background 

 

The process of developing and releasing software is a complex and expensive one and 

is fraught with risk (Adolph et al. 2012).  It is also a big business with estimates of it 

being a $1.6 trillion industry (Bartels et al. 2006 in Adolph et al. 2012).  Because of 

this, we can imagine that organisations would want to ensure that the process for 

developing and testing this software that they have implemented are correct and being 

used properly. 

 

As the complexity (and cost) of these software projects increases areas such as quality, 

reliability and the customer acceptance are critical to the organisations that produce 

this software (Huang 2005).  The methods to ensure there is this reliability and quality 

is the process of verification and validation of the software; software testing being the 

most widely used method (Whyte and Mulder 2011).  Undertaking software testing 

can potentially be a manual and tedious process; yet it is an essential phase in software 

development models (e.g. the V-model).  Estimates suggest that testing can account for 

more than 50% of the cost of a software development project (Whyte and Mulder 

2011).  However, the cost of inadequate testing or verifying software can be 

significantly greater; according to  Engel and Last (2007) this can result in losses that 

could total more than 10% of an organisation’s turnover.  When viewed in this light it 

is clear how important the testing of software is. 

 

What is a little less clear is how human and social factors can effect efficient and cost 

effective testing.  In fact this is an area that is somewhat neglected in Software 

Engineering research, which normally tends to focus on processes, producers, models 

tools etc (Adolph et al. 2012).  However, there have been a number of studies that 

show that societal factors and individuals abilities can highly significant in the 

development process.  It is suggested that social factors can be significant cost drivers 

on software projects, often eclipsing other factors (Cockburn 2002). 
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There is potentially significant benefit from investing time into an investigation of the 

role social factors play in Software Engineering and especially the areas of software 

development and testing.  One method that has been used by a number of researchers 

is that of Grounded Theory; which is a qualitative research method that was first 

proposed by Glaser and Strauss in 1967 where researchers construct theories from the 

data that they collect (Glaser and Strauss 1967).  The theoretical foundations that 

underpin Grounded Theory can be traced back to the area of Symbolic Interactionism, 

a theory that ‘sees humans as key participants and ‘shapers’ of the world they inhabit’ 

(Coleman and O’Connor 2007, p.4).  Grounded theory has been shown to be useful in 

several social science fields and can help to explain how certain behaviours and actions 

shape social processes through human interactions (Glaser and Strauss 1967).  The 

thrust of approach is that theories grow organically from the data that is collected and 

it is important that researchers don’t have pre-conceived theories.  It is nearly the 

opposite of the existing scientific method where researchers will have a hypothesis or 

theory and then go about conducting experiments to hopefully fail to disprove the 

theory.  In grounded theory you conduct the experiment (or data collection) and the 

theory should emerge from this (Coleman and O’Connor 2007).  It is argued that the 

theories derived from this gathered data are more realistic and likely to resemble the 

actuality of the situation (Strauss and Corbin 1998).   

 

 

Within the telecommunications industry there are a number of methods used in 

software development practices.  Within the large telecommunications company that 

this project will concentrate on there is a currently a “one size fits all” approach to 

processes for project testing in the SDLC. In this company there are a number of 

processes and procedures that were developed and implemented when the team was 

first created over 2 years ago.  This was a “one size fits all” model that didn’t cater for 

the different types of projects that the team are engaged on.  Thus, over time these 

have been found to be inflexible, laborious and no longer applicable to the teams work.  

Thus, it is feasible that new processes would be required that would match the way in 

which testing is currently undertaken, ones that would take into account the varied 

nature of the projects undertaken by the team.  This thesis will attempt to tackle the 

problem as to whether or not Grounded Theory can be used to develop a framework 
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that be used to guide and inform types of testing that should be undertaken on the 

various projects the team are engaged in. 

 

Grounded Theory can be thought of as being quite simple conceptually but is rigorous 

and scientific in its practice (Adolph et al. 2012).  The figure below highlights the 

basic processes involved in developing a Grounded Theory. 

 

Figure 1.1: The Grounded Theory Method (Adolph et al. 2012) 

 

There are a number of stages to the process, the first step involves gathering (usually 

via interview) and coding data; this is followed by breaking down the data into distinct 

units or concepts (Coleman and O’Connor 2007).  These concepts are the fundamental 

building blocks of Grounded Theory (Adolph et al. 2012).  The concepts are then re-

interpreted and re-evaluated and inter-relationships between theories are recorded.  

Through a process of repetition gradually more and more sub-concepts are subsumed 

by overarching core concepts.  From these, gradually, the theory emerges (Coleman 

and O’Connor 2007). 

 

Traditionally the concept of Grounded Theory has been used to explain socio-cultural 

items of interest (e.g. in fields of sociology, nursing and psychology) there is a 

growing body of research that suggests that it can be used to explain phenomena in the 

information systems development domain.   Research suggests that Grounded Theory 
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is gaining a greater acceptance in the areas of Software Development and Information 

Systems as it can be seen to be an effective way of explaining phenomenon under 

study in a context based and process orientated fashion (Myers 1997).  A number of 

researchers have used Grounded Theory to investigate various aspects of Software 

Engineering such as studying how IT is used in practise (as opposed to the theory 

behind it) (Goede and De Villiers 2003) and for requirements documentation (Power 

2002). It has also been concluded by Hansen and Kautz (2005 in Coleman and 

O’Connor 2007) that Grounded Theory was a methodology that is well suited to 

research in the Information Systems. 

 

This dissertation will propose to apply Grounded Theory research to the area of 

software testing.  Software testing is one the of the ways that of ensuring quality in a 

software product (Whyte and Mulder 2011).  The testing process shouldn’t be 

considered as one phase in a project but something that will take place over the entire 

software development lifecycle (Baresi and Pezze 2006).  Software testing should start 

as early as possible, requirements should be analysed to ensure they are testable, this is 

known as static testing(ISTQB 2011).  There are a number of other types of testing that 

can be under taken over the duration of a project (e.g. Unit/Module Testing, System 

Testing, Integration Testing, Performance Testing, User Acceptance Testing).  The 

selection of the types of tests to be completed during a testing event is a hard process 

and ‘requires deep experience of software validation’ (Baresi and Pezze 2006, p.90).   

1.2  Research problem 

The research problem being investigated in this project is to explore if Grounded 

Theory can be used to develop a framework for best practice in Software Testing in a 

large telecommunications company. 

1.3  Research objectives 

The aim of this project is to create a Testing framework for applying to software 

projects within a large telecommunications company.  In order to achieve this there are 

a number of objectives that need to be completed: 

1. Perform a literature review in the area of Software Development methodologies 

with a particular focus on Software Testing 
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2. Perform a literature review on Research Methodologies (both Qualitative and 

Quantitative) with a particular focus on Grounded Theory and the application 

of this theory to software engineering projects 

3. Develop a framework and theory for best practice in software testing in a 

telecommunications company 

4. Test the validity of the framework and theory by retrospectively applying it to 

two recently completed projects in the company 

5. Evaluate the results and if appropriate recommend adoption and roll out of 

framework across IT projects. 

1.4  Research methodology 

Primary and secondary research methods will be used to conduct this research, the 

primary method will be structured interviews with Test team members.  These 

interviews will be used as a method of developing the Grounded Theory.  Grounded 

Theory involves manual transcriptions of the entire interviews verbatim and picking 

out relevant themes so that the theory emerges from the data. The secondary research 

methods that will be used was extensive literature reviews that will be conducted to 

help achieve the research objectives. 

1.5  Scope and limitations 

The scope of this project will specifically focus on the development of a framework for 

a telecommunications company. Some of the findings may not be applicable to other 

industries, but many will be.   

It will not be developing a new methodology for software testing.  Neither will it be 

developing a new approach to software testing; rather it will be looking at the best 

available testing techniques and the best sequencing in which those techniques should 

be used.  

1.6  Organisation of the dissertation 

Chapter 2 will be an introduction to the areas of software project development.  There 

will be discussion around the more rigid models such as the Waterfall model. As an 

alternative to this; more modern practices such as Agile development will be 
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discussed.   What should be clear from these discussions is the importance that testing 

plays in the process of software development. Following this a detailed description of 

software testing will be presented.  

  

Chapter 3 will outline the Research Methodologies with an emphasis on Ground 

Theory.  It will first outline the different types of Research Methods (Qualitative Vs 

Quantitative).  It will then detail the 5 types of Qualitative Methods (of which one is 

Grounded Theory). Next there will be a detailed investigation of Grounded Theory.   

 

Chapter 4 will give an introduction to the problem to be resolved and an outline of the 

ways in which Grounded Theory can be used to develop the framework.   This Chapter 

will involve discussion of the company within which the study took place.  It will 

detail how testing currently takes place within the organisation to give an “As-Is” view 

of the situation.   

 

Chapter 5 will contain an outline of how the data was gathered.  An explanation of the 

interviews and how these fed into the Grounded Theory will be discussed in detail.  

There will also be an evaluation of the existing documentation within the organisation.  

 

Chapter 6 will outline the creation of the Grounded Theory. This will be the 

experimentation chapter.  It will outline in detail how the framework was created, what 

the recommendations are and how these should be employed. 

   

Chapter 7 will be the evaluation chapter where the success of the objectives of the 

dissertation will be discussed.  In order to evaluate the validity of the Framework it 

will be applied retrospectively to two recently completed projects within the 

organisation. 

 

Chapter 8 will be the conclusion chapter.  This chapter will re-visit the research 

objectives and evaluate if the project has met those objectives.  It will also outline how 

the dissertation contributes to the body of knowledge on this subject and outline 

recommendations for future work. 
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2. TESTING AND SOFTWARE DEVELOPMENT 

METHODOLOGIES 

2.1  Introduction 

The aim of this dissertation is to develop a framework or Grounded Theory for 

software testing best practice within an organisation.  Before this can be assessed it is 

necessary to have some background knowledge of how companies develop and release 

software and where Testing sits within this.  Thus, this chapter will detail the different 

activities that are involved in the process of developing software.  It will then highlight 

the various methodologies used to develop software.  Finally, there will be an in depth 

analysis of the various types of testing that can take place on a project.  Once this is 

complete and an understanding of how software is developed then the place software 

testing takes in the overall software development lifecycle should be clear.  

2.2  Traditional Software Development Lifecycle 

The process of developing software involves a number of different steps and activities.  

There are also a number of philosophies and methodologies that underpin how 

software is developed.  The type of organisation that you work in, the type of software 

being developed and the experience and preference of team members will all 

contribute to the methodologies used.   The first that we shall examine is the traditional 

software development lifecycle where projects are modelled following rigid stages 

from Requirements to Analysis to Development to Test to Deploy. 

2.2.1  Waterfall Model 

The traditional way of thinking about software development was first proposed by 

(Royce 1970).  In this seminal paper Royce discussed the methods that were used in 

software development (later to be termed the “Waterfall Model) and highlighted the 

major flaws with this system.  In this traditional system there are major phases that all 

projects “flow” through, from Requirements to Deployment (or Operations). 
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Figure 2.1: Traditional Waterfall Development Model (Royce 1970) 

This is thought to be the first incarnation of the waterfall model (although the term 

‘Waterfall’ is never used (Weisert 2003)).  In the article Royce outlines the way that 

software is traditionally built.  In this paper he argues that the two central pieces of 

software development are the design and coding steps.  But there are other key steps 

that must be also be undertaken (analysis, test etc).  The main criticisms of the model 

by Royce are: 

1. The fact that testing happens at the end of the project where it may be too late 

or costly to fix some design issues 

2. The sheer inflexibility of the model, there is no scope for changes to 

requirements etc as once you have passed one stage you can’t go backwards 

(much like a water can’t flow back “up” a waterfall) 

While Royce was against the traditional ways of software development as outlined in 

this review, he proposed ideas to make the process better.   Some of these ideas can be 

used if you were to follow the Waterfall model (e.g. that of Document the Design 

where Royce espouses the need for rigorous documentation) and others if you were to 

follow the newer, leaner approaches (e.g. that of iterative design to build to test cycles) 

(Royce, 1970). 
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2.2.2  Spiral Model 

The Spiral Model is a software development model proposed by Barry Boehm that 

blends an iterative approach to development with the linear approach of the Waterfall 

Model (Boehm 1986).  It has evolved from the experience and refinement of the 

Waterfall Model when it was applied to large American Government projects.  It is 

seen that the Spiral Model can incorporate most of the previous models developed.  

The Spiral Model proceeds iteratively through four key phases.   

 

1. Determine the objectives: This involves identifying the objectives of this 

portion of the project and any alternative ways of implementation. 

 

2. Identify and Resolve Risks: This step involves identifying areas of uncertainty 

and make recommendations for mitigation of risks. 

 
3. Development and Test: In this phase the prototypes are developed and tested in 

a linear fashion as in the Waterfall model where there will be a phase of 

Design, then Coding followed by Integration, Test and Deployment. 

 
4. Planning for the Next Phase: This is the final step in the model and involves 

completing the planning for the next iteration of the model (Boehm 1986). 

 

Figure 2.2: Spiral Model (Boehm 1986) 
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2.2.3  V-Model 

The typical V-model represents software development processes similar to the 

traditional Waterfall Model.  The major difference is that rather than move down the 

waterfall process steps climb back up following the coding phase.  The V-Model 

attempts to represent how the phases before the test phase relate to the different test 

phases on a project.   Each phase in the development stages maps back to a testing 

phase (ISTQB 2011).  It also outlines what test activities should be taking place during 

the related development activities (e.g. during the Design phase the design of the 

application should be being developed along with the design of the test phase). 

 

 

Figure 2.3: The V-Model (One Stop Testing n.d.) 

2.3  Agile Software Development 

What does it really mean to be Agile?  We understand that in the traditional sense of 

software development we get some requirements, build a piece of software, test it and 

release it.  However, by the 1990’s the increased complexity of software and the 

inability of customers to state upfront their full list of requirements this traditional 
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model became hard to work with.  It was becoming clear that these traditional, plan 

driven methods were too rigid and inflexible and that they can’t respond fast enough to 

changing project requirements and new project environments (Erickson et al. 2005).   

Thus, there was a need for a new model, one that embraced change and recognised 

uncertainty.  One set of ideas to overcome this became known as “Agile” methods, 

ones which place an emphasis on people and creativity rather than processes (Dybå 

and Dingsøyr 2008).  A good definition of what is means to be agile is given by 

Erickson et al. (2005 p.89): 

At its core, agility means to strip away as much of the heaviness, commonly 

associated with traditional software-development methodologies, as possible to 

promote quick response to changing environments, changes in user 

requirements, accelerated project deadlines 
 
 
The beginnings of the Agile manifesto dates back to the mid-1990’s where a number 

of researchers working independently came up with different methodologies such as 

Dynamic Systems Development, Feature Driven Development and XP (Williams and 

Cockburn 2003).  These practitioners all met in 2001 to discuss the similarities of their 

methods.  They found that there were a number of similarities in their various 

methodologies and used the term “agile” to categorise them (Williams and Cockburn 

2003).   

The participants then wrote the “Manifesto for Agile Software Development”.  In this 

they described the four core categories that describe the similarities between the 

methods: 

 

 

This then gave rise to The Agile Manifesto website.  On this website the contributors  

This then gave rise to The Agile Manifesto website.  On this website the contributors 

outline their 12 principles of Agile Development:  

• individuals and interactions over processes and tools, 

• working software over comprehensive documentation, 

• customer collaboration over contract negotiation, 

• responding to change over following a plan. 

 (Williams and Cockburn 2003) 
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1. Our  highest priority is to satisfy the customer through early and continuous 

delivery of valuable software 

2. Welcome changing requirements, even late in development. Agile processes 

harness change for the customer's competitive advantage. 

3. Deliver working software frequently, from a couple of weeks to a couple of 

months, with a preference to the shorter timescale. 

4. Business people and developers must work together daily throughout the 

project. 

5. Build projects around motivated individuals. Give them the environment and 

support they need, and trust them to get the job done. 

6. The most efficient and effective method of conveying information to and 

within a development team is face-to-face conversation. 

7. Working software is the primary measure of progress. 

8. Agile processes promote sustainable development. The sponsors, developers, 

and users should be able to maintain a constant pace indefinitely. 

9. Continuous attention to technical excellence and good design enhances agility. 

10. Simplicity--the art of maximizing the amount of work not done--is essential.  

11. The best architectures, requirements, and designs emerge from self-organizing 

teams.  

12. At regular intervals, the team reflects on how to become more effective, then 

tunes and adjusts its behaviour accordingly.  

Figure 2.4 Agile Manifesto (Manifesto for Agile Software Development 2001) 

In the model  of Agile development the focus is on teams continually delivering 

software in short iterations (Moe et al. 2012). There is an emphasis on close 

collaboration, people are seen as more important than processes and the whole 

operation should be “leaner”.  This was taken by some to mean that there should be no 

documentation on the project.  In reality what it means is that there should only be the 

minimum amount of documentation; only spend time documenting what is important 

(Dingsøyr et al. 2012).  We can look at planning as an example of this.  In the 

traditional context of a plan driven environment the “plan” would include documented 

processes and tasks that need to be completed by certain milestone dates etc and all 
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formulated in various plans (e.g. project plan, design phase plan, test plan etc).  In the 

agile world, the emphasis would not be on the output documents but more concerned 

with the planning process, thus, this is why these methods can appear to be less 

planned than they actually are (Boehm 2002).   Figure 2.3 below shows where the agile 

methods sit on the planning spectrum.  To the far left are the hackers, with no plans at 

all and to the far right are heavily contracted, milestone driven projects, agile methods 

sit closer to the left hand side, but still consider planning in their processes (Boehm 

2002). 

 

Figure 2.4: Outlines where Agile methods sit on planning spectrum (B. Boehm 2002) 

Another important factor was the customer (Beck et al. 2001).  They shouldn’t lie at 

the fringes of the development process, but at the heart of it.  Finally, there was 

agreement and an acceptance that there was a level of uncertainty that came with the 

process of software development and that to try to control and eliminate all elements of 

uncertainty was futile (Dingsøyr et al. 2012). 

When the agile method was first proposed over 10 years ago naturally the first number 

of discussions were around the merits of when you should use a the traditional 

Waterfall approach over when you should use the agile methods (Boehm and Turner 

2004).  However, there are also concerns over the various methodologies of Agile 

development.  The main methodologies will be covered in the next section of the 

dissertation. 
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2.3.1  Scrum 

A popular Agile framework is the Scrum framework and was first proposed by 

Schwaber (1995). The term is derived from the game of rugby where a ‘scrum’ is a 

method of getting a ball that is out of play back into play as quick as possible with 

teamwork (Schwaber and Beedle 2001). The Scrum is a method for managing the 

software development process and it does not prescribe the use of any particular 

software development technique (Abrahamsson et al. 2002).  It is about team-members 

working together to deliver working software in a flexible environment (Schwaber 

1995). 

The Scrum involves three phases: Pre-Game, Development and Post-Game.  During 

the Pre-Game Phase high-level planning and design take place as well as the 

development of the list of requirements for the system in the Product Backlog.  Next 

there is the Development Phase, where the requirements from the Product Backlog are 

divided out into separate Sprints (or min-release cycles).  The aim being that at the end 

of each Sprint a working piece of software is delivered. Sprints will last from one week 

to one month and there may be between 3 and 8 Sprints per release.  Once the Sprints 

are complete we move to the Post-Game phase which consists of system testing and 

releasing the product as well as completing all required documentation (Abrahamson et 

al. 2002).  

While Scrum does not prescribe any particular software development techniques 

Scrum does have some software practices and tools to help the development phases 

(Schwaber and Beedle, 2001): 

The first that will be mentioned has been outlined earlier, that is the Product 

Backlog.  This “defines everything that is needed in the final product based on 

current knowledge” (Abrahamson et al. 2002, P.34).  It can contain new 

features or functionality, bugs, defects, customer requests for functionality or 

technical upgrades.  Generally the Product Backlog will be created with input 

from many sources e.g. customers, Quality Assurance, Sales, Product Owners, 

Management (Schwaber 1995).  

The next element in the process we will discuss in more detail is the Sprint.  

These can be considered a procedure for adapting to the constantly changing 
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environmental variables in a software development project (Abrahamson et al. 

2002).  A Sprint is a process whereby the team undertakes development work 

to deliver working software.  There tolls used in the Sprint are: Sprint Planning, 

Sprint Backlog and the Daily Scrum Meeting.  Sprint Planning involves a two-

phase meeting organised by the Scrum Master (project manager) and includes 

users, management, development team and the Product Owner.  During this 

session the functionality to be delivered in the Sprint is finalised.  The output 

from this phase is the Sprint Backlog which lists all items to be included in that 

Sprint.  Finally, there are daily stand-up meetings to track progress.  The 

meetings are very shot in duration (less than 10 minutes) and involve each 

member of the team detailing three things: what they have done since the last 

meeting, what they will do until the next one and any problems they have been 

having. (Schwaber and Beedle, 2001).  

 

Figure 2.5: Sprint Cycle (Kumana and Dickinson 2009) 

In terms of successful experiences using Scrum Rising and Janoff (2000) report its 

successful use in three development projects.  But the use of Agile and Scrum are not 

seen to be fully applicable to large complex projects (Abrahamson, et al., 2002) it has 

been argued that small teams within large projects could use elements of the 

methodology to great success (Rising and Janoff 2000). 
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2.3.2  Extreme Programming (XP) 

The idea of XP is often credited to Kent Beck and his book Extreme Programming: 

Embrace Change (Beck 2000)..  XP consists of 4 key ideas: 

• continual communication with the customer and within the team; 

• simplicity, achieved by a constant focus on minimalist solutions; 

• rapid feedback through mechanisms such as unit and functional testing; 

and 

• the courage to deal with problems proactively (Beck 2000) 

 

What can be seen from looking at XP in practice is that many of their key principles 

(such as minimalism, simplicity and user involvement etc) are present in any 

disciplined process.  What makes the difference in XP is that these are brought to the 

“extreme”.  For example the idea of simplicity means focusing on the key, high 

priority requirements first and worry about the big design and solutions to problems 

that haven’t occurred later  (Paulk 2001). 

There are typically 12 basic elements to XP: 

 

Figure 2.6: 12 Practices of XP (Beck 2000) 

1 Planning Game:
This ensures that the scope of upcoming releases can be 
quickly scoped

2 Small Releases:
Should have short development iterations and put a working 
piece of software out on a short cycle (e.g. every 2 weeks)

3 Metaphor: 
This should be used to guide development, a simple story that 
outlines how system should work

4 Simple Design: Keep the design as simple as possible

5 Testing: Testing should take place continually throughout development

6 Refactoring: 
This involves removing duplication, simplification, adding 
flexibility etc by restructuring systems but not making changes

7 Pair Programming: 
Code is written in pairs, one programmer writes, the other 
reviews what is being written

8 Collective Ownership: The system is free to be improved by anyone at anytime

9 Continuous Integration: 
This involves continually building, integrating and regression 
testing the system many times a day

10 40-hour week: Only work 40 hours in a week (when possible)
11 Onsite customer: You should have the customer onsite to answer queries
12 Coding standards Ensures that code is adequately commented 
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Thus, by using these practices together ensures that XP is a ‘coherent method’ (Paulk 

2001 p.4)  for developing software. 

2.3.3  Crystal Methods 

The next method in the Agile stack is that of the Crystal Methods, which are a family 

of methods that vary based on size and complexity of project (Coffin and Lane 2006).  

This approach was developed by Alastair Cockburn developed from interviews and 

discussions with many project teams about the best way to develop software 

(Cockburn 2004).  This approach puts an emphasis on close communication between 

team members working in small teams (Dybå and Dingsøyr 2008).  There are several 

“flavours” of Crystal that should be chosen depending on project criticality, these are 

colour coded to represent geological crystal’s hardness (Coffin and Lane 2006).  The 

figure below shows how the type of Crystal method for the project should be selected.  

As the size of the project increases (denoted by the numbers at the bottom of the 

model, these represent the upper limit to project team size) then it becomes harder and 

moves to the right in the figure, and therefore a more comprehensive method  is 

required, such as Maroon (Cockburn 2004). As the criticality of the project increases 

(i.e. moves from bottom to top) then additional aspects of the method need to be put in 

place to accommodate the increased complexity (Coffin and Lane 2006).  

 

 

Figure 2.7: The Crystal Family of Methods (Coffin and Lane 2006) 
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As with XP, the Crystal methods are based on key principles (seven this time): 

 

• Frequent Delivery: Working software should be delivered every couple of 

months 

• Close Communication: Small teams should be working in the same room and 

talk often 

• Reflective Improvement: The project team should meet continual and discuss 

progress to ensure project is on track. 

• Personal safety: there are two elements to this.  The first is in relation to 

people mush feel safe in their ability to express the truth on projects without 

fear of recrimination.  Secondly, safety refers to the fact that not all projects 

are delivering the same type of software, e.g. and Air Traffic Control software 

would be more critical than an app for organising shopping lists 

• Focus: Teams should know the top priorities for their teams and be given time 

to work on this 

• Easy Access to Expert Users: As with XP (and most Agile methods), this 

method assumes that customers are based on site to answer queries quickly. 

• Frequent Integration: The same concept as XP, that is, continually building, 

integrating and regression testing the system many times a day (Cockburn 

2004). 

2.3.4   Recap on Agile Development 

As noted at the outset there are a number of software development methodologies that 

can be called Agile.  These were developed by the group known as the Agile 

Manifesto in 2001.  This group published their manifesto which included findings 

from the various methods that each was working on (as they found they shared many 

of the same methods).  Thus, in order to recap and outline the different methods in the 

Agile family. 
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Figure 2.8: Description of different Agile methods (Dybå and Dingsøyr 2008 p.835) 

2.4  Role of Testing in Both Models 

What should be clear is that while all methods may differ in how they deliver projects, 

all place a significant emphasis on testing.  While in Traditional Waterfall models 

testing is a discrete phase that happens at the end of a project, in Agile it is a much 

more fluid and flexible task that continually happens during the development lifecycle.  

It is important to understand what testing actually is.  The next section of the 

dissertation will outline and explain Software Testing in detail. 

2.5  Software Testing 

When developing software there are a number of “stages” that need to be completed in 

order to deliver a working piece of software.  Royce (1970, p1) stated that in reality the 

two ‘essential steps common to all computer program developments’ are Analysis and 

Coding. 
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Figure 2.9: Implementation steps to deliver a small computer program for internal 

operations (Royce 1970) 

However, in there are other key steps that all projects should iterate through no matter 

what methodology is used to deliver it.  As noted by Royce there are fundamental steps 

to ensure that project is built (the analysis, design and coding) but there are also steps 

that aim to ensure the quality of the delivered project.  This part of the process can be 

through of as part of the “Quality Process” and should be something that is not 

considered a phase but something that ‘spans the whole development cycle’ (Baresi 

and Pezze 2006, p.90).  There are various ways that quality can be ensured on a 

project.  A key method is through the use of formal and rigours software testing.  But 

what exactly do we mean by “software testing”? 

Software Testing has various definitions in the literature;  Bertolino (2007) defines it 

as verification that the system behaves as expected and will identify defects in the 

system under test.  In his seminal book “The Art of Software Testing” Myers (1979) 

defines it as executing software to expose failures.  In reality there are many more 

definitions and also there is much more to it than simply execution.  Hamlet (1995) 

argues that the primary goal of software testing is to measure the dependability of the 

software under test.  Perhaps a fuller and more complete description from the 

International Software Testing Qualifications Board (ISTQB®): they define it as: 

The process consisting of all lifecycle activities, both static and dynamic, 

concerned with planning, preparation and evaluation of software products and 

related work products to determine that they satisfy specified requirements, to 

demonstrate that they are fit for purpose and to detect defects (ISTQB 2012).  
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It should be clear that testing is about much more than simply execution and spans the 

entire lifecycle of a project. 

 

Before we discuss the different methods of software testing and the types of testing 

that can be undertaken it is perhaps appropriate to consider why it is so important to 

test software.  As mentioned in the introduction the process of developing and 

releasing software is complex, expensive and can be fraught with risk (Adolph et al. 

2012).  It is also big business with estimates of it being a $1.6 trillion industry (Bartels 

et al. 2006).  Thus, we can imagine that companies would want to ensure that the 

process for developing and testing this software that they have implemented are correct 

and being used properly. 

 

As the complexity (and cost) of these software projects increases in areas such as 

quality, reliability and the customer acceptance are critical to the organisations that 

produce this software (Huang 2005).  It is also a complex and costly task with 

estimates that testing can account for more than 50% of the cost of a software 

development project (Whyte and Mulder 2011).  However, the cost of inadequate 

testing or verifying software can be far greater; according to  Engel and Last (2007) 

this can result in losses that could total more than 10% of an organisation’s turnover.  

When viewed in this context it is not surprising how important the testing of software 

is.  However, even in the face of this evidence on the need to completed full and 

rigorous testing, the area of software testing is coming under significant pressure due 

to shorter time to market requirements from customers as well as cuts in budgets 

(Srikanth and Williams 2005).  Customers are willing to pay for analysis and coding 

activities as they see these as contributing to the actual product, but are less willing to 

pay for testing and other activities that they may not see as key to the delivery of the 

software (Royce 1970).  However, software testing is a vital part of what can be 

thought of as the “Quality Process” in software development. 

2.5.1  Quality Process 

As noted, the Quality Process can be considered as all of the activities that take place 

around software development process that are related to ensuring the quality of the 

delivered software (Baresi and Pezze 2006).  For the purposes of this dissertation we 
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will focus on the place software testing takes within the overall Quality Process of an 

organisation.  As the earlier definition of software testing from the ISTQB outlines 

testing should encompass the entire lifecycle of the project.  It is too late to only have 

test involvement during the testing phase; the Test function in an organisation should 

be involved from feasibility right through to the deployment of the project.  Test teams 

should be involved in static reviews of the requirements to ensure that these are all 

testable.  They should be involved in review design documentation also to help detect 

and remove design errors before coding even begins (ISTQB 2011).   

 

If we are to look at the quality process over the entire lifespan of a project then the test 

elements of this can be broken down into 5 main elements: 

1. Planning and Monitoring 

2. Verification of Specification 

3. Test Case Generation and Selection 

4. Test Case Execution 

5. Software Validation and Process Improvements (Baresi and Pezze 2006). 

 

1. Planning and Monitoring  

This is the first step in the quality process.  It should happen as early as possible in the 

project lifecycle. There should be early planning of all phases of the project, including 

the test window, early release of plans for review and this should continue throughout 

the entire project.  There should also be close monitoring of each phase in a project to 

ensure delivery is reached on time and to budget (Baresi and Pezze 2006). 

 

2. Verification of Specification 

 
This step in the quality process involves the reviewing of specification documentation.   

This can involve internal review of specifications for clarity and external review of 

specifications against other specs for consistency(Baresi and Pezze 2006)  This level of 

static analysis is a very important step in the Quality Process and is a key test method 

that can reveal errors early on in the project lifecycle (ISTQB 2011).  The benefit of 

this analysis is clear when literature would state over 50% of defects are generated in 

the requirements phase of a project (Srikanth and Williams 2005a). 
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3. Test Case Generation and Selection 

The problem with test case generation (and selection) is perhaps the one that attracts 

the most attention in the literature (Bertolino and Marchetti 2005).  Test cases are 

usually generated from requirement specifications.  They should be generated as soon 

as these specifications have been signed off.  This early generation of test cases has the 

added advantage of reducing the risk of this activity becoming a bottleneck later on in 

the project.  This means that test cases generation can happen in parallel with code 

development (thus removing it from the critical path on the project) (Baresi and Pezze 

2006).   

There are a number of methods used for test cases selection.  Common sense and 

experience tells us that it is impossible to test every potential scenario that might occur 

in the use of a computer program.   Thus, when selecting test cases we need to ensure 

that the cases selected will cover the most important areas of our program (Edgren 

2011).  One method of doing this is Test Case Prioritization (Sampeth et al. 2008).  It 

has been shown using test suite prioritization defect detection rates in the project are 

increased as compared with random test selection (Rothermel et al. 2004).  Thus, if test 

case prioritization can be of benefit how best should we prioritize our test cases?  

Srikanth et al. (2005b) suggest that test case prioritization should be based on 4 

factors: requirement volatility, customers’ priority, the complexity of the 

implementation and how prone the system is to faults.  Thus, based on this we can 

prioritise a set of tests based on requirements that can ‘increase test effectiveness which 

contributes to increased detection rate of high risk defects’ (Whyte and Mulder 2011, 

p. 259). 

Another method for test case selection is that of Test Case Reduction.  This involves a 

systematic review of all the created test cases to remove what are considered non-

essential cases. (Whyte and Mulder 2011).  The end point of this exercise is to ensure 

that all requirements are tested using the least amount of test cases which should 

reduce the cost of regression testing (Zhang et al. 2008) which is ultimately the goal of 

Test Case Reduction (Whyte and Mulder 2011).  Studies have shown that the number 

of test cases can be reduced without reducing the defect detection (McMaster and 

Memon 2006).  However, caution should be exercised in test case reduction as other 
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studies have shown that this can cause a reduction in defection detection capabilities 

(Whyte and Mulder 2011). 

4. Test Case Execution  

It is not necessary to wait until the entire piece of software is completed before 

commencing testing.  There are numerous levels of testing that will be looked at in 

detail in the next section but these all allow and are predicated based on the fact that 

testing can happen in stages.  Baresi and Pezze (2006) noted that testing can be 

‘executed in absence of the completed system’ (p. 92).  In order to execute test cases 

without a complete system there are number of pieces of architecture that need to be in 

place to allow testing to begin, such as stubs to external systems and test oracles.  The 

stubs provide simulated responses from other external systems that will allow a higher 

level validation of test cases (Baresi and Pezze 2006).  In terms of actual execution this 

can be completed manually or via automation.  The distinction between these types of 

testing will be outlined in the coming sections. 

 

5. Process Improvement 

The area of process improvements relates to reviewing current and past projects for 

areas that caused problems and looking at ways to improve this.  These problems can 

either be changed by altering development activities or taking specific actions.  

 

In the next section we will investigate the different types of testing, at a high level 

there are two forms of testing: Functional and Structural.  We will firstly look at 

Functional Testing; highlighting the different types of functional tests.  Then we will 

look at Structural Tests and the different types of structural testing methods. 

 

2.5.2  Functional Testing 

Functional testing relates to the testing of systems at a functional level.  It is testing 

based on system requirements.  As such it can be thought of as “black box testing”.  In 

this type of testing the software under test is treated like a black box, the internal 

structure of the system under test is hidden.  The testers have no knowledge of the 
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internal workings of the systems.  The testing is based on inputs to and outputs from 

the system.  Thus, tests are run based on externally specified required behaviour 

(ISTQB 2011). 

 

 

Figure 2.10: Black Box Testing (Sooraj 2011) 

 

Perhaps the best way to investigate Functional Testing is to look at the V-Model again.  

The V-Model details how the different types of functional testing map back to different 

phases of requirements, design and coding on the left hand side of the model. 
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2.5.2.1  Unit Test  

 

 

 

This is the first level of the V-Model and is often called Component Testing.  This is 

the lowest level of details and is used to demonstrate that the individual components 

perform as specified (ISTQB 2011).  Decisions about what will be tested and when to 

stop are generally made by the developers as this is a technical activity (Hetzel 1993).  

This lowest level of testing is where the module designs are validated and that the 

specific component requirements are met (Roper 1994).  Unit testing may be informal 

with no structure but can also involve detailed test planning and design work (Hetzel 

1993). 
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2.5.2.2  Integration Testing 

 

 

The next level on the model is Integration Testing.  This is one step up from 

Unit/Component Testing and is where we first see the individual components of 

system communicate.  Once again this is technical phase and is usually completed by 

developers (ISTQB 2011).  The aim of this phase is to verify that the detailed design of 

various components still function when integrated (One Stop Testing n.d.).  This is 

also where the interfaces between systems are tested (Hetzel 1993). 
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2.5.2.3  System Test  

 

 

System Testing is the next step on the V-Model.  This is the first step in the model 

where all modules are brought together and tested as a system (Hetzel 1993).  This is 

also the first stage in the phase that is not developer led.  This is usually run on behalf 

of the software suppliers by an independent team (ISTQB 2011).  Test cases are 

designed to validate that systems and architecture designs are implemented correctly 

(Roper 1994). 

 

 

 

 

 

 

 



 

  29

2.5.2.4  Acceptance Testing 

 

 

Once System Test phase is complete we move onto the last stage in the V-Model: 

Acceptance Testing.  The aim of this phase is to ‘provide the end user or customer with 

confidence and insurance that the software is ready to use’ (Hetzel 1993 p. 11).  It is 

usually completed by a representative of the business or customer and is business 

process focused.  Thus, it will involve end users executing tests cases that are designed 

around how they would use the system on a day to day basis in their job (ISTQB 

2011).  They can be a subset of the System Test cases and usually include business 

transactions (Hetzel 1993).  It is the highest level on the V-Model and is completed to 

test that the system requirements on the project have been met. 
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2.5.3  Structural Testing 

The next set of testing to be considered is that of Structural Testing.  This can be 

thought of as “White Box Testing”, against the black box testing of functional testing.  

Thus, the focus of these tests is significantly different.  With Black box testing the 

system under test is not investigated and the inputs and outputs are all that are 

considered.  However, with the White Box testing the system itself is under test.  The 

internal workings of the system are being investigated (ISTQB 2011). 

 

 

Figure 2.11: White Box Testing (Clifton 2003) 

There are a number of different types of structural tests that can be undertaken.  Some 

of the more popular methods will be outlined below: 

2.5.3.1  Statement Testing 

The purpose of this testing is to ensure that every source language statement in a 

program is executed at least once (Hetzel 1993).  In order to complete this you must 

interrogate the code to find all the condition controlled statements (e.g. while X>y, IF, 

ELSE etc) and ensure that values are inserted into each condition so that all statements 

in the code get completed (ISTQB 2011). 

2.5.3.2  Branch Testing 

This is also known as decision coverage.  The aim of this testing is to execute the 

TRUE and FALSE outcome of every decision statement in the code (Roper 1994) 

There are a number of other methods that can be used that follow similar lines of 

detailed code-level investigation: 

• State Transition Testing 

• Boundary Analysis 

• Decision Tables 

• Equivalence Partitioning 
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• Path Testing (Roper 1994) 

2.6  Conclusions  

This chapter investigated the different software development methodologies in use in 

industry today.  There was a discussion of the traditional software development models 

such as the Waterfall Model and V-Model.  Next, the limitations of these models were 

highlighted.  These limitations have led to the development of alternative methods (the 

so called Agile methods).  A number of these methodologies were then outlined in 

detail. 

 

Following this it was noted that a central phase in both methods is software testing.  

Thus, there was a need to give an overview of software testing in the context of the 

overall Quality Process in an organisation.  Following this the various methods of 

software testing used were outlined (Functional and Structural).  Functional Testing 

methods were discussed in detail as these are the methods that will be under 

investigation in this dissertation.  An introduction to Structural Testing was outlined in 

order to give the reader an idea of the other low level tests, but was not investigated in 

detail. 
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3. RESEARCH METHODS AND GROUNDED THEORY 

3.1  Introduction 

This dissertation is attempting to understand how Grounded Theory can be used to 

develop a framework for best practice in the Testing phase of projects.  In order to 

understand what Grounded Theory is and why it was selected it will be necessary to 

review the existing types of research methodologies available.  This chapter will detail 

the different methodologies used in conducting research project.  It will start with an 

overview of the philosophical schools of thought that can influence selection of one 

method over and other.  Next, the two main types of research methodology will be 

discussed (Quantitative versus Qualitative).  Then, as a follow on from that one 

method of qualitative research will be outlined in detail, that of Grounded Theory.  

Finally, the use of Qualitative methods; and Grounded Theory in particular, in 

software engineering research will be discussed.   

3.2  Research Methodologies 

When conducting any research one of the most fundamental questions is how are you 

going to carry out your research and collect your data?  This will largely be dictated by 

the type of methodology that is employed.  There are number of potential alternatives 

that researchers have and the choice of method will depend on many things such as the 

research question being studied, what methods previous researchers have used and the 

philosophical leanings of the researchers (Creswell 2008).  The methods can be 

broadly categorised into two areas: Qualitative and Quantitative (Coleman and 

O’Connor 2007).  At a high level the distinction between the two would be that 

qualitative methods rely on words and open-ended questions whereas quantitative 

methods rely on numbers and closed questions (Creswell 2006).  However, in order to 

get a more complete view of the differences it is necessary to investigate both in more 

detail.  This will first start by an investigation of the philosophical underpinnings of 

each method and then a discussion of each in detail. 
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3.3  Philosophical Underpinnings  

An important factor that can guide researchers into being predisposed to certain 

methods over others is the philosophical assumptions that underpin those methods 

(Coleman and O’Connor 2007).  Researchers make philosophical assumptions at the 

start of designing a research process that will guide the selection of qualitative or 

quantitative methods (Creswell 2008).  Thus, the philosophical views of individual 

researchers can play a significant role in the methods of approach chosen.  This view, 

termed “world view” or “paradigm”, will influence the choice of research method and 

can be defined as ‘a basic set of beliefs that guide action’ (Guba 1990 p.17).   

 

Researchers will come to the study with their own pre-existing beliefs and these can 

inform and guide the researchers when choosing one method over another (Creswell 

2006).  When looking at the “world views” that will guide selection of an appropriate 

method, this research focus on the two areas that have received the most academic 

interest in terms of literature reviews: Post-Positivist and social Constructionism 

(Coleman and O’Connor 2007). 

3.3.1  Post-Positivist  

The post-positivist view represents what might be considered the traditional form of 

scientific research and might be more aligned to quantitative research than qualitative 

(Creswell 2006).  This is sometimes known as the scientific method and this would 

usually underpin quantitative research as it allows for general laws or principles to be 

established (Coleman and O’Connor 2007).   

 

It is termed post-positivist as it came about as a refutation of the positivist approach  

and recognises that it is impossible for us to be absolutely positive about any claims 

we make about human behaviour or the world around us (Phillips and Burbules 2000).  

In post-positivism it is held that cause probably determines the outcomes or effects 

(Creswell 2008).  Thus, much of the emphasis of post-positivists will be looking at the 

causes to determine their effect on outcomes.  Any knowledge gained is from careful 

and objective measurement of the world and any research conducted can ‘provide 

answers which have a provable base’ (Coleman and O’Connor 2007, p2).  The basis of 

this scientific method from a post-positivist point of view would be for a researcher to 
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begin with a theory, they will then collect and analyse their data such that the theory is 

supported or not (Creswell 2006).  Thus, it is a deductive form of reasoning, whereby 

we have a theory and look for support within the data collected (Strauss and Corbin 

1998). 

 

Phillips and Burbules (2000) outline five key assumptions of the post-positivist point 

of view: 

1. Knowledge is not absolute so for this reason we can’t prove a hypothesis, 

simply fail to reject it 

2. Research involves making a claim and then design an experiment to test this 

3. Our knowledge is based on data, evidence and rational consideration 

4. When doing research the aim is to develop relevant statements for explaining 

the phenomenon under study 

5. There is a need to be objective in order to conduct competent research 

(Creswell 2008). 

Therefore the basis of post-positivist view is a scientific basis involving 

experimentation, data and testing hypotheses.  As noted this would be typically 

quantitative research.  In contrast to this approach is the Social Constructivists view of 

research which is examined in the following section. 

3.3.2  Social Constructivism 

Another “world view” that can be used in relation to research is that of social 

constructivism or sometimes known as interpretivsm (Coleman and O’Connor 2007).  

This is the paradigm that is typically associated with qualitative research (Creswell 

2008).  In this view people attempt to gain an understanding of the world which they 

inhabit.  We all place some subject meaning on our collective and individual 

experiences, some of this is learned from previous personal experience or from our 

cultural backgrounds (Creswell 2006).  Thus, when researchers with this world view 

carry out investigations they look at the complexity of situations rather than simplicity 

in meaning (Crotty 1998).  The aim of research undertaken under this paradigm is to 

‘rely as much as possible on participants views of the situations being studied’ 

(Creswell 2006 p.8).  People construct meaning from social interactions; they aren’t 

borne with innate points of view, these are constructed over time via elements such as 
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cultural background, previous experience and historical norms in their society 

(Creswell 2008).  The main difference between the post-positivist viewpoint and the 

social constructivist one is that researchers who work under the post-positivism 

paradigm will start with a theory and test it deductively, in contrast, social 

constructionists see theories (and meanings) as something that should develop 

inductively from the research and data (Crotty 1998). 

 

When those working under social constructivist worldview will conduct research they 

will do so by talking to participants, listening intently and studying their behaviour in 

social situations (Creswell 2006).  Researchers who follow this paradigm will focus on 

‘specific contents in which people live in order to understand the historical and 

cultural settings of participants’ (Creswell 2006 p.21).  Researchers will also take into 

account their own background and should be mindful of how their pre-conceived ideas 

may influence the way they interpret behaviours (Neuman 2011). 

 

When one looks at research from the social constructivist point of view there are a 

number of assumptions that can be made: 

1. As a human we construct meaning through our interactions with the world 

around us 

2. Cultural perspectives play an important role in how we understand and 

interpret the world around us 

3. Any meanings we generate are based on social interactions in the community 

(Crotty 1998). 

Some researchers will claim that the “worldview” held by those undertaking an inquiry 

or study will effect which philosophical view point they take and which type of 

research they conduct.  However, in choosing a methodology there are some practical 

as well as philosophical considerations to take into account, such as what research 

methodology was employed on previous research, as well as the more mundane 

aspects such as cost and time available, all of which can guide researchers into using 

one or other type of research methodology (Coleman and O’Connor 2007). 

Now that the basis for the philosophical underpinnings of the two major methods have 

been investigated it is necessary to look at each method in detail, starting with 

Quantitative Methods. 
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3.4  Quantitative Methods 

A good definition of quantitative methods is that outlined by Creswell (2009 p.4) 

where he defined it as ‘a means for testing objective theories by examining the 

relationship among variables’.  The outcome of quantitative methods can be analysed 

using statistical tools and can be subjected to scientific testing (Coleman and 

O’Connor 2007).   Scientific enquiry, that makes predications or theories on general 

laws and principles and then tests these, would seem most compatible with 

Quantitative methods (Creswell 2006).  In order to gather the data required to allow 

this scientific analysis there are a number of techniques that can be used, these are 

defined by Creswell (2009, p11) as strategies of inquiry and he defines them as 

methods that ‘provide direction for procedures in a research design’.  We shall now 

investigate some Quantitative Strategies of Inquiry. 

3.4.1  Quantitative Strategies of Inquiry.  

As outlined above quantitative methods are associated with a post-positivist world 

view.  Thus, these strategies will include elements that would be favoured from a post-

positivist point of view.  These are things such as experiments and quasi-experimental 

designs, with a more recent move towards more complex, multi-variable experiments 

(Creswell 2006).  There are two key strategies of inquiry that lend themselves to this 

level of investigation, survey research and experimental research: 

3.4.2  Survey Research 

 Creswell (2009, p.12) outlines that surveys provide ‘quantitative or numeric 

descriptions of trends, attitudes, or opinions of a population’. By conducting surveys 

researchers can take the quantitative or numeric descriptions or empirical data, they 

can then conduct statistical analysis on this data to deductively arrive at a position that 

can either support or fail to support their theory.  Surveys provide a means, via 

questionnaires or longitudinal studies, to gather data that can allow inquirers to 

generalise from the small sample to the larger population (Babbie 1990). 
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3.4.3  Experimental Research 

This is the classic quantitative method, the classic experiment as espoused in the 

scientific method.  It involves investigation to determine if a specific action effects an 

outcome (Coleman and O’Connor 2007).  There are a number of different types of 

experimental design but they all involve assessing the impact of a certain action by 

providing treatment/action on a certain group and withholding from another and then 

investigating any differences in the outcomes between the two groups (Creswell 2008). 

Now that we have looked at the Quantitative Research Method it is necessary to 

investigate the other method, that of Qualitative Research Methods. 

3.5  Qualitative Methods 

When talking about qualitative research methods this refers to an research that will 

produce some findings ‘not arrived at by statistical procedures or other means of 

quantification’ (Strauss and Corbin 1998, p. 10).  Its primary purpose is to collect and 

interpret non-numeric data (Coleman and O’Connor 2007).  Creswell (2006, p4) 

defines it as ‘a means for exploring and understanding the meaning individuals or 

groups ascribe to a social or human problem’.  While quantitative research will ask 

closed questions such as “how much?” and “how often?” qualitative researchers will 

more commonly ask open-ended questions such as “why?” and “how?” (Coleman and 

O’Connor 2007).  It involves building research about the way people live their lives, 

encompassing their experiences as well as behaviours and emotions.  It can be used to 

gauge feelings on certain topics such as organisations, cultural phenomenon or 

governments (Strauss and Corbin 1998).  Qualitative research develops its final theory 

inductively through interactions with research participants (Coleman and O’Connor 

2007).  

3.5.1   Strategies of  Inquiry 

Similar to quantitative methods, qualitative methods have their own strategies of 

inquiry.  Some researchers have noted that there are up to nineteen strategies available 

to the qualitative researchers (Wolcott 2008).   However, for the purpose of this 

research only the five major strategies will be outlined. 
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3.5.1.1 Ethnography 

Ethnography involves studying groups in their natural setting over a prolonged period 

of time (Creswell 2006).  In an ethnographic study researchers will attempt to uncover 

and interpret many values of the group who are under study.  These could be 

behaviours, beliefs and language sharing (Murchison 2010).  Usually those involved in 

ethnographic studies are interested in looking at groups larger than twenty individuals 

(Creswell 2006).  This is because ethnographic studies are generally involved in 

understanding the behaviours and views of entire cultural groups.  In an ethnographic 

study the researchers will look to immerse themselves fully into the day to day lives of 

the participants under study.  They will review and interpret the behaviours and 

interactions among group members in order to develop their theories on behaviour 

(Creswell 2006). 

 

3.5.1.2 Grounded Theory 

Grounded theory is a strategy of inquiry where the key idea is that theories are 

generated (or “Grounded”) in the data collected (Strauss and Corbin 1998).  The 

emphasis in Grounded Theory is to focus on generating new theories (Coleman and 

O’Connor 2007).  Creswell (2006, p.13) defines is as ‘a strategy of inquiry where the 

researcher derives a general, abstract theory of a process, action of interaction 

grounded in the views of the participants’.  The participants are key to the 

development of the theory (Glaser and Strauss 1967).  The researchers also ensure that 

they don’t carry pre-conceived notions or theories before the research begins; theories 

should evolve from multiple comparisons and sampling of different groups (Birks and 

Mills 2011). 

 

3.5.1.3 Case Studies 

Case Studies involve an in-depth study of an issue by exploring cases related to the 

area of the issue (Creswell 2006).  Some argue that it is not a strategy of inquiry or a 

research method but rather a choice of what is studied (Denzin and Lincoln 2005) 

whereas others view it as a methodology in and of itself (Yin 2008).  Whatever point 

of view is taken case studies are a popular method of qualitative research in many 
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fields, such as psychology (Freud used this approach for generating theories) as well as 

Medicine, Law, and Political Science (Creswell 2006). 

 

3.5.1.4 Phenomenological Research 

Phenomenology is a strategy of enquiry where researchers will try to identify the 

essential elements of the human experience of certain phenomenon (Creswell 2008) 

Phenomenological research attempts to study the lived experience of several 

participants of a particular phenomenon (Manen 1990).  Thus, the ‘basic purpose of 

phenomenology is to reduce individual experiences with a phenomenon to a 

description of the universal essence’ (Creswell 2006 p. 58).  The purpose is to identify 

“phenomenon” or objects of human experience, this could be anything from insomnia, 

to be being bullied or undergoing surgery (Moustakas 1994).  The researchers then 

gather all the data about the different experience of this phenomenon and then use this 

to develop a ‘composite description of the essence of the experience for all of the 

individuals’ (Creswell 2006 p.58).  This description will outline what was experienced 

by these people and also how they experienced it. 

 

3.5.1.5 Narrative Research 

While phenomenological research tries to explore the meaning for several individuals 

Narrative Research attempts to report on the life experiences of individuals.  In this 

strategy of enquiry the researcher develops a picture about the lives of participants 

through self-reported stories told by those individuals (Creswell 2008).  The Narrative 

Research method involves the researchers taking the stories of people and re-telling 

them in a narrative form in chronological order (Czarniawska 2004).  The methods for 

conducting this research involves studying one or two individuals in detail, collecting 

all the “data” (in this case their stories) and then outlining individual experiences in 

time-ordered fashion  (Creswell 2006). 

 

Now that we have outlined the major methods of Qualitative and Quantitative 

Research it is necessary to focus on the method that was chosen for this study, that of 

Grounded Theory. 
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3.6  Grounded Theory 

At its highest level Grounded Theory is a qualitative research method where theory is 

generated from the data collected (Adolph et al. 2012).  It is one of the most popular 

methods of qualitative research in use today (Birks and Mills 2011).  The overall goal 

of the Grounded Theory research is to gain an understanding, from an actor’s 

perspective, the behaviour under study (Glaser 1978). 

3.6.1  Symbolic Interactionism and Grounded Theory 

Grounded Theory has its roots in Symbolic Interactionism (Coleman and O’Connor 

2007).  Symbolic Interactionism itself is related to the philosophical ideals of 

pragmatists; this has been noted by researchers such as James, Cooley and Mead 

(Heath and Cowley 2004).  Symbolic Interactionism is a theory that attempts to 

explain group life and human conduct (Blumer 1986).  In this paradigm humans are 

seen as ‘key participants and shapers of the world they inhabit’” (Coleman and 

O’Connor 2007, p4.).  People are able to asses and modify their behaviours as required 

in certain scenarios; people have a critical self-awareness (Mead and Morris 1934 

quoted in Heath and Cowley 2004).  By our social interactions with others we derive 

meanings and these help to shape society through our shared understanding of these 

interactions (Blumer 1986).   

3.6.1.1  Symbolic Interactionism 

The term Symbolic Interactionism was developed based on research carried out in the 

University of Chicago in the 1970’s (Klunklin and Greenwood 2006) and was first 

described by Blumer (1986).  In this he outlined key elements of integrationist inquiry 

as noted above; the role of concepts and symbols and development of meaning from 

the social interactions (Heath and Cowley 2004).  This was seen as the major 

challenger to the traditional view of the Functionalist philosophical approach (Klunklin 

and Greenwood 2006). 

 

The Functionalist views the world as one “system” or a number of complementary 

parts that form a functioning unit.  The constituent parts and their analysis is only 

relevant in so far as the effect they may have on the whole of the system (Klunklin and 

Greenwood 2006).  People involved in society (or systems) learn to internalise others 
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expectations of them ‘through socialisation; individuals are determined..rather than 

determining’ (Merton 1973 quoted in Klunklin and Greenwood 2006 p. 33).  This 

means that when researchers are working from a functionalist point-of-view they will 

begin with some framework which then guides their research questions.  These 

questions are then converted into hypotheses which can then be tested (Blumer 1986).  

It is clear that this reflects a classic deductive form of reasoning where a theory is 

proposed, data collected and then tested to either support or fail to support the 

hypothesis (Creswell 2006). 

 

Those who approach research from a symbolic interactionist point-of-view will 

fundamentally disagree with this position and will differ significantly in their approach 

to research (Klunklin and Greenwood 2006).  As noted, Symbolic Interactionism was 

first proposed by Blumer (1986).  In this theory Blumer stressed the importance of the 

individual and how they are determining rather than determined, the exact opposite of 

that which is proposed by functionalists such as Merton (1973 in Klunklin and 

Greenwood 2006).  Society is created ‘through the purportive interactions of 

individuals and groups’ (Klunklin and Greenwood 2006 p.33).  The focus on Symbolic 

Interactionism is on theories that are inductively derived (rather than via deduction) 

and this is a key feature of qualitative research (Creswell, 2009).  The  key topics in 

Symbolic Interactionism are: the self and the world and social action (Charon 1995). 

 

The Self 

The sense of self in Symbolic Interactionism is constructed through our social 

interactions with others in our society, family members and others we come into 

contact with throughout our life (Charon 1995).  We learn how to behave and respond 

to others based on their feedback from our interactions (Klunklin and Greenwood 

2006).  Through these we develop an idea of social norms for behaviour and then 

allow us to elicit our sense of self control in social situations.  Our self-identity 

emerges through social interactions (Charon, 1995). 

 

The World 

The symbolic interactionist considers the world to be a world of ‘symbols’ (Klunklin 

and Greenwood 2006).  These symbols can be objects in the world, however, not all 

objects are symbols; objects only become symbols when meaning is ascribed to them 
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(Blumer 1986).  Thus, objects can be physical or abstract.  The key point is that objects 

themselves don’t have any intrinsic meaning in and of themselves but meaning is 

‘derived from how others act towards objects’ (Klunklin and Greenwood 2006 p. 34).  

Thus, symbolic interactionism refers to the process of continually assigning of 

meaning to symbols through our interactions with the world.  People continually try to 

interpret how others in the world are reacting to their actions and will try to arrive at 

how is best to act themselves.  We then take this feedback from others in our world 

and modify our behaviours accordingly (Klunklin and Greenwood 2006). 

 

When studying social factors Symbolic Interactionism will attempt to study behaviour 

through first-hand interactions (Blumer 1986).  A key part of Symbolic Interactionism 

as a research methodology is the concept of exploration and inspection (or depiction 

and analysis).  This involves exploring data and then continually analysing it to ensure 

that it remains grounded in reality (Klunklin and Greenwood 2006).  It will become 

clear in the next sections that this is a key idea in Grounded Theory and will see why it 

is said that that the roots of Grounded Theory lie in Symbolic Interactionism. 

3.6.1.2  Symbolic Interactionism and Grounded Theory 

The core methodology of Symbolic Interactionism relates to direct observation and 

developing theory from this observation.  Data is acquired through rigorous 

examination of the phenomenon under study.  Then from this data the theories or 

hypotheses are constructed (Klunklin and Greenwood 2006).  This parallels the 

methodological approach as outlined by Glaser and Strauss (1967) where core 

concepts are developed through observation and study.  These are then refined through 

a process of on-going comparative analysis (Strauss and Corbin 1998).   

 

A second area of convergence of Symbolic Interactionism and Grounded Theory 

relates to the ideas espoused by Blumer (1986): that of exploration and inspection.  By 

‘exploration’ Blumer refers to the idea that the researchers respond flexibly to the data 

they find would fit well with the concept of constant comparative analysis in Grounded 

Theory  (Klunklin and Greenwood 2006).  Then, if the idea of ‘inspection’ is looked at 

we see that this refers to the close analysis of data.  This would be consistent with the 

ideas of Glaser and Strauss (1998) where data is closely studied, categorised and 
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coded.  Thus, it can be concluded that ‘Grounded Theory is usefully construable as the 

method of Symbolic Interactionism’ (Klunklin and Greenwood 2006 p. 34). 

3.6.2   History of  Grounded Theory 

Grounded theory was first proposed by two American sociologists Barney Glaser and 

Anselm Strauss in 1967.  Strauss gained a degree in Sociology from the University of 

Virginia and then a Masters and PhD from the University of Chicago.  He studied 

under Herbert Blumer and George Herbert Mead while in Chicago (Stern. 2009). As 

noted these were major figures in the field of Symbolic Interactionism and he was 

naturally drawn to this method as it was his background (Glaser and Strauss 1967).  

Glaser earned a degree in Sociology from Stanford and later a PhD from Columbia 

University.  While there he studied with Paul Lazerfied and Robert Merton in the area 

of descriptive statistics, and  had a more pragmatic approach to research, as can be 

seen in his later work (Birks and Mills 2011).  At the time Strauss was working in the 

University of California, San Francisco’s School of Nursing in the 1960’s where he 

was appointed to assist in the development of a Doctoral Nursing degree program.  

Glaser first met Strauss and asked him to join him on the research he was conducting 

into the study of dying (Morse et al. 2009).  Together they published a number of 

papers, the first of which was The Art of Dying which had an important impact on the 

treatment of dying patients and their families (Birks and Mills 2011).   As they neared 

the end of their research grant both Glaser and Straus began to realise that they the 

methods they were using for data gathering had been different from what they had 

been doing previously.  They now had a much more rigour and ordered attitude to the 

analysis of data (Stern 2009).  It has been suggested that the authors’ differing 

backgrounds played a part in the development of this new methodology.  As noted 

Glaser’s background involved more quantitative data analysis (due to his background 

in statistics) (Bryant and Charmaz 2010) whereas Strauss’ background in Symbolic 

Interactionism made it natural for him to constantly re-evaluate the data that had been 

gathered (Morse et al. 2009). 

 

From this initial position of new methods they developed their seminal work The 

Discovery of Grounded Theory (Glaser and Strauss 1967).  Their aim was to set up a 

concise method for systematic qualitative research (Bryant and Charmaz 2010).  At the 
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time the book was published there was a preference for research that used the 

traditional statistical-quantitative methods.  Glaser and Straus wanted to show that 

Grounded Theory could produce outcomes of equal importance to quantitative 

methods (Morse et al. 2009).   By doing so Glaser and Straus found themselves in 

opposition to some quantitative methods researchers but their approach allowed for 

methods that replicated some of the results and methods used by other researchers.  

Thus, this ability to replicate quantitative methods and results gave rise to a major 

strength of Grounded Theory.  For the first time this allowed the process and 

procedures of qualitative research methods to be visible and repeatable and more easily 

understood (Bryant and Charmaz 2010). The next section will outline the theory in 

more detail.  

3.6.3   Introduction to Grounded Theory 

At its heart and the essence of Grounded Theory is the notion of forming new theories 

from the data (Glaser and Strauss 1967).  Glaser and Straus, when developing their 

theory, took exception to the foundations of the prevailing research paradigms of the 

time: 

1. That of verification of theory by using data gathered 

2. Logical deduction of theory from a-priori assumptions (Birks and Mills 2011) 

They emphasised the generation of new theories over the verification of existing ones 

(Coleman and O’Connor 2007). Glaser and Straus were very quick to outline the faults 

they saw in the existing methods and their belief that data is the key focus of their 

work (Birks and Mills 2011).  This wanting to keep data at the heart of their theory 

possibly arises due to Glaser and Straus’ focus on ensuring that qualitative research is 

kept ‘as a scientifically respectable practise’ (Bryant and Charmaz 2010).  Thus, they 

felt that Grounded Theory must undergo scientific rigour in it application and should 

only be applied by trained sociologists (Glaser and Strauss 1967). 

 

Grounded Theory can be thought of along as somewhat analogous to Agile software 

development in that as a concept they both can be understood simply but in practice 

are disciplined and rigorous (Adolph et al. 2012). 
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Figure 3.1: The Grounded Theory Method (Adolph et al. 2012 p.1271) 

 

The diagram above outlines the basics of Grounded Theory. 

A. Researchers begin by collecting data on an area of interest and these are used to 

build concepts, which are essential to building categories 

B. The concepts are then further developed by completing constant comparative 

analysis which involves comparing new data with data already amassed.  From 

this analysis core categories emerge that the collected data can fit into.  This 

process is repeated until the categories become saturated, which means that by 

the addition of further information no new concepts are emerging   (Coleman 

and O’Connor 2007).  From this the theory is generated 

C. After the theory is generated it may be compared against existing literature 

D. During the entire process the researchers will continually write themselves 

memos 

As the core concepts behind Grounded Theory have been introduced it is necessary to 

look at the methods used in generating a Grounded Theory in detail.  The next section 

will outline these methods and how they are used to generate a Grounded Theory.   
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3.6.4   Methods in Grounded Theory 

So far Grounded Theory has been introduced at a conceptual level.  It is necessary to 

now examine the finer details of the actual methods used when carrying out Grounded 

Theory Research.  The basis of Grounded Theory is in the generation of theory from 

data and the next sections will examine how this data is gathered and analysed to 

develop a theory. 

3.6.4.1  Initial  Coding 

The first step that is carried out on the road to developing a Grounded Theory is the 

Initial Coding. Glaser and Strauss (1967) initially proposed two levels of coding: 

Development of as many categories as possible and then the Integration of these over-

arching categories.  This was then later refined by (Strauss and Corbin 1998), who 

proposed three levels of coding.  Whether researchers follow Glaser and Straus’ or 

Strauss and Corbin’s methods the Initial Coding step is common to both and a vital 

step to developing a Grounded Theory (Heath and Cowley 2004).  Coding involves 

reviewing the data that has been gathered (usually in the form of interviews) line by 

line, word by word, to gain an insight into what participants are saying with the 

purpose of ‘identifying important words, or groups of words, in the data and then 

labelling them accordingly’. (Birks and Mills 2011 p. 9).  Codes can be considered 

words or groups of important words whereas the categories are groups of codes (Birks 

and Mills 2011).  In their original text there wasn’t a great emphasis on the processes 

of the actual coding (Heath and Cowley 2004).  However, Birks and Mills (2011) note 

that this was later the focus of more detailed research and there have been a number of 

methods described for undertaking coding, from the elaborate approaches suggested by 

Strauss and Corbin (1998) to the more straightforward processes such as those 

described by Charmaz (2006). 

3.6.4.2  Concurrent Data Generation and Collection 

The fundamental point of Concurrent Data Generation and Collection is that the 

initial step in Grounded Theory involves the gathering of data and analysis of this data.  

Then from this analysis further data needs to be gathered (Glaser and Strauss 1967).  It 

is this fact that differentiates Grounded Theory from other research methods.  This is 

because other methods require researchers to collect data and then use this data to test 
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out a pre-conceived hypothesis (Birks and Mills 2011).  Grounded Theory lets the data 

generate theory (Coleman and O’Connor 2007) and then collects further data to 

explore that theory. 

3.6.4.3  Memos 

As noted, a key element of Grounded Theory is the use of Memos, which are notes that 

the researchers take during the gathering of data, or in ‘fleshing out’ of a theory 

(Coleman and O’Connor 2007).  They are ‘written records of a researchers thinking 

during the process of undertaking  Grounded Theory study’ (Birks and Mills 2011 

p.10).  They can take any form that the researcher likes; they can be statements, notes, 

questions, etc. These memos can become more theoretical as the study progresses and 

can help in the generation of the theory (Coleman and O’Connor 2007). 

3.6.4.4  Theoretical Sampling 

Theoretical Sampling is the process of ‘collecting, coding and analysing the data’ 

(Coleman and O’Connor 2007 p.4) to be used as part of the constant comparative 

analysis.  By doing this it should become clear to the researcher where more 

information is required and results in saturation of categories (Glaser and Strauss 

1967).  Due to the nature of Grounded Theory, researchers don’t know in advance 

what the theory will be.  Due to this they may need to adjust questioning or sample 

different groups for new data depending on the results of initial sampling, this requires 

the further step of theoretical sampling (Coleman and O’Connor 2007). 

3.6.4.5  Constant Comparative Analysis 

When data has been collected as part of a Grounded Theory study it then needs to be 

constantly check and compared with existing data (Heath and Cowley 2004).  This 

comparisons of codes, to codes, codes to categories and categories to categories is 

called Constant Comparative Analysis; (Birks and Mills 2011).  As Grounded Theory 

is said to inductively develop theory from data (Glaser and Strauss 1967) this method 

of constant comparison is key to building up theory from data (Birks and Mills 2011). 
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3.6.4.6  Theoretical Sensitivity 

Theoretical Sensitivity relates to the researches own personal insights into themselves 

and their area of study (Glaser and Strauss 1967).  The concept of theoretical 

sensitivity acknowledges that researchers have their own sensitivities and it is 

necessary to incorporate this into Grounded Theory study (Birks and Mills 2011). 

3.6.4.7  Intermediate Coding 

Intermediate Coding is the next major coding step in the analysis of the gathered data.  

The goal of this phase is for the researchers to fully develop the categories and link 

them together (Coleman and O’Connor 2007).  The difference between  this phase and 

initial coding is that goal of initial coding is to break down the data into codes whereas 

Intermediate Coding reconnects the data in ways that are more conceptually abstract 

(Birks and Mills 2011).  This is referred to as Axial Coding in later writings of Strauss 

and Corbin (1998). 

3.6.4.8  Identifying the Categories 

Through the previous steps of Intermediate Coding and linking categories should allow 

researchers to identify core categories emerging from the data.  This can happen 

through ensuring that there is full category saturation (Birks and Mills 2011). 

3.6.4.9  Advanced Coding and Theoretical Integration 

Advanced Coding and Theoretical Integration is a crucial stage for the development of 

the integrated Grounded Theory (Birks and Mills 2011).  Once the core category has 

been chosen this then gives the researchers the power to explain theoretically what 

their research is about and what the data is telling them (Strauss and  Corbin 1998).  

Grounded Theory should produce an explanation of a phenomenon that is 

comprehensive and accepts and explains variances in data and research questions 

(Birks and Mills 2011).  There are techniques used to develop this integration of core 

categories such as writing storylines; which can be used to develop and present the 

Grounded Theory (Strauss and Corbin 1998).   This theoretical integration can give the 

Grounded Theory more explanatory power by placing it in context of the existing 

literature and body of knowledge on the subject matter under examination (Birks and 

Mills 2011). 
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3.6.4.10  Generating Theory 

The final step is to produce a theory that is integrated, comprehensive and explains the 

situation under study (Birks and Mills 2011).  Grounded theory is developed using the 

methods described above and can conceptually through of as ‘three cogs that can drive 

a machine (you) to generate Grounded Theory’ (Birks and Mills 2011 p.13).  They go 

from the larger (more general) cogs, to the smaller (more specific) cogs and advance 

practices (in the smaller cog) but they all contribute to the development of Grounded 

Theory. 

 

 

 

Figure 3.2: Essential Grounded Theory Methods (Birks and Mills 2011 p.13) 

3.7  Competing Versions of Grounded Theory 

The fact that there are competing versions of Grounded Theory has been alluded to 

previously but it is now necessary to investigate this in detail.  There have been 

significant developments in the research area around Grounded Theory since Glaser 

and Strauss’ seminal text.  Since the 1967 book Glaser and Strauss have gradually 

separated professionally and have developed differing versions of Grounded Theory 
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(Coleman and O’Connor 2007).  As noted Strauss came from a background of 

Symbolic Interactionism and Glaser from a more rigorous background in descriptive 

statistics (Morse et al. 2009).  It has been highlighted that this difference in their 

backgrounds may have led to their divergence in thinking around Grounded Theory 

research, but others point out that this difference was always present (Heath and 

Cowley 2004).  In fact it wasn’t until Strauss and later Strauss and Corbin (1998) 

published their revisions of Grounded Theory that the division was most apparent 

(Coleman and O’Connor 2007).   Glaser (1992) criticised the work of Strauss and 

Corbin accusing it of being overly prescriptive in outlining how studies should be 

carried out.  Thus, he argued this was forcing theory onto the data, rather than allowing 

theory to develop from the data (Coleman and O’Connor 2007).  It has been noted that 

Glaser  (in his works of 1978 ) was seen to stick to the original tenants of the 

Grounded Theory with Strauss and Corbin (1998) developing a new formulation of the 

model (Heath and Cowley 2004).   

 

In response to some criticism of the vagueness of the original model Glaser himself 

tried to expand on concepts such as theoretical sampling and memo’s in more detail 

(Glaser 1978).  However, it was Strauss and Corbin’s focus on developing analytical 

techniques to help novice researchers to implement Grounded Theory that drew most 

criticism from Glaser (Heath and Cowley 2004). 

 

Glaser and Strauss differed in other more specific areas of Grounded Theory.  Glaser 

for example believed that research questions should only emerge during coding but 

Strauss and Corbin (1998) argue that research questions need to be pre-set in order to 

give researchers boundaries and to guide the research process (Coleman and O’Connor 

2007).  They also differed in their approach to reviews of literature.  Glaser (1978) 

believed that researchers should only review the literature after theories have emerged 

to avoid prior reading that may influence emerging theories (Adolph et al. 2012).  He 

believed that any prior knowledge of the subject area should based on general reading 

of the problem area rather than on focused literature reviews (Heath and Cowley 

2004).  Strauss and Corbin (1998), however, are more realistic in their approach about 

the idea that researchers will have some prior knowledge in the field of study before 

entering it.  Indeed (Strauss 1987) argued that the use of prior knowledge and 
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experience can be used for theoretical sensitivity and generating theory (Heath and 

Cowley 2004). 

 

There was also a difference when it comes to their approach to coding.  Glaser and 

Strauss (1967) originally proposed two levels of coding with Strauss and Corbin 

(1998) adding another.  The table below outlines the differences in methods: 

 

 

Table 3.1: Comparison of Strauss and Corbin and Glaser in terms of levels of coding 

(Heath and Cowey 2004)  

3.7.1  Open Coding 

In the method proposed by Strauss and Corbin (1998) the first level of coding is Open 

Coding.  In this level of coding the researcher uses analytical techniques to assign 

codes to words or text in interviews.  The techniques involve ‘breaking down 

interviews and observations into distinct units of meaning which are labelled to 

generate concept’ (Coleman and O’Connor 2007, p.5).  The codes will later become 

concepts, from this initial set of codes generated these are used to code subsequent 

interviews and researchers should end up with a large number of codes at the end of 

the research process (Coleman and O’Connor 2007).  Glaser (1978) calls this stage 

Substantive Coding.   

 

Strauss and Corbin Glaser

Initial Coding Open Coding Substantive Coding

Use of analytical techniques Dependant on data

Intermediate Phase Axial Coding Continuation of above

Reduction and clustering of categories Comparison, with focus on data, 
become more abstract, categories 
refitted, emerging frameworks

Final Development Selective Coding Theoretical Sampling

Detailed development of categories,
Selection of core,
Integration of categories

Refitting and refinement of categories 
which integrated around emerging 
core

Theory Detailed and dense Parsimony, scope and modifiable
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3.7.2  Axial Coding 

The next stage is the Intermediate Phase of coding.  This is referred to as Axial Coding 

by Strauss and Corbin (1998).  Due to the intense and significant questions that is 

necessitated in their version of Grounded Theory an extra layer of coding is required 

(Heath and Cowley 2004).  In this phase the reduction and relating of categories to one 

another is undertaken.  It is called axial because ‘coding occurs around the axis of a 

category’ (Coleman and O’Connor 2007 p.5).  In Glaser’s model there is no concept of 

further coding in this intermediate stage and there is simply continuation of coding of 

substantive coding (Heath and Cowley 2004).   

3.7.3  Selective Coding 

The next stage is the final development of the theory.  Strauss and Corbin (1998) refer 

to this stage as Selective Coding.  This is the process of final integration of categories.  

In this stage the core is selected and integrated to develop a theory.  Glaser (1978) 

terms this stage as Theoretical Sampling and this involves the refinement of emergent 

categories and their integration.  Thus, while both deal with integration, the emphasis 

from Strauss and Corbin (1998) is on the selection of core categories while Glaser is 

concerned with refinement of categories (Heath and Cowley 2004).  

 

In conclusion, whichever version of Grounded Theory is chosen is often determined by 

the preference and background of the researcher, but it is necessary to understand that 

there are different implementations of the theory (Coleman and O’Connor 2007).  It is 

now necessary to highlight the use of Grounded Theory in the Software Engineering 

domain. 

3.8  Grounded Theory in Software Engineering 

As has been noted, due to the nature of it and its ability to explain social and cultural 

phenomenon, Grounded Theory has been traditionally used in areas such as sociology 

and nursing (Creswell 2006).  It has been seen to be able to explain how behaviours of 

people shape processes and help us to understand how people interact (Glaser and  

Strauss 1967). Because Grounded Theory helps understand human behaviours, the 

technique has more recently been employed as a research method in the areas of 

Business and Information Technology (Coleman and O’Connor 2007).   
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A number of researchers have advocated the use of qualitative research methods (and 

specifically Grounded Theory) in the area of Software Engineering (Coleman and 

O’Connor 2007).  For example, Silva and Backhouse (1997) claim that by using 

qualitative methods in software engineering research can lead to the development of 

theories that are grounded in an interpretative or phenomenological paradigm.  This 

allows them to be more understandable and consistent (Coleman and O’Connor 2007).  

Hoda et al. (2010) used Grounded Theory to develop a theory and framework for 

organising teams in an Agile software development environment (Orlikowski 1993). In 

perhaps one of the best examples of the use of Grounded Theory in Software 

Engineering, Coleman and O’Connor (2007) show that Grounded Theory can be used 

to explain how software development activities in two organisations were affected by 

the introduction of CASE tools. 

 

Further to these studies Coleman and O’Connor (2007) highlight a number of studies 

that have shown Grounded Theory has been successfully implemented in research 

studies in various areas of Software Engineering such as: 

• Software inspections 

• Systems thinking 

• Requirements documentation 

• Process modelling 

• Virtual team development 

It has also been shown that Grounded Theory is useful as a method where there is a 

lack of original research and theory (Adolph et al. 2012).  Through the investigation of 

the literature it was found that there is a significant lack of empirical studies looking at 

frameworks or best practice test methodologies, it is for these reasons that Grounded 

Theory was selected as a suitable candidate for gathering and analysing data in this 

dissertation. 
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3.9  Conclusions 

The research question this dissertation is an investigation of the use of Grounded 

Theory to develop a model or framework for testing best practices.  In order to 

understand Grounded Theory as a research method it was necessary to firstly introduce 

the idea of research methods. This chapter firstly outlined the two major different types 

of research methodologies (Qualitative and Quantitative).  Next, each area was 

outlined in detail from the philosophical backgrounds of each to various examples of 

the different methods. Next, Grounded Theory was examined in detail (as this is the 

method used in this dissertation).  Firstly the background to the development of the 

theory was outlined.  Following this the methods used in the development of Grounded 

Theory were discussed.  Next, the fact that there was a split between the creators of the 

theory was discussed and the differences in their methods were examined.  Finally, the 

use of Grounded Theory as a method of research in the Software Engineering sector 

was highlighted. The next chapter will outline the organisation in more detail. 
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4. ORGANISTAIONAL BACKGROUND 

4.1  Introduction 

The core aim of this dissertation is to use Grounded Theory to develop a framework 

for software testing best practices in a Telecommunications organisation.  However, 

before the Grounded Theory can be developed it is necessary to understand the 

organisation in which the theory is to be generated.  This chapter will start by outlining 

in detail the structure of the organisation including the various sections.  It will focus 

in particular on the IT section and the Test Team within that section.  This description 

will include details of how testing is currently undertaken within the organisation.  

This will provide background and an “As-Is” view of testing practices.   

4.2  Organisational Background 

This section will outline some background to the organisation in which this Grounded 

Theory research is being conducted.  It will give an overview of the company at high 

level and outline the various departments.  Particular focus will be placed on the IT 

department where the key experiments are being undertaken in this research.  In this 

section the way projects are delivered will be discussed, with emphasis on how 

projects are tested.  This will give the necessary “As-Is” picture which will put the 

interviews and their discussion into context. 

4.2.1  Organisational Structure 

The organisation involved in this research is a large, multi-national 

telecommunications company based in Dublin.  There are over 800 people employed 

in the head-office with many more based in retail shops around the country.  The 

organisation has many departments as might be imagined for a company this size.  In 

order to understand the workings of the company it would be necessary to understand 

and outline what each area does. 
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Figure 4.1: Outline of Organisational Departments 

 

4.2.1.1 Finance Department 

The finance department are responsible for all financial processes in the organisation.  

This encompasses all areas from Payroll to Purchasing.  There are various teams 

within the finance department that look after specific areas.  For example, the Revenue 

Assurance team are responsible for ensuring that no revenue loss occurs when new IT 

projects (such as introducing new tariffs) are undertaken.   There are several elements 

to the Finance team, from Commercial Finance, Financial Strategy and Planning, 

Fraud and Risk Assurance to Supply Chain Management.   The Finance team also 

provide direction and guidance on financial issues to various business units within the 

organisation.  

 

4.2.1.1 HR Department 

As with most large companies there is an entire department dedicated to HR functions.  

They are responsible for looking after staff needs, assisting with hiring of new staff 

and running the yearly review process as well as dealing with day to day HR issues.  

HR understands that it is the people in the organisation that drive the business success 

through innovation and creating the best customer experience.  It is the job of HR to 

support the employees of the organisation to allow them to deliver these results.  They 
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are also responsible for the energising and rewarding staff in order to help them to 

perform most effectively and deliver on their potential.  

 

4.2.1.2 Customer Operations Department 

This group are responsible for all customer facing sections of the business. This would 

include the retail stores as well as the call centres.  They are responsible for ensuring 

that customers’ needs are met through ensuring customer call centres are staffed and 

have the right equipment and systems to allow customer service representatives to do 

their job.  They also have a section whose sole role is in the ensuring that an IT 

projects do not negatively impinge on the customer experience (the customer either 

being a customer service representative using an internal IT system or an external 

customer interfacing with the company through the various channels, e.g. the 

company’s website and self-care sites).  This team is called the Customer Experience 

team. 

 

4.2.1.3 Consumer Department 

This group are responsible for the entire mobile and fixed line customer base of 

consumer customers (i.e. individual consumers of the products and services, not 

businesses).  They are responsible for both the pre-pay (in the mobile sector only, i.e. 

non-contracted “Ready to Go” customers) and post-paid (in the fixed and mobile 

sector i.e. customers who are on bill-pay contracts for various periods of time).  This 

team will come up with new propositions to sell to customers in order to generate 

revenue (e.g. new sets of tariffs).  They will frequently engage with Technology to 

deliver innovative projects that will increase the customer base or reduce churn 

(customers leaving for competitors). 

 

4.2.1.4 Enterprise Department 

This team are essentially the equivalent of the Consumer team but are responsible for 

business customers.  These customers range in size from SME’s to large blue-chip 

companies and even Government departments.  As with the Consumer team, this team 

is responsible for both the fixed and mobile customers.  This department has a large 
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sales team. Again, Enterprise will often engage with technology in order to deliver new 

products and services to their customer base.  

 

4.2.1.5 Technology Department 

At a high-level the Technology department is divided into two major teams: the 

Networks team and the IT team, both under the leadership of the CTO.  These streams 

have very different responsibilities.   

 

Figure 4.2: Technology Org Chart and Place of Test Team in Org Structure 

 

4.2.1.5.1 Networks Team 

The Networks team are responsible for all elements of the companies’ mobile network, 

and is lead by the Head of Networks.  They are the team that ensure people from Cork 

to Donegal and Dublin to Mayo can use their phones to make and receive calls and text 

and also (increasingly these days) can send and receive data on their Smartphones.  

There are a number of areas and sub-teams within this team.  Some of the team work 

towards delivering projects for the Consumer/Enterprise teams in conjunction with the 

IT team.  Others are purely responsible for care and maintenance on the various 

telecoms masts that the company own and manage.  There is a Network Operations 

Centre that operates on an around-the-clock basis, who continually monitors the 

Network performance and can respond to issues of outages immediately. 
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4.2.1.5.2 IT Team 

The other major part of the Technology department is the IT team and this team is 

under the leadership of the CIO.  The main responsibility of this team is the care and 

maintenance of the IT systems within the company. There are a number of different 

sub-teams in the IT area, each with their own specific function: 

4.3  IT Components of The Organisation 

4.3.1  IT Operations 

This team is similar in function to the Network Operations team but with a focus on 

the IT systems rather than network elements.  They are responsible for the 

maintenance and troubleshooting of all IT systems.  This involves all issues with 

customer care front ends (including the company’s website) as well as infrastructure 

(e.g. servers, databases etc). This is also operates on an around-the-clock basis.  There 

are three levels of support; first-line is typically the highest level of investigation and 

the basic troubleshooting investigation.  If the team at this level cannot resolve an issue 

then it is escalated to second-line support.  If the second-line support cannot resolve it 

gets passed to third-line (which is usually the individual vendors).  This team are 

involved in all IT delivered projects from a number of areas.  They will be the team 

responsible for monitoring and supporting new systems when they go live so they need 

to ensure that they are satisfied with the level of documentation that they are receiving 

from vendors to allow them to support the application in Production.  They also act as 

a quality monitor. At the end of testing, before IT Operations will accept handover of 

the project into Production they will require a Test Closure Report that highlights all 

outstanding issues that will not be fixed prior to release.  There needs to be a plan in 

place for these to be resolved in Production during project closure.  If any issues are 

raised during a project then it will be raised with IT Operations.  The types of issues 

raised will vary depending on the project; some may be related to tariff options being 

incorrectly displayed on the customer care front-ends, other may relate to hardware 

failures. 
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4.3.2  IT Demand and Delivery 

This large team is responsible for planning, scheduling and delivering all new IT 

projects for the company (both mobile and fixed).  There are multiple sub-teams in this 

area with individual managers who all report into the CIO. 

 

4.3.2.1 Architecture and Demand Sub-Team 

This team is lead by the IT Demand Lead and is responsible for the demand planning 

and scheduling of all projects in the Delivery work stream.  There are two sections to 

this team, the Demand side and the Architecture side.  The Demand side will usually 

interface with the Business (this will usually mean representatives from the Consumer 

and Enterprise teams responsible for new project delivery) to develop a pipeline of 

new projects that they want delivered in the coming financial year.  Once there is an 

initial overview of the workload, the projects are handed to the Architecture sub-group.  

It is their responsibility to investigate and understand technical aspects of the project 

and to give an initial estimate on the feasibility and size of the project.  They will also 

develop a view as to the number of vendors that will be required in order to deliver the 

projects. All projects then go to a Project Board who will decide which projects will be 

delivered in the timeframe under consideration (usually the financial year).  Once 

projects have been approved and funding has been put in place they are handed over to 

the IT Delivery Group to implement and complete. 

 

4.3.2.2 IT Delivery Sub-Team 

This team is responsible for the delivery of the IT projects agreed by Demand and the 

Business Owner.  It is lead by the Head of Delivery who reports into the CIO.  This 

team has also multiple sub-teams that are broken down by role.  There is a Project 

Management team which is a team of Project Managers (PM’s) lead by the Senior PM.  

They are assigned multiple projects to lead and deliver all aspects of those projects.   

Then there is a team of Release Managers who are responsible for delivering releases 

of multiple projects (there are usually three release cycles a year).  There is a team of 

Business Analysts who are responsible for the requirements gathering on projects.  

Again they are assigned to multiple projects and are lead by a Business Analyst 

Manager.  There is also a Test Team in the Delivery side.  This is made up three Test 
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Leads and two Test Analysts (Full Time) and supplemented by contractors as required.  

This team is responsible for leading the Testing phases of the projects and ensuring 

quality deliveries.  The actual roles and responsibilities of this team will be examined 

in more detail in the following sections of the dissertation. 

 

4.3.3 Fixed IT Sub-Team 

The Fixed IT team is responsible for the delivery of all Fixed (i.e. landline) projects in 

the company.  They will interface with IT Demand and Delivery team frequently as 

there is a very close collaboration required when delivery projects as the fixed IT 

systems are in the process of being integrated with the mobile systems. 

 

Now that a background to the company has been established it will be helpful to look 

at the IT project delivery lifecycle in more detail. 

4.4  IT Project Delivery Lifecycle 

This section of the dissertation will outline the processes and procedures that are used 

in delivering an IT project.  There are various types of projects delivered, such as 

introducing new suite of tariffs for bill pay customers, introducing new software in the 

call centres or delivery an entire new mixed mobile and fixed proposition that requires 

significant architecture changes.  No matter what type of project it is, they will all 

follow the standard phases outlined below.

 

Figure 4.3: Project Phases 
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4.4.1  Feasibil ity 

This is the first phase of a project and involves a number of steps and key stakeholders.  

At this stage the project have been signed off by the Release Board, but based on very 

high-level details contained in a one-page document.  This first stage involves 

acquiring further details from the Business on what the project needs to deliver.  There 

is also an updated project-sizing session where all relevant stakeholders (vendors, 

business analysts, architects) will meet to discuss any updates to initial sizing.  It is 

here that all of the Test phases of the project will be defined.  Once this is complete 

and all stakeholders are satisfied with sizing there is a quality gate meeting that ensures 

that the project can proceed into the next phase. 

4.4.2   Requirements Gathering 

This is the first stage in the project proper.  It involves the Business Analysts working 

with all stakeholders to come up with a list of requirements.  There are numerous 

workshops held with various parties (vendors, business, architects etc).  During these 

workshops the Business Analyst needs to take into account what all parties want and 

write them down in a Requirements Document and assign an owner to each 

requirement.  As noted previously there is no in-house development done during any 

projects.  This is all completed by vendors it is the vendors who will sign off on the 

requirements assigned to them to state that they can deliver these.  The output from 

this stage is a signed off Requirements Document that becomes the baseline against 

which all vendors will base their design, build and testing. Any changes after the 

Requirements Document has been signed off require a Change Request to be 

submitted.  Another output that is required is the completion of Use Cases; these are 

also completed by the Business Analyst with input from the vendors, the Business 

users and a representative from the Customer Experience team.  Once again at the end 

of this phase there is a quality gate meeting chaired by the release manager.  The PM 

for the project must ensure that the Requirements Documents (as well as other pre-

requisites) have been completed.  If all documentation is in place then they will be 

allowed to proceed to next stage. 
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4.4.3  Design 

This phase is under the direction of the Project Manager (PM).  However, this is 

usually a phase where vendors will complete all of their High-Level and Low-Level 

Design documentation.  During this phase the PM is responsible for co-ordination of 

any activities and acts as a conduit for any dependencies certain vendors have on each 

other to allow them to complete their design documents.  For example, one vendor 

may need to know what format to expect a message from another vendor so that they 

can design their interfaces to accept this message.  If there are delays from certain 

vendors at this stage, this can delay the entire project and has to be managed closely by 

the PM.  The output from this stage is that all vendors have completed their High-

Level and Low-Level Design documentation.  This are usually shared across all 

parties.  It is during this phase that the in-house Test Team are first actively engaged. 

Once the CRD and Use Cases have been signed off the Test Team can begin writing 

test cases.  This will be discussed in more detail later in this section. 

4.4.4  Build 

Similar to the Design phase, this phase of the project is mostly driven by vendors 

(under the guidance of the PM).  In this phase all vendors will complete the coding and 

building of their various parts of the project.  This is usually done in each of the 

vendors own environment and any calls out to other systems that are required during 

unit testing are stubbed.  There will be weekly project meetings held by the PM.  

During this phase each vendor will give updates on their progress and highlight any 

delays or issues that they are facing.   

4.4.5  Test  

The Test phase is the first phase where all the vendors come together in the one 

environment.  There are a number of test phases that a project goes through before it is 

released: 

 

* Not every project has the E2E test phase; it depends on the size and functionality of the project. 

Figure 4.4: Phases of Testing within a Project 
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The first two (CIT and SIT) phases are vendor driven phases and they are responsible 

for these.  The next two (E2E and UAT) phases are under the responsibility of the 

organisation’s In-House Test Team. 

 

4.4.5.1 The CIT Phase 

Component Integration Testing (or CIT) is the first level of testing in the overall Test 

phase.  This is usually completed by vendors in their own environments.  It is the first 

phase where they are able to test that their new components will work properly with 

their existing components.  This can be thought of as slightly more complex unit 

testing process.  There is very little involvement from the PM or the in-house test team 

(hereafter shall be referred to as “the Test Team”) during this phase.  The vendors will 

supply a weekly status report on the Test progress during this phase.  Each vendor will 

have their own exit criteria for this phase. 

 

4.4.5.2 The SIT Phase 

System Integration Test is the next level of testing on projects.  This is the first phase 

where all vendors will test the integration of their code with that of other vendors in a 

fully integrated environment.  There should be no use of stubs during this test phase as 

all parties should deploy working code to the test environment.  This phase is driven 

by vendors however there is more involvement by the Test Team during this phase.  

They act as Project Managers for this phase. Depending on the complexity of the 

project they may need to come up with a Test Strategy that all vendors will need to 

execute, they will manage inter-vendor dependencies (e.g. Vendor A may execute a 

test from their system that requires Vendor B to accept a message and respond with 

another message.  If Vendor A doesn’t receive the message they expect they may need 

to get Vendor B to investigate an issue in their code).  The Test Team will act as 

Systems Integrator and will liaise and manage these relations between vendors.  They 

will also run daily defect meetings and produce a daily status report (which is an 

amalgamation of all individual vendors’ reports).  There are set exit criteria here that 

all vendors must meet in order to allow progress to the next phase of testing. There is a 

quality gate at the end of this phase and if all exit criteria are met, they will be allowed 

to progress to the next phase of testing. 
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4.4.5.3 The E2E Phase 

End-to-End Testing is the first phase under the direct control of the Test Team.  As 

noted, this is not required on every project.  However, currently during the wider sizing 

in the Feasibility, if the project is a Large
1 or Extra Large

2 in size then there is 

automatically six weeks of E2E testing assigned to the project.   

 

During E2E test execution is completed either by the vendors under the direction of the 

Test Team or by the Test Team themselves.  During the SIT phase vendors will 

complete integration tests so that they ensure that their systems can integrate with all 

others.  However, there are no tests that will take flows from end-to-end in the SIT 

phase which is often necessary.  For example in order to set up a provision (set up) a 

customer on the mobile network might involve one vendor (A) to initiate calls to 

various other vendor systems (B and C).  Thus, vendor A will send out a call to B and 

C, once B and C respond with the correct data A is satisfied.  However, this phase was 

introduced as it was found that for some projects there is a need to complete the entire 

provisioning of a customer (for example) from start to finish.  Thus, in this case A 

would send calls to B and C.  B and C would then take this data and complete all the 

necessary actions on their side and then send a completion note back to A.  Then A 

would need to take all this data and ensure that the customer was set up correctly (i.e. 

use this customer details to make a phone call).   

 

This phase requires close collaboration between vendors as data needs to be handed 

from one vendor to another at very specific points in time.  This phase attempts to 

mimic real customer interactions with the system from start to finish.  During this 

phase the Test Team will act again as mangers of this phase, they will be responsible 

for planning all the tests that need to take place and getting all pre-requisites in place 

(e.g. data and environments).  They will then be responsible for managing vendor 

execution (or internal execution depending on circumstances), running daily defect 

meetings and reporting status.  As with all phases at the end of this phase there is a 

quality gate here and the Test Team need to ensure that all testing has completed. 

                                                 
1 A Large project is one that has between 500 and 1500 man-days effort 
2 An Extra Large project has over 1500 man-days effort 
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4.4.5.4 The UAT Phase 

User Acceptance Testing (UAT) is the final phase of testing that the Test Team has 

direct responsibility for.  During this phase the Test Team have written a number of 

test cases based on business flows, these flows are meant to capture how the end users 

will use the system on a day-to-day basis.  This was originally conceived as a test 

phase that the Business should own and manage, as it is a final test phase to say that 

they, the users, accept the product that is being delivered to them.  Thus, they business 

owners (or representatives from the business) should devise tests and then run them.  

They should be responsible for the overall sign off on the acceptable quality of the 

project.  However, in reality this does not happen.  The Test Team are the owners of 

this phase and will usually write test cases and then execute them.  This is done in 

close collaboration with the business users but they don’t take active part in the test 

phase.   

 

Before the test phase begins a request is submitted to the Business Owner to have an 

end user (usually a customer service representative) to be released from their day to 

day to work to assist in the test execution.  This request is not always able to be 

facilitated due to the staff shortages in the call centres and in these situations the test 

execution is completed solely by the test team.  This phase is similar in focus to E2E 

however; this is completed in a pre-production environment as opposed to test 

environment to fully mimic the behaviours that would be expected in the Production 

environment.   

 

During this phase the Test Team will manage the phase, run daily defect meetings and 

complete daily status reports.  Once again there is a quality gate at the end of this 

phase.  If testing is completed and exit criteria then the project can move into the next 

phase. 

UAT is the last phase of functional tests that are carried out.  Depending on the project 

there are some other types of testing that are under taken before the project is released 

to Production (e.g. ORT or Performance Testing).   
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Operational Readiness Testing is completed by the IT Operations team and is a phase 

that is used by the Operations team to ensure that they can support the project once it 

goes into Production.  Thus, they will complete activities such as troubleshooting 

issues, bringing down servers and re-starting them.  If there are to be no non-functional 

testing to be carried out on a project then it will be released from UAT (in the Pre-

Production environment) to Production.  Once in Production there is a Closure phase 

where any issues that are raised during this period will be resolved by the vendors.  

Once Closure is over the project is completed, various activities are completed by the 

PM and Release Mangers and the project is shut down. 

4.5  Test Team 

The Test Team is a relatively new team (only being formed in the last two years).  It 

consists of a Test Manger, four Test Leads (three full-time, one contractor) and three 

Test Analysts (two full-time, one contractor).  Each role carries out a particular, 

specific function. 

 

Figure 4.5: Organisational Chart of the Test Team 

 

4.5.1  Test Manger 

The Test Manager is responsible for all Testing activities that the team undertake.  

They are responsible for the staffing of the team and co-ordination of roles.  They are 

the first point of contact from external teams to the Test Team.  Once projects get 

approved the PM will approach the Test Manager to have a resource assigned to the 

project (usually a Test Lead and then later a Test Analyst).  The Test Manger is also 

responsible for defining the overall Test Strategy and leading the direction of the team.  
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They also have People Management responsibility for the team members and will 

conduct one-to-one meetings with all members and undertake performance reviews.  

They report directly to the IT Delivery Lead. 

4.5.2  Test Lead 

Test Leads are responsible for the day-to-day management of the Test phases on 

projects.  They will adopt a leadership role in projects and work closely with the PM.  

They should be engaged on a project as early as possible and should lead the work-

stream across the SIT/E2E/UAT phase of the project.  Their emphasis in those phases 

is on designing, planning and managing the overall Test work stream and is the single 

point-of-contact for test-related queries on the project.  They are responsible for 

defining the overall testing strategy for the project.  The two major deliverables that 

Test Leads must develop are the Test Strategy and the Test Approach. The Test 

Strategy outlines at a high level the test strategy for the project, this will include things 

like what phases of testing are undertaken on the project, defect management process, 

high level timelines.  The Test Approach is a much more detailed document that 

outlines, at a lower level, the actual types of testing that each vendor will undertake on 

the project.  It is completed by the Test Lead but takes as input Vendor Test 

documentations (such as their Test Plans and Test Scripts).  They will also need to 

create a detailed Test Plan.  The Test Lead is also responsible for the communication 

of Test progress via daily status reports.  They will also run daily defect meetings 

during Test phases and send out test closure report and feeding into the PM’s lessons 

learned document once the project is completed.   

4.5.3  Test Analyst  

The Test analyst is responsible for design test cases and writing them.  As noted they 

will then also be responsible for execution of these test cases.  They will also be 

responsible for supporting Business users in executing test cases if they are engaged on 

the project.  Where Business users are to be used the Test Analyst is responsible for 

planning how many will be needed and submitting the initial request.  They are 

responsible for submitting data requests and other activities related to execution of test 

cases.  They will ensure that all test cases are uploaded into the Test Management tool 

(this is a piece of software that is used to manage the execution of test cases and for 
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raising defects).  This will allow the Test Lead to generate test reports.  They will work 

closely with the Test Lead to report on progress and escalate any issues that are 

blocking progress.  They have two major deliverables during the project are the 

development of the Test Case Matrix and the creation of Test Scripts. The Test Case 

Matrix outlines, at a high level, the types of test cases that will completed on a project.  

This is usually test case names (it should be clear from the names what the point of the 

test case is).  This Matrix should also include traceability back to the Requirements 

Documentation to ensure that all requirements that can be tested are (from a user 

perspective).  The second deliverable is the development of the Test Scripts, which are 

detailed step-by-step execution test scripts.  These outline in very low-level detail what 

needs to be done to execute the test script.  They will tell whoever is executing the test 

cases the exact steps to follow.  These test scripts will be uploaded to the test 

management tool for the execution phase. 

4.6  Conclusions  

This dissertation is related to the development of a best practice framework for 

software testing in a telecommunications organisation.  In order to understand what 

changes were to be recommended as part of this study it is necessary to understand the 

“As-Is” situation in the company.  This chapter outlined a background to the company; 

this included detailing the structure of the organisation and focused specifically on the 

IT and IT Delivery teams.  It detailed how projects get delivered and what teams are 

involved in this.  It also examined in detail how testing is currently undertaken on 

projects.  This involved outlining all the phases of test and how the Test Team is 

structured and how they contribute to the testing on projects.  This constituted the “As-

Is” view. The next chapter will outline how the data used to generate the theory was 

gathered and what process guidelines exist in the organisation at present. 
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5. GATHERING THE DATA 

5.1  Introduction 

The aim of this dissertation is to create a framework for testing best practices in a 

telecommunications organisation using Grounded Theory.  The last chapter gave a 

background into the company and the “As-Is” situation of current testing practices.  

This chapter will outline in detail how the data used to generate the new Grounded 

Theory was gathered.  The first section will discuss the knowledge processes that exist 

within the organisation.  The next section will outline the interview stage of the data 

acquisition.  This will include an overview of the interview process, (data for 

development of the Grounded Theory was gathered using interviews) it will outline the 

participants interviewed and included samples of the types of questions asked and 

answers provided.   

5.2  Existing Knowledge 

There is vast array of information about various sources within an organisation of this 

size.  This is true in the organisation understudy.  There are published guidelines for 

how Testing should be undertaken and an intranet wiki site that outlines what is 

expected from the Business Users during the Testing phase.  This section aims to 

highlight that there are processes and procedures that should be followed during the 

Testing phase. However, in the interview section it will become clear that they aren’t 

always being fully followed. 

5.3  Test Methodology 

When the team was initially set up there was a great deal of effort invested in 

developing a set of clear processes and documentation to describe how the team should 

undertake testing.  This was included in an overall Test Methodology document.  It 

detailed what was expected of the Test Team in all the Test phases and gave an 

overview of these phases.  On the next page there is a table taken from this document 

that details the test phases and the Test Teams involvement in these phases: 
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Figure 5.1: Overview of Test Phases and Test Team Involvement 
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5.4  SharePoint Site 

There is a SharePoint site that is dedicated to helping the business engage with the 

Technology team.  It outlines all the various channels that are open to the Business 

users if they want to release a product and how they should contact the various areas 

within the Technology team.  There is a section of this SharePoint site dedicated to 

detailing what is expected of the Business Owners and Users in the User Acceptance 

Testing (UAT) phase.  Below is a sample taken from the site (areas in red, underlined, 

bolded and italicised by author for emphasis): 

Who conducts UAT? 

• UAT is performed by business users who are experienced in the systems being tested  
• Users from all channels impacted by the change are involved  
• It is really important that business users are involved, as they have the best 

knowledge of the flows in our systems and the nuances of dealing with upgrades, 
etc. 

• They are supported by the ODP Test Team who recommend the UAT tests to be executed  
• The ODP test team agrees a suite of UAT tests with the Business Owner and then manage 

the preparation and execution of the tests  
• Business users execute the tests and verify the results on front-end systems and 

record any defects that they find  
• The ODP test team manages the resolution of any defects found 

The main benefits derived from executing UAT: 

• It is an opportunity for business users to validate that their requirements have been 
delivered correctly 

• It is the last chance to identify and resolve defects prior to launch, thereby minimising 
customer experience issues  

• Actual business users are involved, so we verify that the solution is fit for purpose 
before it is deployed 

• It builds familiarity and business confidence amongst users of the changes being 
introduced 

• IT enables informed business decision making in relation to proceeding with a 
deployment (Go/No Go Decision)  

What is expected from the Business? 

• The Business Owner engages with the ODP Test Team and Project Manager to agree the 
scope of UAT testing  

• The Business Owner reviews and signs off the Test Approach, Test Plan and Test Matrix. 
These documents outline what tests are to be carried out and are prepared by the ODP 
Test Team 

• Support the ODP Test Team to secure experienced users from all channels 
• Business users execute assigned test cases 
• The Business Owner provides input and attends daily updates during the UAT execution 

phase 
• The Business Owner signs off the Test Closure report 
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• The Business Owner carries out all activities as per the UAT schedule 

Figure 5.2: Organisations UAT Procedures Sharepoint 

It should be clear from this that there is an expectation set by the Technology team that 

the UAT phase should be executed by Business users.  There are processes in place for 

how the UAT test phase should be being conducted.  However, from the data gathered 

in the interviews it appears that this is procedure is not fully being followed.  This will 

be examined in the next section in detail. 

5.5  Interview Process 

This section will detail the process for data gathering, as the initial step in the 

development of the Grounded Theory. 

5.5.1  Selection Of Grounded Theory as Research Methodology 

The first stage of any research process is to select a suitable research methodology.  As 

noted there are a number of different approaches open to researchers when conducting 

research.  In this case it was felt that a qualitative approach would be most suitable.  

Thus, it was necessary to select from one of the five methods outlined previously.  Of 

these, Grounded Theory was selected as the best method for a number of reasons.  

Firstly, a number of other studies (as motioned in Coleman and O’Connor) have 

suggested that Grounded Theory can be used highly successfully in Information 

Technology projects. Based on this initial starting point Grounded Theory was 

considered a reasonable approach to take in this research project.  Secondly, in this 

study it was felt that there was a lot of experience within the team and that by using a 

research method that would take their experience into account, the theory could 

effectively be generated by gathering data from the team, this is a key element of 

Grounded Theory (Glaser and Strauss 1967) and therefore it was clear that Grounded 

Theory would be suitable in this case.  Finally, as noted previously Grounded Theory 

can be useful in situations where there are only a small number of existing theories 

(Adolph et al. 2011).  From a review of the literature it was noted that there has not 

been much research carried out concerning theories of best practice for software 

testing within the telecommunications domain.  Thus, again Grounded Theory would 

seem to fit as an appropriate research methodology.   
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5.5.2  Selection of  Interview Candidates 

This dissertation aims to investigate and develop a framework for the development of 

best practice in the Test phase of projects (not at an overall project level) it was 

thought that the best place to start would be the Test Team.  These are a team of highly 

experienced professionals with a number of years experience and would have very 

strong opinions on how best testing should be carried out.  Also, by interviewing the 

Test Team it was felt that this would be a good approach to start to develop a theory 

from the data as this team would be able generated a wide range of ideas.  There were 

others considered as part of this such as members of the management team (Test 

management and also Project and Release Mangers as well as the delivery lead).  

However, it was felt that these individuals would be too far away from the “coalface” 

and may not have a clear idea of what was going on a daily basis.  They may have an 

opinion on the ideal way things should be done but the Test Team have visibility of 

how it is working day-to-day so were considered as the ideal candidates.   Just as a 

recap see below for outline of the roles and responsibilities of the Test Lead and Test 

Analyst: 

Role Responsibilities 

Test Analyst 

Create Test Scripts 

Execute Test Scripts 

Raise Defects and Retest Fixed Defects 

Test Lead  

Overall Test Phase Management 
Test Planning and Strategy 

Defect Triage and Assignment 
Status Reporting 

Table 5.1: Test Lead and Analyst Roles and Responsibilities 

5.5.3  Development of Questionnaire 

Once the interview audience is chosen, the next step in the process is to formulate the 

questions to be asked in the interviews.  For grounded theory, a semi-structured 

approach to the interviews makes most sense, as it allows for flexibility in the 

questioning and yet allows for easy comparison of themes that emerge from the 

different interviews.  The questions developed were chosen to be as open-ended as far 

as possible; the aim of this was to kick-start discussion and that the interviews would 

be as free-flowing as possible.  The goal was to use the questions as a guide for 
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ensuring various key areas were covered, and that the interviewer was able to probe 

and question interviewees further to fully elicit meaning from what was being said.    

 

Several drafts of the interview questions were developed and a set of those were 

piloted on one member of the Testing team who was then excluded for experiment.  

This piloting process resulted in the questions were further refined, clarified and 

reduced. For example, the initial introductory questions took up too much time in the 

interview with the interviewee explaining the various test phases, etc. This information 

is already known and clearly documented and it was felt that time in the interview 

needed to focus on the aspects of the test phases that they felt worked well and those 

that worked poorly.  The pilot interview contained ten questions, whereas the 

experiment interviews reduced this number to seven.  This number of questions proved 

to be adequate given the length of the interviews and the discussion generated. As 

noted, these questions were used to guide the interview. The questions asked are 

outlined below: 

1. How is it decided what length the testing phases are there? 

2. How should it be decided what types of testing should be undertaken? 
3. What different types of projects are you asked to test? 
4. What are the types of testing under taken, e.g. smoke, formal testing? 
5. What would be the best types of testing to undertake on projects? 
6. How would the type of project affect the type of testing that should be 

undertaken?  
7. What is the role of the Business Owners and Users during UAT? 

 

5.5.4  Conducting Interviews 

Permission was given by the Test Manager and IT Delivery Lead to carry out the 

interviews, which took place in the main office of the organisation under consideration 

over a two week period. All interviews were recorded on a Dictaphone for later 

transcription and review.  Each interview began by the interviewer giving some 

background information on the project and the goals of the research, after which the 

interview began.  Firstly, there some background was collected on the interviewees. 

There were five interviews conducted, three with Test Leads and two with Test 

Analysts.  
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Number Of Interviews 5 Interviews 

Average Duration of Interviews 30 minutes 

Average Number of Years Test Experience 7 Years 

Table 5.2: Number of Interviews, Length and Interviewee Experience 

 

As shown above the team had an average of seven years testing experience, with the 

most being sixteen years and the least being two years, representing a very experienced 

team of Test professionals. The next section will outline the responses generated from 

each of the questions and the follow-up discussions that these questions generated. 

 

5.5.4.1 Question 1: How is it decided what length the testing phases are there? 

The initial question gave the interviewees the opportunity to discuss issues around 

project sizing.  The responses indicated that most of the team understood that sizing 

took place at the start of the project and it was at the Feasibility stage that the sizing 

was completed. This line of questioning with all participants led to further discussion 

relating to how projects are currently being sized.  There was a unanimous view that 

the current process isn’t working as well as it could and wasn’t the best way of sizing 

projects.  Some indicative quotes are: 

Test Lead: “we (Test representatives) should be involved from as early on as 

possible…..maybe then have less involvement in design phase…” 

Test Analyst: “the scheduling and sizing done at the moment is poor” 

Test Analyst: “sizing seems to be right for some of the smaller projects…but maybe 

looking at some of the larger more complex ones seems that there sizing on these was 

off”   

Test Lead: “I think we (the Test Leads) have a bit of experience…..I think they should 

use us a bit more in the sizing process.  If you’ve had a bit of experience on projects 

with different phases…..it’s a good idea for us to get more involved in early sizing 

workshops.  If you’re used to be down in the nitty gritty detail from a test perspective 

you will have a good idea of phases that a project requires rather than someone 

looking at it from a release level” 
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5.5.4.2 Question 2: How should it be decided what types of testing should be 

undertaken? 

This question was also related to the first.  It was noted that currently when 

undertaking sizing there is a generic spreadsheet that is completed and based purely on 

the size of the project.  Thus, large projects automatically get 6 weeks of E2E testing.  

It was noted that this is not the best way to decide the level of testing required on 

projects.  The need to have Test representative involved in early phase project planning 

was highlighted by all interviewees.  It was also noted that there was a need to consider 

the type of project that is being undertaken when looking at test phases.  For example 

there would be no need for E2E testing on simple tariffing projects (that might be sized 

as large).  Also, on small projects that require significant inter-vendor integration may 

require E2E test phases.   

Test Lead: “there is no point in saying oh you need this phase, that phase just for the 

sake of it, time to market is important”  

E2E was thought to be required on projects that require significant co-ordination with 

multiple vendors.  

Test Lead: “where we are introducing new functionality or loads of different vendors, 

then there is value in end to end” 

A significant new recommendation came from the experiences that the team had in 

recent projects, which related to carrying out testing in a production environment.  It 

was found that during testing of projects that integrated fixed and mobile initiatives the 

test environments were not able to accurately mimic traffic and network scenarios 

found in the Production environment.  Thus, the testing in the Test environment was 

found not to add significant value.  A suggestion given by all interviewees was to that 

there should be concept of “In-life testing”.  This is testing in the Production 

environment but before the project is made available to customers.   This was a 

consistent theme that emerged and questions progressed along this line to develop this 

theme. 

Test Analyst: “we need to change the way we do things for sure, we had always built 

our remit on (testing in) a pre-production phase….that’s all well and good on a billing 

type project….but the way the company is moving towards fixed projects…..with these 

projects you need to schedule testing post-deployment” 
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Test Lead:” things that involve fixed elements, highly complex projects or projects that 

introduce new functionality….those types of projects where we would have said that 

we would have an E2E test phase, this should be done in Production.  Still do SIT as 

always…but rather than do another E2E test phase in a test environment……cause 

there are differences between our test environments and production are 

significant……in order to make sure we can test that everything works properly….we 

should looking to deploy into Production as soon as possible” 

 

Interviewer: So do you think early on in the planning phase we could look at the type 

of project it is, the complexity, whether it’s a fixed services or another type of project 

and then based on that we should come out with recommendations that  say this type of 

project should have an “In-Life testing phase”? 

Test Lead: “Yes, it is easy to get to. I think you could easily put together a matrix at 

the start of the project that states all those things and then comes out with a 

recommendation as to the phases of testing that is undertaken” 

 

Test Analyst: “It would be good to have like a shopping cart, or a matrix that looks at 

things like if it’s a new project, new functionality and that kind of thing…..then that 

would kind of indicate of regression or end to end was required…or if you can cut out 

phases”   

 

5.5.4.3 Question 3: What are the different types of projects are you asked to 

test? 

This question was designed to elicit the different information on the types of projects 

that the team were, and will be, asked to test.  It was found in many of the interviews 

that it was not necessary to ask this question as the interviewees naturally mentioned 

the types of projects while answering questions 1 and 2.  It was found that there was an 

increased focus in projects that have elements of mobile and fixed technologies and 

this was felt to be a challenge by the team as they were relatively inexperienced with 

the fixed propositions. 

Test Analyst: “we tend to do more fixed services projects now” 
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Test Lead: “we have run into difficulty with these (fixed services projects) as the 

environment we use does not mirror production” 

 

5.5.4.4 Question 4: What are the types of testing under taken, e.g. smoke 

testing etc, formal testing? 

This question was designed to get a view of the types of testing that is undertaken.  Do 

the team rigidly follow test scripts or are there less formal methods undertaken as well.  

Do the team rigidly follow test scripts or are there less formal methods undertaken.  

Again there was a unanimous answer here. All participants believe that formal scripted 

testing is absolutely necessary for reporting purposes but all reported that they use 

some informal methods such as exploratory testing for the first day or so of the test 

events.  

Test Analyst: “I do a lot of exploratory testing.  First day of my project (test phase) I 

won’t go through any main flows I’ll check click all the links and stuff just to try and 

find errors….the smallest things you can get” 

 

Test Analyst: “The first day of my testing usually consists of exploring around the 

system, exploring around the new functionality and trying to iron out some of the silly 

niggly defects!” 

 

Test Lead: “you would have to say that 70% (of testing) is formalised, but there is an 

element of ad-hoc…you know your system go try and break it” 

 

Test Analyst: “I think smoke testing is good, I would be of the opinion that we factor in 

two days of this.  But I think we do need formal testing too, just from a reporting point 

of view and so you have a good measure of progress and see if you are on track to 

meet exit criteria” 

 

Test Lead: “smoke testing and exploratory testing are a great way forward but you do 

need to have some structure behind how the formal, accepted test cases are run. But if 

you get in there on the first day and run through a couple of the flows, not formally, 

not structured, just get in there and use your experience of the systems to see how they 

all are sitting together, that will flush out a lot of major issues on day one.” 
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5.5.4.5 Question 5: What would be the best types of testing to undertake on 

projects? 

As noted it was mentioned on a number of occasions that where there are multiple 

vendors, fixed services elements or a lot of new vendors on a project then this would 

benefit from an E2E phase.  Also, it was mentioned that certain projects would benefit 

from an “In Life” testing phase.  There seemed to be a consensus that the phases at the 

moment from CIT to SIT were appropriate:  

Test Lead: “If there is a project that is introducing significant change, or with 

vendors…..if there are new vendors in a complex project….then this could benefit from 

an E2E phase” 

 

Test Lead: “fixed services, high complexity, new systems being introduced…these 

types of things should be being tested in production”   

 

Test Analyst: “I think complexity plays a big part in it, also the environment available, 

whether it makes sense to test in Production” 

 

5.5.4.6 Question 6: Would the type of project effect the types of testing that 

should be undertaken? How?  

It was generally felt that technology being introduced would significantly affect the 

types of testing that were undertaken.  It was felt that the phases before E2E (CIT/SIT) 

were necessary on all projects and UAT was also thought to be necessary on all 

projects.  However not all projects would require the E2E phase, for example if there 

were projects that contained mixed elements of Fixed and Mobile technologies then 

this type of project would require E2E testing  However, projects that were more 

straightforward tariffing changes would not require E2E testing.  

Test Lead: “conditions when we should have E2E would be larger, multi vendor 

project with elements of fixed stuff” 

 

5.5.4.7 Question 7: What is the role of the Business Owners and Users during 

UAT? 
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This question generated perhaps the biggest discussion of the interview.  There were 

unanimous feelings that they way the Business were engaging during UAT was not 

optimal and there were a number of recommendations as to how best use the UAT 

phase to fully incorporate Business Users  into the testing process.  The goal of the 

UAT phase is that it should be owned and run by the Business users; but this generally 

does not actually turn out to be the case.  In the initial concept of the UAT phase it was 

noted that during this phase the Business Users (i.e. the end users of the new systems, 

the customer service representatives) would be involved in running tests during this 

phase.  However, it was noted by many interviewees that this does not happen in 

practice.  There were a number of reasons put forward for this but the main outcome of 

the discussions and the unanimous opinion of all those interviewed was that it would 

be extremely beneficial to have these Business users assist with Test Execution during 

the UAT phase.   Currently it is seen that the business are involved in the signing off of 

the Test Case Matrix.  It was felt that while this was being undertaken in a lot of cases 

this was the only involvement the Business had in the project.  All interviewees felt 

that it was worthwhile getting Business end users (such as Call Centre Representatives 

(CSRs)) to be involved in the execution of test cases.  While it was noted that there 

was some time taken up in training the CSR’s in the test methods (e.g. how to run test 

scripts, how to log defects, etc) it was felt that this time was well spent as when they 

got testing they would be able to spot issues that Testers might not have seen. 

 

Test Lead: “The way it used to be was the business were more involved it was their job 

to come with the tests to be done, it was the whole idea of the business saying “Yeah 

we are happy with this product”…..because we (as Technology) for the most part are 

delivering projects for the business” 

 Test Lead: “Getting the business more involved I think outweighs any hand holding 

that may need to be done” 

 

Test Analyst: “I think there is always going to be value into getting business users 

involved….it would be good to get them more involved earlier” 

 

Test Lead: “Ultimately we need them (the business) to specify what they want tested” 

 

Test Lead: “It is becoming harder and harder to get resources to run test cases” 
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Test Lead: “There is definite value in the UAT phase….but it may be worth re-

evaluating how the phase is run….the go-to people are CSRs…but it doesn’t 

necessarily need to be CSRs it could be someone from the business” 

 

Test Analyst: “the few projects I have been working on that have had Production 

issues….these would have been caught by an end-user if tested…there are things that 

the end user will notice that we (as Test Analysts) wouldn’t” 

5.6  Conclusions 

This dissertation is developing a best practice framework for software testing in a 

telecommunications organisation. Once the background was established, it was 

necessary to outline how the data that was to be used for the generation of the 

Grounded Theory.  This was done via interviews and the questions asked were 

outlined in the chapter.  Then each question was examined in detail and the answer 

given by all participants were investigated.  This allowed for the further investigation 

of areas outlined and the development of Grounded Theory. 

 

The next chapter will examine in detail the how the Grounded Theory was developed.  

It will detail how axial codes were developed, how codes were selected and how they 

were refined to allow for core categories to be developed and detail how the 

framework emerged from this. 
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6. GROUNDED THEORY IN ACTION 

6.1  Introduction 

The goal of this dissertation is to use Grounded Theory to develop a framework for 

testing best practices in a Telecommunications organisation.  This chapter will detail 

how the Grounded Theory was created from the data gathered.  Firstly, the version of 

Grounded Theory to be used will be discussed, with reasons given for choosing that 

specific version. Next, there will be detailed discussion on the creation of Grounded 

Theory and Framework that emerged. Finally, the Grounded Theory will be detailed. 

6.2  Version of Grounded Theory to be Used 

As noted earlier since the initial version of Grounded Theory was proposed by Glaser 

and Strauss (1967) there have been other competing versions of the theory proposed.  

Most notably there was another competing theory introduced by one of the initial 

authors, Strauss, now working with Corbin (Strauss and Corbin (1998).  The version 

proposed by Strauss and Corbin (1998) was more prescriptive in terms of how the 

theory should be used.  This was criticised by Glaser (1992) as he believed that this 

was not conducive to theory emerging from the data.   However, a criticism that 

Strauss and Corbin (1998) had of the original theory was that it was too vague and 

hard for novice researchers to implement.  Also, Glaser and Strauss (1967) original 

theory differed from Strauss and Corbin (1998) in terms of their approach to the 

research topic.  Glaser thought that the researchers should approach the research with 

as little background as possible, but Strauss and Corbin (1998) were a little more 

pragmatic and accepted that the researchers were unlikely to come into research 

without prior knowledge of the subject area.  

 

In the current study it is necessary to choose one version to follow over the other.  It 

was felt that in this case the version proposed by Strauss and Corbin (1998) was a 

better version to follow; there were a number of reasons why it was selected.  Firstly, 

as noted above, Strauss and Corbin’s theory was developed to be more prescriptive for 

the novice researcher.  As the researcher in this study was not an experienced social 

science researcher it was felt that this more prescriptive approach as espoused by 
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Strauss and Corbin would be the better approach.  Also, Strauss and Corbin are more 

realistic in their approach to the researcher’s previous experience.  As the researcher is 

an experienced member of the Test Team, with a lot of knowledge in the Testing area, 

the Strauss and Corbin approach can take this into account.  Once again, given this it 

was felt that Strauss and Corbin’s approach to the development of Grounded Theory 

was best for this study. Therefore the three stages of process that will be undertaken 

are: 

• Open Coding 
• Axial Coding 
• Selective Coding 

6.3  Conducting the Study 

The first stage of the study was the gathering of the data which was covered in detail in 

the previous chapter.  All interviews were recorded on a handheld Dictaphone for later 

analysis.  Once the data was gathered then it needed to be transcribed and analysed.  

This would involve reviewing the interviews in detail and selecting words and phrases 

that are telling and could contribute to the development of the theory.  It was found 

from a review of the literature that the process of the gathering and coding can be very 

time-consuming and hard to manage.  In these studies the interviews were transcribed 

by hand, printed out and were coded by hand.  This process involved cutting out 

phrases or words from the interviews and placing them in different coded piles.  It was 

found by these researchers that this process was very time consuming and became 

nearly unmanageable as the number of codes increased and they looked for an 

alternative method (Coleman and O’Connor, 2007).  Thus, it was felt that for this 

study it would be best to use a software tool to assist with the coding and recording of 

interviews.  There are a number of software tools that are available to assist with 

Qualitative Research, an analysis of these tools was undertaken and it was found that 

the Atlas.ti (Atlas.ti n.d.) software was the easiest to use and most suitable for our 

study. 
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6.3.1  Atlas ti  

 

Figure 6.1: Atlas.ti Splash screen 

 

Atlas.ti is an integrated suite of tools that can be used to support analysis of written 

texts, audio, video, and graphic data used in qualitative research. Atlas.ti provides 

researchers with tools to manage, extract, compare, explore, and reassemble 

meaningful segments of large amounts of data in a flexible manner (Atlas.ti n. d.).  The 

first version of the software was delivered in 1993 under the company name Scientific 

Software Development and it is now used the world over by many blue-chip 

companies such as Google, Yahoo and other non-governmental organisations such as 

the World Bank and the United Nations (Atlas.ti n. d.). Given these references it was 

felt that the software had the necessary rigour and credentials to be used on this 

research project.  Atlas allows researchers to upload text, data and voice recordings 

and provides an ability to code and categorise this data. 

 

6.3.1.1 New Project Creation and Coding Procedure 

Once a new project (called Hermeneutic Units) is created the researcher is presented 

with a blank screen that they can now add Primary documents to the project.  These 

can be text documents, pictures, videos or audio files.  There is also the ability to quote 

sections and add codes and memos. 
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Figure 6.2: Home Screen in Atlas.ti 

 

Once a new project has been created then it is necessary to add Primary documentation 

to the project.  Once the documents have been uploaded then the coding can begin.  

 

Below is the screen that the researchers started with.  Firstly all the interviews were 

conducted and uploaded as primary documents (the interviews were named in the 

format FirstName_LastName_DateofInterview).  The First Name and Last name have 

been removed from the screen shot below to preserve anonymity of participants.  They 

are listed in the section on the left hand side that is called Primary Documents.   The 

first step was to listen back to each interview.  In Atlas there is the ability to playback, 

stop, fast forward and rewind conversations.   

There is the ability to add Primary Documents, Quotes, 

Codes and Memos 
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Figure 6.3: Initial screen 

Once the interviews were loaded into Primary documents they are ready to be coded.  

This is done by using the speech wave bar on the right hand side of the GUI.  The 

researcher can quickly and easily select areas of speech and insert codes against these.  

This is detailed in the screenshot below. 

 

 

Figure 6.4: Procedure for Coding 

Ability to Playback and stop 

recording to allow coding 
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6.3.2  Coding Interviews and Emergent Categories 

Once the initial project was set up, the interviews conducted and loaded into Atlas.ti 

the coding could commence.   This section will detail the results of the coding and the 

emergent categories. 

 

Figure 6.5: Open Coding Maps to Data Collection and Initial Analysis (Adolph et al 

2012) 

6.3.2.1 Open Coding 

The first stage in the Strauss and Corbin (1998) model is that of Open Coding. This 

involves reviewing the data that has been gathered (usually in the form of interviews) 

line by line, word-by-word, to gain an insight into what participants are saying (the 

Concurrent Data Generation and Collection step, the crucial point that differentiates 

Grounded Theory from other research methods (Birks and Mills 2011)).  The purpose 

of this phase is to generate as many codes as possible (which are later refined and 

linked).  During the interviews with participants it was easy to identify codes as they 

spoke.  While listening back to interviews it was possible to pause playback and select 

portions of the interview to be included as part of a code (see Figure 5.3 above).  The 

length of the interview time that was associated with codes was determined by how 

relevant what the interviewees were saying.  Some were only a couple of seconds 

while others were close to a minute. As the interviews were semi-structured it was 

found that interviewees mentioned many of the same areas that were able to be 
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included as codes.  The initial set of codes numbered over 100 and a sample of the 

types of codes that were gathered are outlined below: 

 

Acceptable Quality Business More Involved Customer Journeys 
Ad-hoc Testing Business Ownership E2E Testing 

User Acceptance Testing 
Business End User 
Training Early Test Involvement 

Figure 6.6: Sample Codes Generated in Open Coding Phase 

 

While undertaking this phase the researcher was engaged in Constant Comparative 

Analysis.  This involved constant comparison of interviews with each other to 

understand what was being said and searching for any emergent patterns in what was 

being said.  This involved comparing codes with other codes and seeing similarities as 

well as comparing the emergent categories.  Memos were collected consistently 

throughout the process of the Initial Coding; usually these were short one-line details 

that link what was being said by one interviewee with what was being said by others.  

An example of a memo is below: 

 

 

There is an emphasis on the use of Business resources in the UAT phase 

 

 

Figure 6.7: Axial Coding Maps to the Further Analysis (Adolph et al 2012) 
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6.3.2.2 Axial Coding 

The next stage in the Strauss and Corbin (1998) version of Grounded Theory was that 

of Axial Coding.  While the goal of Initial Coding is to generate codes the goal of 

Axial Coding is to reduce the number of codes and cluster them based on their themes.  

This involved looking in detail at all codes that were created.  Where possible there 

was follow-up with interviewees via email and face-to-face communication to clarify 

issues.  This allowed for the reduction of codes from over 100 to just 23.  It was also 

possible to cluster codes and develop categories or themes that began to emerge.  It 

was found that a number of categories emerged that the existing codes could be placed 

into these categories.  There were 2 categories and areas of concern.  The first related 

to Project Sizing.  As noted in the previous chapter there was significant concern that 

Project Sizing that was undertaken at the minute on projects was not optimal and was 

having negative effect on quality.  Also, the fact the business users should be more 

involved in the development of test cases was a category that emerged.  Axial Coding 

Maps to the Further Analysis Stage in Adolph et al (2011) diagram of Grounded 

Theory as seen in Figure 6.6 above. 

 

Figure 6.8: Selective Coding and Emergent Categories Mapped (Adolph et al 2012) 
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6.3.2.3 Selective Coding and Emergent Categories 

The next stage in the processes is that of Selective Coding.  In this stage the core 

categories that emerged in Axial Coding are grouped and clustered under themes and 

the framework is created.  The key to this phase is identifying key themes and 

categories that act as anchor or lynch pins of the results.  Selective coding can be used 

to explain any relationships among categories found that can assist in the development 

of a theoretical picture of what is happening. (Coleman and O’Connor 2007). .  

Selective Coding and Emergent Categories maps to the Analysis and Saturation of 

Categories in Adolph et al (2011) diagram of Grounded Theory as seen in Figure 6.7 

above.    In this stage there is seen to be category saturation and any addition of codes 

does not assist with the development of more explanatory categories.  In this phase the 

emphasis is on tying to gather all the categories and codes under themes.  As noted 

during Axial Coding two areas emerged that were seen to be key themes (that of 

Project Sizing and User Acceptance Testing).  The categories that were developed 

were seen to link to one of these and each category can be linked back to quotations in 

the interviews.  

  

Theme Category 
Project Sizing Size and Complexity 

E2E Testing 
In Life Testing 
Fixed Services 
Testing Matrix 

Theme Category 
UAT Business More Involved 

Business Ownership 
Business Executing Test 
Cases 

Table 6.1: Themes and Core Categories 

The next step was to integrate the core categories and combine them to develop a 

framework.   

 

For example Network Elements, Test Environment Constraints, Production Test 

environments were combined to In Life Testing.  Also, Test Planning, Early Test 

Involvement and Project Sizing were combined to Size and Complexity and Business 
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User Training, Test Case Execution and Quality Implications were combined to 

Business Executing Test Cases. 

 

The Atlas.ti software provides functionality that allows researchers to graphically 

display their findings.  The theoretical framework that emerged from this research is 

outlined below: 

 

Figure 6.9: Theoretical Framework 

There are two core nodes here that relate to the two main themes: Project Sizing and 

User Acceptance Testing (or UAT) these themes link a number of the core categories 

together.   
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The Project Sizing is guided by a number of elements that are inter-related.  Firstly the 

Size and Complexity of the project need to be considered.  Whether the project is a 

Tariffing Project or Fixed Services will affect the sizing and if there are Multiple 

Vendors will guide if there should be an E2E Testing phase on the project. The UAT 

theme ties together a number of the related categories relating to Business involvement 

in the UAT test phase.  There is a need to have the Business More Involved.  

Exploratory testing and Smoke testing are areas that need to be completed during the 

UAT phase and relate to Business Executing Test Cases. 

6.4  Summary of the Process 

To recap on the key points in the use of the Strauss and Corbin (1998) model in this 

experiment to develop a Grounded Theory, the following steps were undertaken: 

 

 Open Coding Axial Coding Selective Coding 

Codes 100+ Codes generated 23 Codes  23 Codes 

Activities 

Constant Comparative 

Analysis 

Developing themes 

• Project Sizing 
• UAT 

Relationships 

between  codes and 

categories 

Annotations 
Memos Follow-up 

communications 

Identify category 

saturation 

6.5  Findings and Recommendations 

The purpose of this project was to develop a framework for testing best practice within 

a telecommunications industry.  The next section will detail the key recommendations 

that emerged from the Grounded Theory that if implemented would constitute Best 

Practice from the data gathered.  It will also then look at applying this framework to 

recently completed projects that introduced defects into Production.  It would then 

hope to show that had the best practice recommendations been followed.   

6.5.1  Project Sizing 

The first finding related to the key theme of Project Sizing.  It is recommended that 

there should be better upfront project sizing with more Test team involvement upfront.  
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The key recommendations that came from the Grounded Theory are outlined in the 

following sections: 

 

6.5.1.1 More Up Front Test Involvement in Planning and Sizing 

Currently the Test team only become involved in projects after the requirements are 

signed off.  This is considered to be too late in the lifecycle.  There is no involvement 

of Test team at the Sizing and Planning phase.  The Test team should be a key 

stakeholder in this phase as they can recommend different test phases that might be 

required on a project based on their experience and the type of project.  Also, there 

may be no need for some Test phases on certain projects (for example there would be 

no need for an E2E Testing phase on Tariffing projects). 

 

6.5.1.2 Need to consider In-Life Testing as Phase 

Currently the model of test phases as outlined in Chapter 4 appears to be no longer 

suitable for the types of projects that they team are engaged in.  There is a 

recommendation to consider, at the planning stage, what the project involves.  Based 

on this review it should be clear the areas (at a high level) that need to be tested.  If 

there are certain elements that can’t be tested in the Test environment (due to technical 

and environmental constraints) then these will need to be completed in the Production 

environment.  This would result in the removal of a Test phase in these types of 

projects and the earlier release of the project to the Production environment.  Then 

there would be a phase of testing in the Production environment that would result in 

the discovery of issues that would not have been seen in the Test environment due to 

the differences in their configuration.  It is not always possible to set up a Test 

environment to accurately mimic a Production environment which was seen in recent 

projects where issues were only discovered in Production when traffic was being 

handled by other operators’ switches and routers.  By having this Production Test 

phase, it would allow Test Team to uncover problems that would not have been seen in 

Test, but would have been experienced by customers in Production. Thus, these issues 

could be eliminated before the project was commercially released, thereby preventing 

a bad customer experience. 
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6.5.1.3 Creation of a Test Phase Matrix 

There was also a recommendation that there should be some sort of quantitative 

method to be used by Test Team to inform the phases of testing and length of these 

phases on projects.  This should be completed at the Planning phase.  It would involve 

a spreadsheet that would allow the Test Lead to input data about a project (e.g. number 

of vendors, type of project, is there Fixed Services element, etc.).  This could then be 

completed and based on inputs the different phases that are required and their length 

would be recommended. 

6.5.2  UAT Phases 

The next major finding was in relation to the UAT phases.  It was felt that there was a 

sense that there was a need for a greater involvement by the Business Owners and 

Users in the UAT phase.  There were some specific recommendations here.  All of 

these recommendations would require support from and be driven by IT Delivery Lead 

and/or the CIO. 

 

6.5.2.1 Greater Business Involvement in Test Script Creation 

It was recommended that the business users or business owners should be more 

involved in the creation of Test Scripts.  The team that write the Test Scripts are the 

Test Analysts and will write scripts based on Requirements documents.  However, it 

was felt that there should be greater engagement from the Business users to help guide 

the Analysts.  This would mean getting a portion of Business Owners time which can 

be challenging but it was felt that this was worthwhile.  

 

6.5.2.2 Business End Users Executing Test Cases 

This was perhaps the finding that gained the most responses.  There was a clear 

consensus among the team that the practice of getting business end-users to assist in 

the execution of test cases was a very beneficial exercise.  It was felt that there was 

more resistance from the Business and Customer Operations to release end-users 

(usually CSR’s) due to impacts on the call centre staffing levels.  This was understood 

by interviewees but was felt that the benefit of having users who use the systems 

everyday engaged in a final acceptance test was vital.  It was noted by many of those 
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interviewed that having CSR’s executing test cases would have resulted in them 

catching defects that were released into Production on recent projects. 

 

6.5.2.3 Use of Exploratory Testing  

Another recommendation was that there should be time taken at the start of the UAT 

phase where there should be no formal testing taking place.  This would allow the 

experienced Test Analyst to complete some Exploratory Testing without running 

through test scripts.  It was felt that this was a worthwhile exercise as in the past when 

the UAT environment was released there were a number of environmental issues seen.  

These often weren’t uncovered until a few days into testing as the Test Analyst was 

following a detailed script and didn’t hit the page with the error until the end of the 

script.  This meant that testing was delayed.  It was suggested that if the Test Analyst 

was free to test all the areas that they know in the past caused issues this would 

highlight these at the start of the testing.  This would then allow for more uninterrupted 

test script running in the later stages of the phase.  This would mean that there would 

be no test report completed for the first day or two and the Test Lead would need to 

plan run rates for test scripts in a shortened time period. 

6.6  Grounded Theory 

The previous sections outlined the results these can be summed up, based on the 

Framework Diagram, recommendations and data gather through interviews as the 

Grounded Theory for this study which states: 

 
 

Project Quality can be increased by ensuring that the key stakeholders are permitted 

to participate in each of the stages that they can meaningfully contribute to.  

 
Two specific instances of this are: 

• Project Quality and Sizing can be improved by involving the Test Team in Wider 

Sizing 

o More Up Front Test Involvement in Planning and Sizing 

o Need to consider In-Life Testing as Phase 

o Creation of a Test Phase Matrix 



 

  97

• Project Quality can be increased by have End User involvement in Test Case 

Execution 

o Greater Business Involvement in Test Script Creation 

o Business End Users Executing Test Cases 

o Use of Exploratory Testing 

 

Such a theory may seem obvious and almost tautological in retrospect, but nonetheless 

if an organisation was to adopt this theory as its guiding principle on projects, and to 

redevelop all processes and documentation (in practice and on paper) from this 

principle, the quality of the projects should increase significantly as a result. 

6.7  Conclusions  

The aim of this research is to develop a Framework for Testing Best Practice in a 

Telecommunications company.  This chapter detailed how the Framework was created 

using Grounded Theory.  The data that was collected was firstly analysed.  The tool 

used to complete this analysis was outlined.  How it was used by the researchers to 

code the data was also highlighted.  Following this there was a detailed analysis of 

how the Grounded Theory was created.  This involved detailing what was done at each 

step of the coding process from Initial Coding, through Axial and then Selective.  The 

Framework that emerged was discussed in detail.   

The next chapter will discuss how the Framework and Theory created was validated 

and tested.  It will do this by applying the recommendations to recently completed 

projects 
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7. EVALUATION OF SUCCESS FACTORS 

7.1  Introduction 

The aim of this dissertation was to create a Grounded Theory for best practice in 

software testing.  The previous chapters have detailed how the Grounded Theory was 

generated through the gathering and analysis of data.  However, in order to assess the 

validity of the theory that has been developed it is necessary to be put it to the test.  

The aim of this chapter is to evaluate how valid the theory generated is when applied 

to real world projects.  This chapter will firstly consist of a description of the projects 

(due to commercial and confidentiality reasons elements of the projects not directly 

relevant to this thesis will be omitted).  The recommendations and Framework will 

then be applied to these projects.  The projects were chosen as they have been recently 

released and it was also found that they introduced defects into Production.  The aim of 

this comparison will be to assess whether by applying the recommendations and 

Framework these issues could have been avoided.  Finally, the results of the findings 

will be compared with the literature to see if they are in good agreement with other 

relevant research findings. 

7.2  Application of Framework to Completed Projects 

The Framework that was developed from the use of Grounded Theory made a number 

of recommendations.  In order to test the validity of these recommendations it is 

proposed to examine a number of recently completed projects (that would not fully 

adhered to the recommendations) and retrospectively see if the application of the 

Framework recommendations would have had an effect on the quality of these 

projects. 

7.2.1  Project 1: Tariffing Project  

The first project to be examined was a Tariffing project.  It was to be delivered mainly 

by a single vendor.  In terms of complexity this was a relatively straightforward project 

offering new tariffs to the Consumer base.  This was an extension to an existing system 

completed last year.  However, as there were a number of tariffs to be changed it was 
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sized as a Large Project in the initial planning meeting and was given a four week E2E 

testing phase.   The project itself had spanned three months and followed the delivery 

process as outlined in Chapter 4.   

Figure 7.1: Project Phases 

 

There was an initial feasibility study followed by requirements gathering session 

completed by the organisations Business Analysts.  The requirements were then 

handed over to the vendor to complete the Design, Build and Test elements.  As noted 

the project was completed by a single vendor.  Thus, there was very little Test Team 

involvement in the CIT and SIT phases.  The vendor completed all the development 

and test work offshore and then handed the project over to the Test Team for the 

organisations test phases.  Then the Test Team completed four weeks of E2E and two 

weeks of UAT.  It was found that this was far too much testing on the simple project.  

As mentioned previously the reason that the E2E stage was brought in was for projects 

that contained multiple vendors, introduced new products or had elements of Fixed and 

Mobile combined deliveries.  This project did not meet any of these criteria for having 

an E2E phase and there should not have been any E2E test phase on this project.  The 

Test Team was not involved in the initial project sizing and the rigid model used by the 

Demand team automatically assigned six weeks of E2E to the project.  However, by 

the time the Test Team were engaged it was too late to change phases as vendors had 

been paid and the Marketing and Business teams wouldn’t have been ready to accept a 

product any earlier.  Thus, the team completed 6 weeks of testing on a project that 

should only have had 2 weeks of UAT testing.  

 

7.2.1.1 Project Outline 

As noted this was a fairly straightforward project in terms of complexity (as it was an 

extension of an earlier project). However, there was a lot of change and was sized as a 
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Large project with over 20 people engaged on it over its life time.  An outline of the 

project is provided below: 

Project Type Tariffing   

No. of Vendors 1   

Project Team  Vendor Team Organisation 

  

Project Manger Project Manager 

Tech Lead Business Analyst 

Developers X 4 Business Owner 

Test Lead 

Solution 

Architect 

Testers X 4 Tech Lead 

  Test Lead 

  Test Analyst 

Table 7.1: Project 1 Outline 

 

7.2.1.2 Recommendations 

Had the recommendations above of More Up Front Test Involvement in Planning and 

Sizing and Creation of a Test Phase Matrix been followed there could have been 

significant savings on this project.  Had the Test Team been involved earlier they 

would have been able, at the initial sizing stage to recommend that as this was a simple 

tariffing project there would be no need for the E2E testing phase.  This would have 

resulted in four weeks saving on timelines which would mean being quicker time to 

market, and in the current competitive environment of the mobile telecoms industry 

this could have large implications for revenue for the company.  Also, based on 

recommendations there would have been a reduction in the project size by four weeks.  

This would have had significant cost saving as the project needed to pay for vendor 

support in the four weeks of E2E as well as increased cost of the Test Team resources.  

The table below contains a description of the test phases on the project, what was 

completed in each and whether or not the phase was required: 

 

 CIT SIT End-to-end UAT 

Description Vendor internal 
unit testing 

Vendor 
integration 
testing 

Test Team tariff 
testing 
completed by 
Test Analyst 

User testing 
completed 
by Test 
Analyst 
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Test Team 
Involvement: 

No No Yes Yes 

Test Phase 
Required: 

Yes Yes No, should have 
be removed at 
planning stage 
 

Yes 

Table 7.2: Test Phases Comparison on Project 1 

 

To complete this review of project 1 the findings of this analysis 

were presented to a member of the test team who agreed that a 

More Up Front Test Involvement in Planning and Sizing and Creation  

of a Test Phase Matrix would have helped in this project.  They said that “Four weeks 

of E2E was not needed on a project of that nature and More Up Front planning from 

Test Team, would eliminate this scheduling blip in future”. 

7.2.2  Project 2: New Handset Project  

The second project to be examined related to the release of a new tariff option as well 

as the launch of a new handset related to this tariff.  This project was to be delivered by 

two vendors and in terms of complexity as this were only one tariff and one handset it 

was sized as a Small Project.  As it was felt that that this was a small, non-complex 

project it was decided, at the initial Planning and Sizing, that there was no need for the 

Test Team to be involved.  Although there were two vendors involved they had 

worked together previously on projects and had a good working relationship.  It would 

only require Vendors to deliver and test their own project and there was to be no E2E 

or UAT on this project.  The project also completed along the lines of delivery projects 

as noted in Chapter 4 and above.  There was an initial feasibility and requirements 

gathering completed.  This was followed by Design, Build and Test by vendors 

following which the project was released into Production.  However, once the project 

was released to Production a number of serious incidents were discovered which 

resulted in emergency fixes needing to be deployed in the soon after launch.  These 

were serious issues that caused loss of revenue to the company but if they had been left 

undetected for a number of weeks would have caused serious revenue loss. 
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7.2.2.1 Project Outline 

As noted this was a fairly straightforward project in terms of complexity (releasing a 

new tariff and handset is standard practice) and the project was sized as Small. 

However, as noted below there was significant pressure to launch the tariff in an 

accelerated manner, this meant more project resources required than usual on a Small 

project.  An outline of the project is provided below: 

Project Type Tariffing   

No. of 

Vendors 2   

Project Team  Vendor Teams Organisation 

  

Project Manger X 2 Project Manager 

Tech Lead X 2 Business Analyst 

Developers X 3 Business Owner 

Test Lead X 2 Tech Lead 

Testers X 4 

Table 7.3: Project 2 Outline 

 

7.2.2.2 Recommendations 

This was chosen as a good project to test the recommendations as it was recently 

launched and resulted in significant issues being introduced to Production.  There were 

conflicting demands on this project.  It was required to be delivered by a certain date to 

coincide with a new handset launch, had this date not been met it would have resulted 

in significant loss of market share to the company.  Also, as the handset was very high 

profile any issues with the project would have been very visible and noticeable and 

would have resulted in reputational damage to the company.  It was noted that if the 

recommendation More Up Front Test Involvement in Planning and Sizing had been 

followed then the Test Team would have been able to recommend that a project like 

this should include an element of UAT.   Also, it was found that the issues, while 

serious, would have been very easily spotted by Business End Users.  Thus, it the 

recommendation Business End Users Executing Test Cases had been followed then the 

defects would have been resolved before Production.  Thus, in this case it was noted 

that the recommendation to add a Test Phase to the project would have caused an 

increase in timelines and the use of Business End users would have caused issues in 

call centre staffing levels.  However, had these recommendations been followed then 
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the defects wouldn’t have been introduced and the company would have avoided 

revenue loss as well as the increased cost associated with fixing a defect in Production. 

The table below contains a description of the test phases on the project, what was 

completed in each and whether or not the phase was required: 

 CIT SIT End-to-

end 
UAT 

Description Vendor 
internal 
unit testing 

Both vendors 
completing 
integration 
testing 

NA NA 

Test Team 
Involvement: 

No No No No 

Test Phase 
Required: 

Yes Yes No 
 

Yes, there should have 
been user and Test Team 
involvement.  Would have 
prevented introduction of 
Production defects 

 

Table 7.4: Test Phases Comparison on Project 2 

To complete this review of project 2 the findings of this analysis 

were presented to a member of the test team who agreed that a 

More Up Front Test Involvement in Planning and Sizing and Business  

End Users Executing Test Cases would have helped in this project.  They said that “by 

not having a UAT phase you lose an extra layer of business confidence. If you include 

a User acceptance phase, you get an internal review and analysis of requirements, an 

internal test coverage matrix signed-off, a different set of eyes executing the scenarios, 

and so a greater chance of trapping any bugs” 

7.2.3  Final Findings 

Thus, it would appear that the Framework that was developed using Grounded Theory 

has merit and can be used to guide Best Practice in testing in a telecommunications 

company.  It has been seen that had the Best Practice Framework been followed in 

recently completed projects these would have avoided the introduction of defects and 

also seen a reduced time to market and reduced cost.  Thus, there would be a 
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recommendation made to senior management that this Framework be adopted and 

employed by the organisation for all future projects. 

7.2.4  Comparison with the Literature 

From an analysis of the findings above it would appear that they would lend support to 

the Grounded Theory developed in Chapter 6:  

 

 

Project Quality can be increased by ensuring that the key stakeholders are permitted 

to participate in each of the stages that they can meaningfully contribute to.  

 

In relation to End User involvement in the UAT phase this is seen in the literature as a 

key feature to ensure the success of the projects (Leung and Wong 1997).  It has been 

noted that one of the key reasons why projects fail is because they don’t meet the 

needs of users (Ricca et al. 2009).  Thus, the findings of this project that quality can be 

increased by appropriate and effective end user involvement in the UAT phase is in 

agreement with findings in the existing research literature. 

 

The finding that project quality can be improved by better planning would also tie in 

with a number of studies completed in this area.  More specifically on the area of 

project size and quality and the need for better upfront planning.  Jiang et al. (2007) 

noted that earlier and accurate project size estimation can increase quality of the 

delivered project.  It has also been found that software quality and effort are related to 

project size and can effect overall project quality (Agrawal and Chari 2007). 

 

It appears that the two key findings in the Grounded Theory: 

1. That project quality can be increased through end user involvement in 

UAT phase 

2. That project sizing and quality can be improved through better upfront 

planning with Test team 
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would relate to and be in agreement with findings existing in the literature.  From this 

point of view it would appear that the project findings are valid and would merit 

further study.  

7.2.5  Presentation of Results to CIO 

There was significant interest in this research in the organisation.  The IT Delivery 

Lead had spoken about this at monthly meetings with CIO, who expressed a desire to 

be kept informed of the results of the study.  As previously outlined the CIO is senior 

level executive that is responsible for the IT elements of the Technology group within 

this company.  He is responsible for the long term strategic direction of the IT team as 

well as overseeing the day to day running of all the organisations IT systems.  Once 

the results were compiled, the recommendations along with the Grounded Theory were 

presented by the researcher to the CIO.  The format was a PowerPoint presentation.  

The presentation consisted of some background and introduction to Grounded Theory.  

Next the details of the study and interviews were outlined, including a sample of the 

questions and answers given.  Following this the Grounded Theory was presented 

along with the findings of the research.  The presentation lasted about 20 minutes with 

about 5 minutes of questions from the CIO.  He was very receptive to findings and 

somewhat dismayed that the team weren’t getting the support from the Business 

Owners in releasing end users for test execution.  It was clear to him that increased 

support from the Business Team could result in higher quality deliveries from the IT 

team. 

7.3  Conclusions 

The aim of this project is to develop a Framework for best practice software testing in 

a telecommunications organisation. This chapter looked at the validity of the 

Framework by applying the recommendations to recently completed projects and 

comparing the actual quality outcomes of these projects against the quality had the 

Framework been applied.  It was found that had the Framework been applied to these 

projects the quality would have been improved on both projects as well significant cost 

saving in both instances.  Thus, it is concluded that Framework is potentially valid and 

could add value to the organisation if it was to be implemented.  The next chapter is 
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the Concluding chapter.  It will detail the project, analyse the findings and 

recommendations for future work. 
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8. CONCLUSIONS AND FUTURE WORK 

8.1  Introduction 

The purpose of this project was to use Grounded Theory to develop a framework for 

best practice in software testing within a Telecommunications organisation.   The aim 

of this chapter is to discuss the findings of the study and how these contribute to the 

body of knowledge.  Following this there will be a discussion on the experimentation 

phase, which will involve evaluating were the aims of the research met and what the 

limitations of the current study were.  Lastly, recommendations for further study in this 

area will be discussed. 

8.2  Research Objectives 

The area of study for this project was in the realm of Software Engineering.  

Specifically it was related to Software Testing within the Software Development 

Lifecycle.  The aim of the research was to develop a framework for best practice in 

software testing with in a large telecommunications company.  Below there is a list of 

these objectives with discussion on how each of the objectives was achieved and most 

importantly why it was important that objectives were met: 

 

• Performed a literature review on the area of Software Development 

methodologies with a particular focus on Software Testing.  This was important 

because if gave some background on the state of research in the area of 

software development and testing in particular.  It was especially insightful by 

the fact that it highlighted a significant gap in the research.  This was in the 

area of software testing best practice.  There are a number of frameworks for 

software development but there appears to be a lack of academic research into 

software testing.  This dissertation aims to contribute to this area of study. 

 

• Performed a literature review on Research Methodologies (both Qualitative and 

Quantitative) with a particular focus on Grounded Theory and the application 

of this theory to software engineering projects.  This was important as from this 

it was noted that the use of Qualitative Research Methods and Grounded 
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Theory in particular have been shown to be useful and applicable to research in 

the Software Engineering domain.   

 

• Development of a framework and theory for best practice in software testing in 

a telecommunications company.  This was necessary and important as it was 

the basis for the experimentation phase of the project.  It was found that the 

framework and theory developed could be used to improve project quality and 

sizing. 

 

• Tested the validity of the framework and theory by retrospectively applying it 

to two recently completed projects in the company and evaluated the results 

and recommended the adoption and roll out of framework across IT projects.   

In order to assess whether the model developed was valid it is necessary to test 

the recommendations.  This was completed on two recently closed projects and 

it was found that had recommendations been followed the project quality could 

have been increased and time to market could have been reduced.  This is 

important because it gives a basis and justification for further implementations 

of the framework. 

8.3  Experimentation and Evaluations 

There were a number of steps taken in the experimentation phase of this project.  The 

first was the gathering of the data.  It was then analysed and finally a Grounded Theory 

framework was created. 

 

The data was gathered in the form of interviews with the Test Team.  It was found that 

a semi-structured approach to the interviews worked best with seven questions used to 

guide the questioning.  Interviewees were very open in their discussion about the way 

testing was being conducted and what they felt would be the best way of conducting 

testing.  The data that was gathered was considered very relevant, the team had a lot of 

experience and held very valid opinions on the best ways to conduct testing. 

 

Once the data was gathered it was then analysed.  The researcher used a software tool 

called Atlas.ti which assisted in the coding of the interviews.  Once the interviews 
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were coded the researcher then began to apply the rigour of Grounded Theory on the 

data.  This involved undergoing numerous rounds of further coding while continually 

completing constant comparative analysis on the data and linking it with areas already 

covered, making memos continually throughout this process.  Then, once theoretical 

saturation of categories was reached the theory emerged.  This was represented 

graphically for ease of understanding using the Atlas.ti network mapping tool.   

 

Once the Grounded Theory Framework was developed it then needed to be tested to 

ensure that its validity.  This was done by evaluating of two recently completed 

projects that proceeded without implementing the recommendations in the framework.  

The framework recommendations were applied retrospectively to these projects and it 

was tested to see whether or not if the framework had been applied to these projects, 

could the Production issues that were seen on these projects have been prevented.  It 

was found that had the recommendations been implemented then the Production 

incidents wouldn’t have been encountered.  This would have had the results of 

reducing time to market as well as significant cost saving due to the removal of 

unnecessary phases of test as well as the cost of fixing issues in Production (as 

opposed to test). 

8.4  Contributions to the Body of Knowledge 

As mentioned above in recent years there has been an increase in the use of Qualitative 

Research in the area of Software Engineering.  It has also been seen that Grounded 

Theory can be used to explain and understand practises in software companies.  This 

project aimed to add to the body of knowledge by firstly demonstrating again that 

Qualitative Research methods are valid methods of investigation in the Software 

Engineering domain.   

 

This project was successfully implemented and the Framework was seen to be valid.  

Thus, this project would add to the body of empirical evidence that suggests that both 

Qualitative Research Methods and in particular Grounded Theory can be used as 

methods of investigation in Software Engineering.   
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Also, through the literature review it was found that there was a lot of research 

conducted into technical and mathematical areas of testing (such as coverage 

calculation etc and test case selection).  However, there appeared to be a lack of 

practical studies that investigated practical aspects of software testing.  Thus, this 

project contributes significantly to this area on knowledge 

8.5  Future Work  

This study has shown that there is value in applying the Framework to future projects.  

Thus, a recommendation for future research would be to fully implement the 

recommendations and framework on an entire project and check the results in terms of 

savings in time and increases in quality (compared to if the recommendations weren’t 

followed).   

 

It would be interesting to expand the audience involved in the study.  For example 

management from the IT side could be interviewed and their views on Testing could 

be gained.  There could also be expansion to include Business Owners and even 

Vendors.  Getting this wider perspective from different sources (albeit from people 

with less “at the coalface” experience) could result in alternative recommendations. 

 

As mentioned, this study used the version of Grounded Theory as described by Stauss 

and Corbin (1998), it could be interesting to use an alternative version of Grounded 

Theory (the original Glaser and Strauss (1967) version or the version refined by Glaser 

(1978)) to check if the outcome would be the same. 

 

It would be beneficial to use another Qualitative method (such as Case Studies or 

Narrative Research) on the same data sources to see if any different or alternative 

recommendations emerge. 

 

Grounded Theory could also be used to determine a best practice approach to software 

testing in another large telecommunications company and compare the results with 

those found here and see if there are any different results or recommendations found. 
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There could also be more research completed into the area of software testing in terms 

of development of best practice in other fields (this study was limited to the 

telecommunications industry).   

 

Finally, it could be looked to use of Grounded Theory to develop frameworks for best 

practice in other phases of the software development lifecycle in an Information 

Technology company (for example Design or Development).  The results of this could 

be compared to the findings of this research to see if there are similarities in the 

recommendations. 
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