
Ciaran Reidy Page 1 9/29/2008

NetSpeak: The integration of network communication

mediums and open source speech synthesis.

Ciaran Reidy

School of Computing,

Dublin Institute of Technology,

Kevin Street, Dublin 8, Ireland.

A Dissertation Submitted in Partial Fulfilment of the Requirements of Dublin Institute
of Technology for the Degree of M.Sc. in Computing Science (Information
Technmology)

September 2008

Ciaran Reidy Page 2 9/29/2008

Table of Contents
1. INTRODUCTION.. 11

1.1 BACKGROUND... 11
1.2 PROJECT DESCRIPTION.. 11

1.2.1 Speech Synthesis ... 12
1.2.2 Speech Synthesis Characteristics.. 13
1.2.3 Previous Work .. 14

1.3 PREVIOUS WORK .. 15
1.4 INTELLECTUAL CHALLENGE ... 15

1.4.1 Speech Synthesis ... 15
1.5 RESEARCH METHODOLOGY .. 16

1.5.1 Speech Synthesis ... 17
1.6 PESTLE ANALYSIS.. 18
1.7 THESIS ROADMAP ... 18

2. LITERATURE REVIEW.. 21

2.1 INTRODUCTION ... 21
2.2 ACCESSIBILITY IN THE SOCIAL CONTEXT.. 21

2.2.1 Implications of Inaccessible Technology .. 22
2.2.2 Legislation & Guidelines .. 23

2.2.2.1 Irish Legislation...23
2.2.2.2 U.S. Legislation ...24
2.2.2.3 Accessibility Guidelines ..25
2.2.2.4 Case Law ...26

2.2.3 Assistive Technologies .. 27
2.2.3.1 Screen Readers ..27
2.2.3.2 Screen Magnifiers..28

2.3 INSTANT MESSAGING & CHAT APPLICATIONS .. 28
2.3.1 History of Instant Messaging.. 29
2.3.2 Instant Messaging Usability ... 29
2.3.3 Instant Messaging Accessibility.. 30

2.4 OPEN SOURCE SOFTWARE... 31
2.4.1 Introduction .. 31
2.4.2 History of OSS .. 32
2.4.3 Closed Source Software .. 34
2.4.4 Open Source Software Development Methodology .. 34
2.4.5 Open Source Software Quality & Performance.. 35

2.4.5.1 Full Disclosure V. Security through Obscurity..36
2.4.5.2 Drawbacks of Open Source Software ..37

2.4.6 Open Source Software Success ... 37
2.5 CONCLUSIONS... 38

3. DESIGN OF NETSPEAK.. 40

3.1 INTRODUCTION ... 40
3.2 REQUIREMENTS .. 40
3.3 ANALYSIS ... 41

3.3.1 Unified Modeling Language ... 42
3.3.2 Requirements Analysis.. 42
3.3.3 Use Case Modeling... 42

3.3.3.1 Initial Use Cases ..43
3.4 DOMAIN ANALYSIS ... 46

3.4.1 Class Diagrams .. 47

Ciaran Reidy Page 3 9/29/2008

3.4.1.1 Initial Class Diagram ...47
3.4.1.2 Detailed Class Diagram ...48

3.4.2 State Diagrams ... 48
3.4.2.1 Initial State Diagram..49
3.4.2.2 Detailed State Diagram..49

3.4.3 Sequence Diagram.. 50
3.4.4 Activity Diagrams ... 52

3.5 DESIGN ... 53
3.5.1 Architectural Design... 53
3.5.2 Detailed Design .. 54
3.5.3 User-Interface Design .. 57
3.5.4 Prototype Screenshots of System Interface ... 58

3.5.4.1 Login Screen..58
3.5.4.2 Main Chat Area Screen..59
3.5.4.3 System Administrator Screen ..59

3.6 JUSTIFICATION FOR TOOLS AND TECHNOLOGIES ... 60
3.6.1 TCP / IP .. 60
3.6.2 Java... 60
3.6.3 MySQL.. 60

3.7 CONCLUSIONS... 61

4. DEVELOPMENT... 62

4.1 INTRODUCTION ... 62
4.2 METHODOLOGY .. 63
4.3 DEVELOPMENT REQUIREMENTS.. 65
4.4 DEVELOPMENT PROCESS... 66

4.4.1 n-tier Architecture .. 66
4.4.2 Speech Technology ... 67
4.4.3 Justification for Tools and Technology... 69
4.4.4 Environment Configuration .. 70

4.4.4.1 Java..71
4.4.4.2 MySQL..71
4.4.4.3 FreeTTS...71
4.4.4.4 Environment Settings...72

4.5 PHASES IN DEVELOPMENT ENVIRONMENT.. 74
4.5.1 Classes and Methods .. 74

4.5.1.1 ChatServer ...76
4.5.1.3 ChatHandler...79
4.5.1.4 ChatClient..80
4.5.1.5 LoginScreen...81
4.5.1.6 ChatScreen...84
4.5.1.7 UserListServer ...87
4.5.1.8 UserListClient..88
4.5.1.9 SpeakSynthesizerAPI ..89

4.6 INTERFACE SCREEN SHOTS ... 91
4.6.1 User Interface Guidelines... 91
4.6.2 Evolution of Screenshots... 95

4.7 ADDITIONAL FUNCTIONALITY .. 97
4.7.1 Reduce Cognitive Load... 97
4.7.2 Additional Access Keys... 100

4.7.2.1 Logout of Chat Application ...101
4.7.2.2 Saving a Conversation ...102
4.7.2.3 Synthesizing list of Logged in Users ...102

4.7.3 Acronyms interpreted.. 103
4.8 ERROR DETECTION AND EXCEPTION HANDLING... 105

Ciaran Reidy Page 4 9/29/2008

4.8.1 Examples... 106
4.8.1.1 ArrayIndexOutOfBoundsException ..106
4.8.1.2 NumberFormatException ..107

4.9 CONCLUSIONS... 109

5. TESTING AND EVALUATION... 110

5.1 INTRODUCTION ... 110
5.2 TESTING .. 110

5.2.1 Development of Test Plan... 110
5.2.2 Test Plan Features.. 111
5.2.3 Schedules and Resources.. 111
5.2.4 Testing Approach.. 112
5.2.5 Features to be tested... 112
5.2.6 Environmental Needs.. 113
5.2.7 Item Pass/Fail Criteria ... 113
5.2.8 Test Deliverables .. 114

5.3 TYPES OF TESTING .. 114
5.3.1 Unit Testing .. 114
5.3.2 Integration Testing ... 115
5.3.3 Stress Testing.. 116
5.3.4 System Testing .. 116
5.3.5 Acceptance Testing ... 116

5.4 SOFTWARE EVALUATION .. 117
5.4.1 Introduction .. 117
5.4.2 Software Evaluation Process .. 118
5.4.3 Rubric Provided.. 118
5.4.4 Evaluator Feedback.. 119

5.5 CONCLUSION... 122

6. CONCLUSIONS... 123

6.1 INTRODUCTION ... 123
6.2 KEY FINDINGS .. 123

6.2.1 Review of Literature ... 123
6.2.2 Review of design ... 124
6.2.3 Review of Development... 124
6.2.4 Review of Testing and Evaluation .. 125

6.3 PROBLEMS ENCOUNTERED.. 125
6.4 CONCLUSIONS... 126
6.5 FUTURE WORK ... 126

6.5.1 Speech Synthesis ... 126
6.5.2 Speech Recognition... 126

6.5.2.1 Previous Work ...127
6.5.2.2 Performance Issues ..127
6.5.2.3 Trained Data Concerns ..128
6.5.2.4 Potential Speech Recognizer ...128

APPENDIX A: .. 130

APPENDIX B: .. 133

APPENDIX C: .. 134

APPENDIX D: .. 136

BIBLIOGRAPHY .. 145

Ciaran Reidy Page 5 9/29/2008

Table of Figures

FIGURE 1.1 CONCEPTUAL EXAMPLE OF SYSTEM... 12

FIGURE 1.2 THESIS OUTLINE.. 19

FIGURE 2.1 JAWS BASIC DIALOGUE BOX... 28

FIGURE 2.2 ZOOMTEXT.. 28

FIGURE 2.3 CLASSIC WATERFALL DEVELOPMENT MODEL TYPICALLY FOUND IN

PROPRIETARY SYSTEMS (NEW ROWLEY TECHVIEW).. 35

FIGURE 2.4 MARKET SHARE FOR TOP SERVERS ACROSS ALL DOMAINS AUGUST

1995 - JUNE 2008 (NETCRAFT).. 38

FIGURE 3.1 AUTHENTICATED USER USE CASE DIAGRAM [SOURCE: AUTHOR USING

VISUAL PARADIGM] .. 44

FIGURE 3.2 ANONYMOUS USER USE CASE DIAGRAM [SOURCE: AUTHOR USING

VISUAL PARADIGM] .. 45

FIGURE 3.3 SYSTEM ADMINISTRATOR USE CASE DIAGRAM [SOURCE: AUTHOR

USING VISUAL PARADIGM]... 46

FIGURE 3.4 AUTHENTICATED USER USE CASE DIAGRAM [SOURCE: AUTHOR USING

VISUAL PARADIGM] .. 46

FIGURE 3.5 INITIAL CLASS DIAGRAM [SOURCE: AUTHOR USING VISUAL

PARADIGM] .. 47

FIGURE 3.6 DETAILED CLASS DIAGRAM [SOURCE: AUTHOR USING VISUAL

PARADIGM] .. 48

FIGURE 3.7 INITIAL STATE DIAGRAM FOR CLASS USER [SOURCE: AUTHOR USING

VISUAL PARADIGM] .. 49

FIGURE 3.8 DETAILED STATE DIAGRAM FOR CLASS USER [SOURCE: AUTHOR

USING VISUAL PARADIGM]... 50

FIGURE 3.9 SEQUENCE DIAGRAM FOR USE CASE LOG IN [SOURCE: AUTHOR USING

VISUAL PARADIGM] .. 51

FIGURE 3.10 SEQUENCE DIAGRAM FOR USE CASE SEND MESSAGE [SOURCE:

AUTHOR USING VISUAL PARADIGM] .. 51

FIGURE 3.11 ACTIVITY DIAGRAM FOR USER [SOURCE: AUTHOR USING VISUAL

PARADIGM] .. 52

FIGURE 3.12 ACTIVITY DIAGRAM FOR A SYSTEM ADMINISTRATOR [SOURCE:

AUTHOR USING VISUAL PARADIGM] .. 52

FIGURE 3.13 ARCHITECTURAL CLASS DIAGRAM [SOURCE: AUTHOR USING VISUAL

PARADIGM] .. 54

FIGURE 3.14 STATE DIAGRAM VECTOR USERLIST [SOURCE: AUTHOR USING

VISUAL PARADIGM] .. 55

FIGURE 3.15 DETAILED SEQUENCE DIAGRAM FOR USE CASE SEND MESSAGE

[SOURCE: AUTHOR USING VISUAL PARADIGM].. 56

Ciaran Reidy Page 6 9/29/2008

FIGURE 3.16 DETAILED COLLABORATION DIAGRAM FOR USE CASE SEND MESSAGE

[SOURCE: AUTHOR USING VISUAL PARADIGM]. ... 57

FIGURE 3.17 INITIAL LOGIN SCREEN .. 58

FIGURE 3.18 INITIAL MAIN CHAT SCREEN .. 59

FIGURE 3.19 INITIAL ADMIN SCREEN.. 59

FIGURE 3.20 INITIAL ADMIN SCREEN.. 60

FIGURE 4.1 COMPONENT DIAGRAM FOR CHAT SYSTEM [SOURCE: AUTHOR USING

VISUAL PARADIGM] .. 63

FIGURE 4.2 CRYSTAL FAMILY METHODOLOGIES (A PRACTICAL GUIDE TO SEVEN

AGILE METHODOLOGIES, PART 2, WWW.DEVX.COM).. 65

FIGURE 4.3 N-TIER ARCHITECTURE [SOURCE: AUTHOR USING VISUAL PARADIGM]

.. 67

FIGURE 4.4 SPEECH ENABLED TECHNOLOGY ... 68

FIGURE 4.5 SPEECH ENGINE [SOURCE: AUTHOR USING VISUAL PARADIGM] 68

FIGURE 4.6 JAVA SPEECH STACK [SOURCE: AUTHOR USING VISUAL PARADIGM] .. 69

FIGURE 4.7 INSTALLING MYSQL 5.0... 71

FIGURE 4.8 DOWNLOADING FREETTS 1.2.1-BIN.ZIP.. 72

FIGURE 4.9 DOWNLOADING FREETTS 1.2.1-BIN.ZIP.. 72

FIGURE 4.10 CONFIGURING THE CLASSPATH .. 73

FIGURE 4.11 CLASS DIAGRAM FROM CHAPTER 3 [SOURCE: AUTHOR USING VISUAL

PARADIGM] .. 74

FIGURE 4.12 DETAILED DEVELOPMENT CLASS DIAGRAM [SOURCE: AUTHOR USING

VISUAL PARADIGM] .. 75

FIGURE 4.13 CHATSERVER ACCEPTING A CONNECTION... 76

FIGURE 4.14 METHOD GETLOGINDETAILS ... 76

FIGURE 4.15 INVOKING DATABASEHELPER CLASS FROM CHATSERVER CLASS 77

FIGURE 4.16 SERVER’S SUBMITRESPONSE METHOD SUBMITS SUCCESS / FAILED

RESPONSE TO CLIENT.. 77

FIGURE 4.17 CHATSERVER SENDS PERSONALIZED IMAGE TO CLIENT AND

CREATES AN INSTANCE OF THE CHATHANDLER CLASS TO BE RUN 77

FIGURE 4.18 CONVERTING IMAGE TO SERIALIZABLE FORMAT FOR TCP

TRANSMISSION ... 78

FIGURE 4.19 VALIDATING USER WITH THE DATABASE.. 78

FIGURE 4.20 SAVING A MESSAGE TO THE DATABASE... 79

FIGURE 4.21 MULTI-THREADING ENVIRONMENT DEPICTING THE CHATHANDLER

CLASS BROADCASTING A MESSAGE TO CLIENTS .. 80

FIGURE 4.22 CHATCLIENT THREAD READING INCOMING MESSAGE FROM THE

CHATHANDLER CLASS... 81

FIGURE 4.23 ACTIONLISTENER’S ACTIONPERFORMED METHOD IMPLEMENTATION

IN THE LOGINSCREEN CLASS.. 82

Ciaran Reidy Page 7 9/29/2008

FIGURE 4.24 ACTIONLISTENER’S ACTIONPERFORMED EVENT REGISTERED WITH

‘LOGIN’ COMPONENT... 82

FIGURE 4.25 KEYLISTENER CODE EXECUTED ONCE THE ‘ENTER’ KEY IS PRESSED

.. 82

FIGURE 4.26 LOGINSCREEN SUBMITS USER LOGIN DETAILS TO SERVER ON PORT

9200.. 83

FIGURE 4.27 POP UP PROMPT PROMPTING THE USER TO TRY LOGGING IN AGAIN 83

FIGURE 4.28 USER SUCCESSFULLY LOGS IN AND IS PRESENTED WITH MAIN CHAT

SCREEN.. 84

FIGURE 4.29 MESSAGE SUBMITTED TO THE LOBBY .. 85

FIGURE 4.30 CHARACTER / WORD TYPED SYNTHESIZED BEFORE BEING

SUBMITTED TO THE LOBBY... 85

FIGURE 4.31 CREATESLIDER METHOD CALLED TO INITIALIZE PITCHSLIDER......... 85

FIGURE 4.32 SLIDER CREATED TO CONTROL THE SYNTHESIZER SETTINGS............. 86

FIGURE 4.33 ACTIONLISTENER USED TO SET THE PITCH SLIDER HIGHER USING

ACCESS KEYS (‘ALT’ AND ‘P’) .. 87

FIGURE 4.34 USERLISTSERVER THREAD CLASS CREATED AND STARTED 88

FIGURE 4.35 CODE USED TO SEND LIST OF USERS LOGGED IN TO THE CLIENTS

ONCE EVERY SECOND.. 88

FIGURE 4.36 CODE USED TO RECEIVE LIST OF USERS LOGGED IN FROM THE

USERLISTSERVER CLASS ONCE EVERY SECOND ... 89

FIGURE 4.37 SPEAKSYNTHESIZERAPI CONSTRUCTOR ... 90

FIGURE 4.38 ACCESS KEYS ‘ALT’ AND ‘L’ TO LOGOUT OF THE SYSTEM...................... 92

FIGURE 4.39 ACCESS KEYS ‘SHIFT’, ‘ALT’ AND ‘S’ TO SAVE A CONVERSATION 93

FIGURE 4.40 USE CASE FROM SECTION 3.3.3.1 .. 95

FIGURE 4.41 PROTOTYPE SCREEN SHOTS FROM SECTION 3.5.4 96

FIGURE 4.42 LOGIN SCREEN APPLICATION SCREENSHOT .. 96

FIGURE 4.43 MAIN CHAT LOBBY APPLICATION SCREENSHOT .. 97

FIGURE 4.44 RECALL FUNCTION... 98

FIGURE 4.45 HASH TABLE KEY (USERNAME) - VALUE (MESSAGE) PAIRS. [SOURCE:

AUTHOR USING MS POWERPOINT]. ... 98

FIGURE 4.46 HASH TABLE KEY (USERNAME) - VALUE (VECTOR OF MESSAGES)

PAIRS. [SOURCE: AUTHOR USING MS POWERPOINT].. 99

FIGURE 4.47 CODE TO DEMONSTRATE THE HANDLING OF SYNTHESIZING

PREVIOUS MESSAGES... 99

FIGURE 4.48 CODE TO RETRIEVE THE PREVIOUS MESSAGE .. 100

FIGURE 4.49 LOGGING OUT OF SYSTEM VIA ACCESS KEYS.. 101

FIGURE 4.50 SAVING CONVERSATION VIA MOUSE... 102

FIGURE 4.51 SAVING CONVERSATION VIA ACCESS KEYS.. 102

FIGURE 4.52 SYNTHESIZING LOGGED IN USERS VIA ACCESS KEYS............................. 103

Ciaran Reidy Page 8 9/29/2008

FIGURE 4.53 ADD ACRONYM GUI .. 104

FIGURE 4.54 CODE TO ADD ACRONYM ... 104

FIGURE 4.55 SYNTHESIZES MEANING OF ACRONYM .. 105

FIGURE 4.56 EXAMPLE OF ERROR HANDLING... 106

FIGURE 4.57 INTERFACE COMMAND TO GENERATE ARRAY INDEX OUT OF BOUNDS

EXCEPTION .. 106

FIGURE 4.58 CONSOLE ERROR - ARRAY INDEX OUT OF BOUNDS EXCEPTION......... 107

FIGURE 4.59 EXCEPTION HANDLING CODE - ARRAY INDEX OUT OF BOUNDS

EXCEPTION .. 107

FIGURE 4.60 USER FRIENDLY ERROR - ARRAY INDEX OUT OF BOUNDS EXCEPTION

.. 107

FIGURE 4.61 INTERFACE COMMAND TO GENERATE NUMBER FORMAT EXCEPTION

.. 108

FIGURE 4.62 CONSOLE ERROR - ARRAY NUMBER FORMAT EXCEPTION 108

FIGURE 4.63 EXCEPTION HANDLING CODE – NUMBER FORMAT EXCEPTION.......... 109

FIGURE 4.64 USER FRIENDLY ERROR – NUMBER FORMAT EXCEPTION..................... 109

FIGURE 5.1 INTEGRATION OF TESTING METHODS INTO DESIGN AND

DEVELOPMENT OF SYSTEM [SOURCE: AUTHOR USING VISUAL PARADIGM] 114

FIGURE 5.2 CONNECTEXCEPTION (GENERATED BY DEVELOPER). 115

FIGURE 5.3 SOCKETEXCEPTION (GENERATED BY DEVELOPER). 116

FIGURE 5.4 BINDEXCEPTION (GENERATED BY DEVELOPER)... 116

FIGURE 5.5 ISO 9126-1 QUALITY MODEL CHARACTERISTICS [SOURCE: AUTHOR

USING VISUAL PARADIGM]... 117

FIGURE 5.6 INTERVIEWEES CODED. .. 119

Ciaran Reidy Page 9 9/29/2008

Abstract

This project combines multi-threading technology, speech synthesis, and open source

software to create a user friendly real time communication tool for the visually

impaired and the blind to use at ease. A network instant messenger was implemented

in Java with speech synthesis. This allows visually impaired users to make use of this

communication medium where other main-stream applications lack the functionality

they require. Users communicate with the program using access keys and mouse

alternatives as the primary input and all application processes are dictated to the user

through synthesized speech, so that they can navigate the application with ease.

Ciaran Reidy Page 10 9/29/2008

Acknowledgments

First and foremost, I would like to express my sincere thanks to my supervisor Mr.

Damian Gordon for the guidance he provided through out the project. Mr. Damian

Gordon not only served as my supervisor but he also provided assistance and

encouragement throughout the research programme. Mr Damian Gordon also had

some great suggestions on how this project could be made more user friendly for the

visually impaired and the blind.

I am grateful for all the help provided by the staff in DIT Kevin Street.

Finally, I would like to thank my family and my friends for their continued support

over the past two years in DIT. In addition I would also like to thank everybody who

painstakingly provided assistance, suggestions, and feedback regarding the project.

Thank you.

Ciaran Reidy Page 11 9/29/2008

1. Introduction

1.1 Background

When visually-impaired users attempt to access a range of online resources, they

often face software access and communication problems, this is particularly true of

messaging software The available communication tools are not completely user-

friendly for the visually-impaired and blind, and therefore intrinsically create

accessibility barriers for them.

Software application accessibility has become more of an issue over the last few of

years particularly because of legislation in both the U.S. and Europe. Computer

applications’ existing features to current applications are constantly being enhanced.

However, the unfortunate reality is that not all of these high tech new features have

been developed with the disabled in mind.

Having access to software controls through mouse alternatives is essential for people

who cannot accurately control a mouse or for users with a visual disability who do not

use a mouse. Additionally there are a wide range of open source communication

mediums available (Redmond, 2002), such as MSN Messenger.

To facilitate new innovation in messaging software with the visually impaired and

blind in mind, this research will seek to develop an open source speech instant

messenger application for the visually-impaired and blind to use with relative ease. As

it will be an open-source application, it will be available to a large variety of

development platforms. This work will integrate some of the latest instant messaging

and chat application technology with speech synthesis tools with the aim of helping

the visually impaired.

1.2 Project Description

Instant messaging and real-time communication among personnel is growing in

importance and it is no longer seen as just a way of communicating across networks

and the broader internet for personal means. There is an urgent need for a real time

communications tool with speech enabled technologies in order to allow everyone

benefit from such a great piece of technology. Instant Messaging (IM) is one of the

fastest growing methods of communicating over the web today. The ability to

Ciaran Reidy Page 12 9/29/2008

communicate in real time via instant messaging is important to many as it is used for

socializing, education, and for corporate related agendas.

IM has gained acceptance from all generations and it allows people communicate in

virtual spaces where communicating in physical places may prove difficult at times

for the visually impaired and the blind. However, the ironic truth is that such

technology poses there own accessibility barriers for the visually impaired. There is a

need to allow universal access to IM technology to allow all communicate in real time

over the web. A conceptual example of real time communication in a virtual

environment can be seen in figure 1.1.

Figure 1.1 Conceptual Example of System

1.2.1 Speech Synthesis

Have you ever considered how an individual with no vision would launch a software

application from the desktop? Similarly, how could one also close down applications

or logout of a system? The introduction of Graphical User Interfaces’ has made it far

more difficult for visually-impaired and blind people to use computers. Many

important operations now require the use of a mouse such as selecting and launching

applications, copying and deleting files, and creating folders etc. However,

successfully using a mouse requires continuous feedback about the position of the

cursor, and this is difficult to achieve (Pitt & Edwards, 2003). It would be useful if

there were a way for the computer to communicate the status of an application, or the

actual keys that were typed through synthesized speech.

Ciaran Reidy Page 13 9/29/2008

Until recently, synthetic speech was little more than a novelty to most people. It is

only in the last few years, however, that synthetic speech has entered the mainstream,

finding applications in a variety of areas from voice-mail systems to satellite

navigation and traffic-avoidance systems (Pitt & Edwards, 2003). This move has

occurred largely as a result of improvements in the technology, making synthetic

speech more natural-sounding and hence more acceptable to a wide cross-section of

potential users. (Karaali, 1996) states that speech synthesis equipment will only be

accepted by the market if it has good speech quality, functionality, and low product

costs.

Allen et al. (1987) presented the design of a Text-to-Speech synthesizer

in some detail, and this has proven to be very influential. It ultimately led

to the development of the Dectalk synthesizer, which in turn has been the

basis of many subsequent synthesizers.

1.2.2 Speech Synthesis Characteristics

Speech is known as a slow communication medium compared with visual displays.

Barry Arons from the Speech Interface Group, pointed out, “it is faster to speak than

it is to write or type, however it is slower to listen than it is to read” (Arons, 1993).

And this quote by Arons is especially pertinent when one considers the impact this

would have on the visually-impaired and blind. It will clearly be more complex and

would therefore increase the cognitive load for the visually-impaired and blind user

substantially but unfortunately, at times, there is just no other mechanism for

communicating with the visually impaired and blind.

Thus the visually-impaired or blind user, who has no option but to access text through

speech, is at a significant disadvantage compared with the sighted user who can

rapidly skim through visually presented text. When developing any speech system,

especially instant messaging systems where data is constantly flowing to and from

users, we must accept the fact that the screen acts as a secondary memory for visual

users. An experiment conducted by the US Air Force compared individual's ability to

respond to visual alerts and synthetic speech. The results showed that the individual's

responded more slowly to speech than those who received the visual warnings

(Robinson and Eberts, 1987). Therefore one must look at ways to reiterate the

synthesized speech if desired by the user and provide more feedback to the user of the

system.

Ciaran Reidy Page 14 9/29/2008

1.2.3 Previous Work

There exists a range of problems with current instant messaging applications such as

Microsoft MSN Messenger. They are closed-source, meaning that the source code

cannot be edited and reused to develop a new applications designed to alternative

requirements. Similarly, there does exist text-to-speech (TTS) and speech recognition

systems currently, but unfortunately they cannot be easily edited and integrated into

existing software applications for end-user accessibility. Commercial technologies

such as NextUp Talker TTS application is designed specifically for people who have

temporarily or permanently lost their voice (NextUp, 2008).

These existing technologies are all excellent applications and certainly make life

easier for the disabled. The problem is they are fixed and are standardized for all

users. None of them can be tailored for particular user’s desires. With open source and

full disclosure of the software the application it is possible to implement a system that

is portable to new hardware, the source code will be available and modifiable which

will allow the unlimited tuning of the software product with the disabled in mind.

There will be no dependence on software vendors and will be much easier to

customize.

A chat application medium will be developed entirely in the Java programming

language. This is the ideal technology to use as it is object-oriented; meaning the

construction of interfaces permits the separation of the framework design from the

actual implementation. Its modular nature means that it can accept add-ons at ease as

the project matures. As it will be an open source application, it will be available to a

large variety of development platforms. Java is also the ideal technology when one

considers networking applications that involves multithreading. A separate thread will

need to be created and run for every conversation.

A number of speech synthesizes applications have been developed for visually-

impaired and blind people, for example, talking clocks and talking word processors.

However, since they were designed from the beginning to use speech, the software

tends to be specialized and therefore the market is relatively small, and in

consequence such software is usually less well supported and less frequently updated

than mainstream software (Pitt & Edwards, 2003). On the contrary, the speech

synthesizer developed in this research will be of an open source nature. As the main

instant messenger application will be developed in Java it is desirable that the speech

technology used in this thesis has also been implemented in Java. This will ensure the

smooth integration of the speech technology into the main application. Another

benefit of developing an open source system is that it can be agrued that in some cases

“the quality of software produced by the Open Source community sometimes exceeds

that produced by purely commercial organizations”(Peeling and Satchell, 2001).

Ciaran Reidy Page 15 9/29/2008

1.3 Previous Work

The aim of this project is to research and implement a network instant voice

messenger with speech enabled tools to allow a wider segment of users to access this

system.

Objectives:-

• to research the ways of enabling existing instant messenger tools become more

usable to visually impaired users.

• to gain a thorough understanding of the open source speech technologies on

the market today and integrate these into an instant messenger system.

• to question the existing speech technologies performance and accuracy and

raise appropriate questions to be answered by experts in the field. This will

provide belief and drive direction in this research.

• contact experts in the field and engage at a Masters-level discourse with them.

• to gradually implement a new Speech Synthesis based network

communications tool.

1.4 Intellectual Challenge

There will no doubt be numerous challenges in researching this topic up to and

including the development of this project. My primary concern is with the speech tool

in question as opposed to the networking involved in the project. This is mainly due to

fact that speech technology is relatively new with regard to computing. In the next

section I go into more detail about my concerns involving the synthesizer and where I

will be in contact with the research groups directly involved with these technologies.

The main challenge in this research project will be regarding speech software issues

and technological constraints.

1.4.1 Speech Synthesis

The effects of speech quality through synthesizers will be of a major concern. As the

synthesizer TTS nature, it is inevitable that it will sound a little robotic, even though

Ciaran Reidy Page 16 9/29/2008

major improvements have been recorded over the last few years. Nusbaum and Pisoni

(1985) noted that listeners faced with poor-quality speech are forced to rely heavily

on the semantic content of the speech in order to resolve ambiguities. They gathered a

number of listeners to listen to grammatically correct English sentences and sentences

that made no sense. They observed that when the sentences were presented using

natural speech there was only a small difference between the recognition accuracy

obtained on the meaningful sentences (99.2%) and on the nonsense ones (97.7%, a

drop of 1.5%). However, when the sentences were presented using various speech

synthesis systems the margin between grammatically correct English sentences and

those that made no sense was much greater. It was down from 90.7% to 76.3%, a drop

of 14.4%. They argue that synthetic speech requires further analysis by the end user.

This will ensure that the system will need more synthetic speech enclosed around the

conversations held on the instant messenger system, for example, ”Ciaran said: ‘Hi,

how are you?’” etc. it has been found that audio imposes more cognitive load than an

average human user can handle, a situation called cognitive overload (Sauer,

Hochheiser, Feng, and Lazar, 2008).

1.5 Research Methodology

This research is personally significant to me due to my use of real time

communications mediums on an almost daily basis. Using MSN messenger allows me

to stay in contact with my family and friends when I’m traveling and on the road with

work. Two of my aunties whom I converse with daily through messenger are blind

since birth. I realized the difficulty for any blind person wising to converse via the

internet and then began to think of ways of improving this process for them. At

present there exists voice-over-IP to help the visually impaired communicate, but

there still poses the difficulty in the most basic functions, such as clicking the talk

button in order to begin the communication ViaVoice. Similarly, there are dozens of

other functions such as ‘signing in’, ‘signing out’, ‘saving conversations’, and the use

of image icons which possess problems for the blind. These features are just to name a

few.

The research methods that will be used in this research will be a combination of
qualitative and quantitative methods, because as American philosopher Thomas Kuhn
has pointed out that these two approaches are not entirely mutually exclusive in the
research arena (Kuhn, 1961). He believed that qualitative work carried out in the area
of physical sciences often led to more ‘fruitful’ quantitative results in the same area.
Qualitative research is often used to gain an understanding of the theories and
observations in the field which can later be tested by quantitative research.

Ciaran Reidy Page 17 9/29/2008

1.5.1 Speech Synthesis

Speech synthesizers have limited capabilities which one needs to be aware of when

attempting to integrate such a synthesis system into their mainstream application

(Junqua, 2000). For example, even though a synthesizer can synthesize almost any

word in the English language, at times the correct pronunciation of the word may not

always be accurate. No matter how large the exceptions dictionary, TTS synthesizers

will make different pronunciations. For example, "wind" can refer either to an air

current or a circular action, such as the tightening of a screw. In order to decide which

pronunciation to use, the synthesizer would have to determine which meaning is

intended - and that could well be beyond the capabilities of most current synthesizers.

Apart from pronunciation issues which were addressed above, another issue that will

need to be investigated is the use of pauses in character strings. Sometimes in our

speech we consciously and unconsciously insert pauses into our speech: for breath,

for humorous effect, to allow listeners better comprehend what we have just said etc.

This inevitably raises the question of how this is reflected in speech synthesizers for

the blind. Will the synthesizer you use cater for such pauses? Will a pause correlate to

a comma character? etc. Juergen (YEAR) has investigated these issues in great detail

concerning text analysis. Very often it is questions like these that are often over

looked as they appear to be trivial, when in reality these issues are very important for

the blind, i.e. the potential user of a system.

Just how pauses aid speech comprehension, is still not fully understood, and a great

deal of research is being carried out in this area. Nonetheless, most linguists now

accept that pauses play a crucial role in speech comprehension. This belief is backed

up by studies which show that inserting inappropriate pauses, or even just swapping

around the position of pauses within a speech string, significantly impede speech

comprehension.

Reich (1980) found that moving a short pause to an inappropriate place in a spoken

sentence added several seconds to the average time taken by people to understand and

respond. With this in mind, it raises the question of how FreeTTS would respond to

various characters such as commas, question marks, etc, and how would this have an

effect on the blind users of the system. This needs to be considered which pressed me

into aiming to undertake primary research in the area with this specific synthesizer

and thus consulting the developers behind it.

Ciaran Reidy Page 18 9/29/2008

1.6 PESTLE Analysis

Political: In The Disability Act (2005) it was put forth that any service offered by a

public body must be accessible to persons with disabilities and the National Disability

Authority created a code of practice that was published in 2006. In America Section

508 standards were created which involves not only web content being accessible to

all but any ICT product, including documentation.

Economic: Implementing a piece of software which is accessible to all will make the

content available to a wider audience which is of benefit to any organization; be it

public or private. Basing it on open source software means it will be made available

at low cost as there are no licensing fees from vendors.

Social: An accessible application will have the social benefit of having a wider scope

and it will now be extended to include disabled people. Millions more people will be

able to join the instant messaging and chat community. The use of open source

software will allow a large number of developers to rapidly develop new features and

fine tune an evolving application; thus making it a broader developer experience too.

Technical: There are a number of real time communication tools available with all of

these vendors shifting the productivity line outwards, essentially just raising the bar

for all involved. With open source speech technology we can improve customized

speech applications and any security vulnerabilities will be disseminated to the public

where security researchers can work with developers on patching the software.

Legal: It is within the rights of an individual to sue for data not being made available

to them. Take for example the case of ‘Bruce Lindsay Maguire v Sydney Organizing

Committee for the Olympic Games’; it was found that the respondent was guilty of

discrimination against the complainant who was blind, as their website was not fully

accessible and therefore the complainant could not access the information therein

(Human Rights and Equal opportunity Commission, 2000).

Environmental: Accessible sites will make for a better e-environment among

numerous different cultures no matter the ability of the user of the system.

1.7 Thesis Roadmap

As seen from Figure 1.2, this thesis is structured in this way to give the reader a clear

concise overview and see how the chapters are interlinked in this research. In this

research the chapters have been structured so that a mirroring approach is seen in the

dissertation. Chapters 1 and 6 mirror each other structurally since all of the main

issues raised in the Introduction need to be concluded about in the Conclusion.

Ciaran Reidy Page 19 9/29/2008

Similarly the main themes identified in the literature review will be used to test and

evaluate the current research, and results discovered in this implementation will be

compared with results of existing studies from the literature. Finally the main sections

in the Design chapter clearly need to mirror the sections in the Implementation

chapter, as all themes identified in the design should be reflected in some way in the

implementation process.

Figure 1.2 Thesis Outline

Chapter 2 reviews existing research in the area of software accessibility, speech

enabled technologies, open source software, and instant messaging. This chapter

provides a framework for this research study. A solid documentation of previous work

is produced to carry forward into the design stage

Chapter 3 is the system design for this thesis. It includes a complete sequence of UML

diagrams from the requirements analysis, to the domain analysis, to the design

architecture in order to safeguard from potential pitfalls during the development stage.

Chapter 4 outlines all the implementation of this speech enabled chat application in

great detail. The various classes and methods are discussed and how these

components are interlinked to produce a functionally working speech enabled chat

application. Ways of improving this application for the visually impaired are

Ciaran Reidy Page 20 9/29/2008

addressed by adding additionally functionality to the application through an iterative

development process.

Chapter 5 tests and evaluates the software that was implemented in chapter 4 in order

to gain feedback from the users of the system. The Data Analysis discusses the results

from the testing, questionnaires, and interviews.

Chapter 6 includes what conclusions can be drawn from this thesis and comments on

any future work that can be done in area of research of open source speech enabled

chat applications.

Ciaran Reidy Page 21 9/29/2008

2. Literature Review

2.1 Introduction

In this chapter relevant research literature relating to this thesis is gathered and

reviewed. Such literature includes accessibility constraints in the Information

Technology (IT) arena, Instant Messaging (IM) technology, and Open Source

Software (OSS).

The affects accessibility constraints in IT have on the visually impaired is reviewed

and if legislation and guidelines has any affect on this. Also reviewed in this chapter

are the current Instant Messaging (IM) tools on the market today and if such tools

were designed of a universal standard. The idea of Open Source Software (OSS) is

introduced, the history of the OSS movement, the methodology used in OSS, and the

quality and performance of Open Source Software.

Reviewing such literature will pave an easier route for this thesis, which looks at ways

of integrating network communication mediums with Open Source Speech Synthesis

technology to allow the visually impaired use Instant Messaging real time

communication mediums.

2.2 Accessibility in the Social Context

In order to achieve effective participation in today’s economy it is essential to have

computer literacy in all walks of life. With better broad-band connection speeds,

enhancements in computing technology and better education systems, more and more

people are using computers and are connecting to the Internet. In parallel with this

trend is the evolution in the accessibility and affordability of both general use and

assistive computer technologies for the disabled. As long as both of these trends are

kept working in parallel, then it will always be possible to grant the disabled access to

the same opportunities, skills, resources, entertainment, etc.

Software accessibility has improved significantly over the past couple of decades.

Consider the changes that have occurred from when Microsoft were first developing

the initial MS-DOS operating systems, to today’s Microsoft Vista. Computers are

becoming more graphically-orientated as opposed to being text-based. Many graphics

and images are not properly supported by descriptive text, therefore software of this

kind is only useful to people who can point, click, and view. It has been identified that

98% of all websites have some access barrier to people of a disabled nature

(McGrane, 2000). Participating in the cyber society of modern age has prevented or

proved difficult for roughly 10 million blind or visually impaired users in the United

States alone (AFB - American Foundation for the blind).

Ciaran Reidy Page 22 9/29/2008

2.2.1 Implications of Inaccessible Technology

Through advancements in IT and networking, coupled with cheaper and more easily

available technology, computers are becoming increasingly common in the home.

This is a significant step in helping people, disabled or not, in gaining access to

education, shopping, socialising etc. Accessible software can provide these

avocational interests through online learning, online shopping, and socialising with

friends through instant messaging software. With this in mind, it could be viewed that

computing technology should be mainly designed, or geared towards the disabled

portion of the population. This is reflected when Steven R. Reininger said in the

Access Now V. Southwest case when he was quoted as saying:

“The Internet has become a huge shopping mall and is very important to

blind people who sometimes have trouble getting around. It is critical that

there be access”

Unfortunately however, a recent report that is a matter of grave concern (A nation

online REFERENCE) demonstrated that people with disabilities are in fact less likely

to use computers than the able-bodied. The statistics generated showed that those with

disabilities were less likely to have a computer in the home than those without a

disability, and those who did have a computer in the home were less likely to use it

than those who were not disabled.

There were a couple of reasons for this which has a cascading effect on computer

usage by the disabled. Firstly, it is found that people with a disability have less years

of education. The report also found that the average percentage of Americans who do

not have a diploma is 14% whereas the average percentage of disabled Americans

who do not have a diploma is 22%. A similar pattern was found regarding

undergraduate degrees and Masters Degrees. As a consequence, the disabled are not

in a learning environment where they are exposed to a range of computing

technology.

The above statistics inevitably have a negative ripple effect with regard to the

percentage of disabled people who possess a computer. With less education, there will

be less job opportunities and thus less income to be able to afford a computer. The

report also looked at employment figures, which showed that the disabled were less

likely to be employed. Of those who were employed, the report showed that about

29% of disabled people were on an income of less than €20k, while of the non-

disabled this figure was only 12%. Cost is an important factor when one considers

internet usage and the average person (Russell, and Stafford, 2002). Assistive

Ciaran Reidy Page 23 9/29/2008

technology is not always readily available. This is due to inadequate funding for

adaptive computer technologies (Fichten et al., 2001).

Such technologies which are designed with the disabled in mind are more specific and

are tailored to an individual’s needs. As a result they tend to have a smaller market

and therefore are more expensive. On an economic level, this paves the way for the

current research and implementation being accepted into the market as it is entirely

open source, meaning it will alleviate the costs typically involved in many closed

source applications. Open source technologies will be discussed in more detail in

Section 2.4.

An even more disturbing survey (Knight et al., 2002) found that 54% of disabled

people felt that internet access is essential to their daily life compared to only 6% of

people with no disability. This is because the internet and software allows the disabled

to more easily interact with the outside world when at times can be physically

impossible. Having said that, the unfortunate reality is, people with disabilities have a

more negative opinion on technology (Pew, 2003) than able-bodied people.

In the British Government Online Annual Report (2002) it acknowledges that there is

a digital divide with regard to the disadvantaged communities – namely the poor,

elderly and disabled. On many fronts they have delivered positive results, for

example, they were successful in setting up ‘online centers’ around the UK in some of

the less well-off areas, and they were successful in bringing the Internet to thousands

of users, 61% of whom were indeed disadvantaged. However the report also found no

evidence of assistive technology when using the computers.

2.2.2 Legislation & Guidelines

Computer Software, like virtually anything in this world, can be designed to meet the

needs of all people, including those with disabilities. Making software accessible is

the process of making an application readily available to everyone no matter what

their ability – or lack thereof. Regrettably, it is still the sad truth that a large portion

of software is still not accessible to people with disabilities. The introduction of legal

documentation (W3C, 1994-2006) and laws (ADA, DCA 1995) has raised the level of

software and computer accessibility made available to the disabled. Modern legal

systems began to allow the courts to review acts, in a process called judicial review,

as people began to accept that access to information is a civil liberty.

2.2.2.1 Irish Legislation

The Disability Act 2005 is part of a framework of Government legislative measures

which promotes equal inclusion for all and considers the importance of services

available from public bodies. The term “public body” includes Government

Ciaran Reidy Page 24 9/29/2008

Departments, local authorities, and semi-state bodies, as well as most other state

organizations. It includes the ‘provision of information’ even if this information’s

source is a website because a website comes under the remit of a service.

Section 28 (1) communications by a public body to a person with a hearing

or visual impairment must, as far as practicable, be provided in an

accessible format, following a request. Information provided electronically

must, as far as practicable, be compatible with adaptive technology.

This indicates that it is unacceptable for a website to be made inaccessible to one or

any. Failure to comply with section 28 of the Disability Act (2005) would be a breach

of this act on the grounds of discrimination.

The Equal Status Act, 2000-2004 gives protection against discrimination in areas

including provision of goods and services whereby a ‘service’ means a service or

facility of any nature which is available to the public without prejudice. Services are

include access to public places, banking and insurance services, entertainment,

facilities for refreshment and transport. In this day in age, many of these services are

provided electronically to the public via the internet. Section 4 (1) states that

discrimination

includes a refusal or failure by the provider of a service to do all that is

reasonable to accommodate the needs of a person with a disability by providing

special treatment or facilities, if without such special treatment or facilities it

would be impossible or unduly difficult for the person to avail himself or

herself of the service.

The next section of this act continues to state that

failure to provide the special treatment or facilities to which subsection (1)

refers shall not be deemed reasonable unless such provision would give rise to

a cost, other than a nominal cost, to the provider of the service in question

The term ‘nominal cost’ is not clearly defined in this piece of legislation which

appears to be a safeguard for those who are involved in discrimination against the

disabled.

2.2.2.2 U.S. Legislation

In the US, the Americans with Disabilities Act (ADA, 1990) and related legislation

have had a major impact on all aspects of living for people with disabilities. These

statutes declare that ‘effective communication’ and the provision of ‘auxiliary aids

and services’ now apply to the internet and computer environment. In response to an

ADA investigation, a set of guidelines were outlined to ensure access to distance

education for all with disabilities (The High Tech Center Training Unit, 1999).

Ciaran Reidy Page 25 9/29/2008

In 1998, section 508 of the Rehabilitation Act of 1973 was amended by Congress in

the US with the hope of eliminating barriers in gaining e-information through IT and

to encourage the development of user disability friendly technologies so that the

disabled could perform their daily activities like anybody else. Section 508 ‘will open

many more doors to information for people with disabilities.’ (NDA Accessibilty,

1998)

The ADA was signed into law in 1990 when the internet was in its infancy and

therefore there was no mention of the Internet in this act. Unfortunately the section

508 amendment was subsequent to this, making it subject to judicial review, as to

whether or not the Act should apply to the Internet. There are 5 Titles governing the

ADA. The most appropriate with regard to accessibility and the internet is Title III.

Title III of the ADA says:

“No individual shall be discriminated against on the basis of disability in

the full and equal enjoyment of the goods, services, facilities, privileges,

advantages, or accommodations of any place of public accommodation

by any person who owns, leases (or leases to), or operates a place of

public accommodation.”

What is under judicial review now is whether this act can be extended to cover

cyberspace or not. Can the internet be classed as a ‘place of public accommodation’

even though the internet is never once mentioned in the legislation?

In cases which reached the courts the plaintiffs argued that the act is so broad it must

cover the Internet, however the defendants believe that since the internet is not made

of ‘brick and stones’ the Internet cannot be classed as a public accommodation.

2.2.2.3 Accessibility Guidelines

The Web Accessibility Initiative (WAI) is a set of guidelines that were introduced

with the hope of promoting the idea of accessibility for all. These guidelines are

divided into

• Web Content Accessibility

• Authoring Tool Accessibility

• User Agent Accessibility

The Web Content Accessibility Guidelines (WCAG) was developed in 1999 by the

WAI and is today the standard guideline used for accessibility. WCAG has 14

guidelines for achieving accessibility, each of which has one or more checkpoint.

These checkpoints explain how the guideline applies in typical content development

scenarios.

Ciaran Reidy Page 26 9/29/2008

The Authoring Tool Accessibility Guidelines was developed to aid developers in

creating authoring tools that produce web sites that are of an accessible nature and to

assist developers in producing an equally accessible user interface.

Authoring tools aim to help developers create accessible Web content through

prompts, alerts, repair functions, and help files (Authoring Tool Accessibility

Guidelines 1.0).

The User Agent Accessibility Guidelines help to lower access barriers to Web content

for the disabled. User agents include HTML browsers and any other form of software

that retrieves data from a remote web server and displays this information to the end

user (User Agent Accessibility Guidelines 1.0). A user agent that conforms to these

guidelines promotes accessibility through its own interface and through ways of

communicating with other speech enabled technologies.

Having a clear and consistent set of guidelines in place not only benefits people with

cognitive disability or blindness but benefits all users.

2.2.2.4 Case Law

PGA Tour vs. Casey Martin case (1998)

In The PGA Tour vs. Casey Martin case (1998), the plaintiff Martin sued the PGA

Tour for the right to use a golf cart during competition under the ADA. Since a golf

course was viewed under this act as a physical public accommodation Martin won the

case. This case was easily resolved by the courts as a golf course was easily identified

as a public accommodation. The debate begins when one argues over internet

accessibility, whether cyberspace is treated as nothing more than bunch of electrons

making up a virtual place or whether it is a public accommodation providing

‘services’ and ‘privileges’ where nobody should be discriminated against.

Doe v. Mutual of Omaha Ins. Co.

In some circumstances the limiting of a public accommodation to physical structures

would almost make the existence of Title III of the ADA and section 508 useless. This

was not the case in Doe v. Mutual of Omaha Ins. Co where the court ruled that a

website could be regarded as a ‘public accommodation’. John Doe purchased health

insurance policies from Mutual of Omaha Insurance Company (Defendant). Doe

claimed that Mutual sold insurance policies that contained two different terms and

conditions. One insurance policy was for persons with AIDS and the other one was

for everybody else. On the basis of disability, people with AIDS are being denied the

opportunity to receive potential insurance benefits that other insured persons can get.

The statute defines "public accommodation" to include an "insurance office" whose

Ciaran Reidy Page 27 9/29/2008

operations affect commerce. Since Mutual is engaged in the business of "offering and

selling its insurance directly to members of the public at various office locations" in

this country, it is a "public accommodation" covered by Title III (Doe v. Mutual of

Omaha Insurance Company, 1999).

The debate of whether a ‘public accommodation’ can be extended to cover the

internet becomes even more intense when once considers the issue of public

governmental websites and private websites. There have been a number of cases

(Martin v. Metro Atlanta Rapid Transit Authority, 2001) where the plaintiffs have

sued governmental websites, even though the internet is not mentioned in the ADA,

the website is viewed as a public accommodation.

Access Now v. Southwest Airlines (2002)

One such case, Access Now v. Southwest Airlines (2002) addresses the issue of

whether the ADA can be applied to private websites or not. The plaintiff alleged that

Southwest Airlines website was completely inaccessible to the visually impaired. The

defendant however argued that their website did not constitute a place of

accommodation and so Title III of the ADA act did not apply. In its findings, the court

ruled that ‘to fall within the scope of the ADA as presently drafted, a public

accommodation must be a physical, concrete structure. To expand the ADA to cover

"virtual" spaces would be to create new rights without well-defined standards.’

(Access Now v. Southwest Airlines, 2002)

As with Title III of the ADA, section 580 also ‘requires access to electronic and

information technology provided by the Federal government’, however it ‘does not

apply to web pages of private industry’ (The Rehabilitation Act Amendments, Section

508).

2.2.3 Assistive Technologies

Assistive technologies are products used by people with disabilities to help

accomplish tasks that they cannot accomplish on their own or could not perform

easily. This section will identify some of the assistive technologies used by disabled

people which are currently on the market.

2.2.3.1 Screen Readers

A screen reader is a software application used to synthesis web content or information

on the computer for the visually-impaired user to understand. The most commonly

Ciaran Reidy Page 28 9/29/2008

used screen reader is JAWS (Job Access with Speech). There are a wide range of

other screen readers including Windows Eyes, SuperNova, Hal, and Outspoken.

SuperNova is the only access product to combine magnification and screen reading in

one easy to use product. The screen readers available for the Linux operating system

include Gnopernicus and Speakup.

Figure 2.1 JAWS Basic Dialogue Box

2.2.3.2 Screen Magnifiers

A screen magnifier is a software application for the visually impaired to magnify a

portion of the screen to enable easier viewing of the content displayed. One of the

most popular screen magnifiers is ZoomText, which ‘builds its unique view by

enlarging the contents of a subsection of the display’ (Brunet, 2005).

Figure 2.2 ZoomText

From the control toolbar you can set ZoomText to suit your preferences, such as the

screen area to be magnified, and the magnification factor to enlarge the selected area

to.

2.3 Instant Messaging & Chat Applications

From sending an instant message to a friend, to e-mailing co-workers, to placing

phone calls, to conducting video conferences, the Internet offers a number of ways to

Ciaran Reidy Page 29 9/29/2008

communicate. Instant Messaging (IM) is one of the fast growing methods of

communicating over the web today. IM can be thought of as a two-way real time

communication between two or more participants via text messaging in a chat room

environment. The key part here is real time, which is exactly what distinguishes it

from the traditional form of communicating via email. Chat systems, instant

messaging and texting systems are synchronous, which means that correspondents

must be co-present online. Typically, conversations are rapid and each individual

comment is short (Preece et al., 2003). Most IM servers allow the client to declare

themselves to be in one of four states: online, busy, away, or offline (Resig et al.,

2004).

2.3.1 History of Instant Messaging

Instant Messaging applications are around since the beginning of the Internet, where

basic command prompts were used to chat via text. The UNIX talk command was

popular in the 1980s and early 1990s. Internet Relay Chat (IRC) was developed in

1988 by Jarkko Okarinen (Preece, et al., 2003). IRC is a console based form of real-

time Internet chat or synchronous conferencing.

The GUI based IM clients as we know today weren’t introduced to the chat

community until around the mid 90s. ICQ (1996) being the first, followed by AOL

Instant Messenger (AOL Instant Messenger, 1997). Meanwhile, other companies

developed their own applications (MSN, Yahoo), each with its own proprietary

protocol and client; users therefore had to run multiple client applications if they

wished to use more than one of these networks.

Even though the technology that supports online communities has changed

tremendously over the years, the biggest change lies not in technology but in who is

using it (Preece, et al., 2003). Therefore, we need to focus on the end user, however in

certain circumstances; we need to address the technology being used first in order to

focus on a particular set of end users.

2.3.2 Instant Messaging Usability

Instant messaging is a popular and relatively new form of social interaction. It has

gained acceptance by people from all generations. It is a major hit among the younger

generation where (Oblinger, 2004) seventy percent use instant messaging to keep in

touch and forty one percent indicated they use email and IM to contact teachers or

schoolmates about class work, indicating that IM is also used as a means of education

too.

Instant messaging and real-time communication among personnel is growing in

importance and it is no longer seen as just a way of communicating across networks

Ciaran Reidy Page 30 9/29/2008

and the broader internet for personal means. They also enable real-time

communications between workers, and allow individuals to know instantly if

coworkers are available for different business needs. Tang et al. (2002) discuss that

real time communication is ‘quickly gaining acceptance within the corporate

environment’ too, so employers also seem eager at encouraging its use in daily work

practices. Farmer (YEAR) noted that IBM reported that its 300,000 employees send

over 3 million instant messages a day thus speeding up the decision making process

from days or week to minutes. IBM provides help desk support to 1000 of its largest

customers via instant messaging. Furthermore IBM reported that it has reduced

telephone use by 4%, reducing the load on mail servers, increased responsiveness and

collaboration, and improved employee productivity and teamwork.

There are numerous instant messenger technologies on today’s market which bring

millions of people together from all around the world. Communication via Instant

Messenger over the Web has quickly become one of the Internet’s “killer

applications”. This is confirmed by the popularity of AOL’s Instant Messenger

(AIM), MSN Messenger, Yahoo Chat, and ICQ among the most popular.

2.3.3 Instant Messaging Accessibility

IM allows people to discuss real experiences in virtual spaces, where often physical

accessibility barriers may prevent certain real life community situations occurring for

the disabled, due to ramps, obstacles etc. The sheer existence of computer technology

prevents people from having to move around, but unfortunately the IMs on the market

today also possess an accessibility barrier and therefore a segment of the population

cannot use this method of communication.

There are numerous new instant messaging tools (KDE & MSN) which are being

developed which are more advanced with special added on features such as

incorporating numerous other existing messaging tools into a single application

(Trillian). These newly developed technologies include better customized user

friendly interfaces. What is more urgently required is a communications medium

designed to allow the visually-impaired users make use of such technology, where

other main-stream applications lack the functionality they require.

AOL has developed an instant messenger tool aimed in aiding the deaf communicate

effectively across the internet (AOL). However its software fell short in many

respects when it came to creating and designing universal software usable by people

from all walks of life.

On Nov 4th 1999, the national federation for the blind (NFB) sued the internet service

provider AOL for failing to make its services available to the disabled. (Blanck &

Sandler) have said that the NFB alleged that AOL’s Internet browser and services

were inaccessible to the blind and did not comply with the accessibility requirements

Ciaran Reidy Page 31 9/29/2008

of Title III of the Americans with Disabilities Act (ADA). The software did not

operate with the disabled in mind. On the contrary, their software had unlabeled

graphics, mouse only activated commands, and not all functions were accessible from

the keyboard. In fact it was almost impossible for a blind user to sign up for AOL

because of the text used in registering is unlabeled graphics. The plaintiffs argued that

its services such as signing up, welcome screens, and chat rooms were completely

inaccessible because screen readers could not read text hidden within graphic

displays. Such services like these, which fell short of being accepted as universal

design, encouraged this particular dissertation. This particular case was settled out of

court with AOL promising to make future versions of its software more accessible to

the visually impaired.

As discussed in section 2.2.3, it is only in more recent years through legislation that

software is becoming more usability friendly for the disabled. Bigham et al., (YEAR)

noted that AOL was the second most accessible instant messenger after MSN

Messenger. AOL being the same IM service provider who were sued by NFB in 1999.

This is a clear example of how legislation and guidelines has helped make software

more accessible for the disabled. Improvements have been made but there can still be

a lot more done.

With the visually impaired in mind, and the regulations outlined in the Disability

Discrimination Act 1995 (Disability Discrimination Act), it is clear that there is an

urgent need for a real time communications tool with speech synthesis & voice

recognition tools enabled. This is backed up in key findings found in the studies

conducted by Fichten, et al. (2001), where a need for assistive technology for people

who suffered with a number of disabilities was identified. Additionally the

‘importance of ensuring that different types of adaptive equipment worked together’

was highlighted; in particular the ‘compatibility between dictation software and voice

technologies that read what is on screen should be taken into consideration’ was

singled out.

2.4 Open Source Software

2.4.1 Introduction

Software can be considered an ordered sequence of instructions for changing the state

of the computer hardware in a particular sequence. Once these lines of human-

readable source code are compiled, the result will be a machine-readable executable

program which can then only be of use to a computer. Open Source Software (OSS) is

a type of software where these ‘sequence of instructions’ or source code is ‘open’,

meaning that it is available for the user of the software to modify at will, producing a

more fine tuned and updated version of the original software.

Ciaran Reidy Page 32 9/29/2008

The Open Source software market is gaining significant attention. There are hundreds

of thousands of various types of OSS projects that exist such as web servers (Apace),

Operating Systems (Linux), scripting languages (PHP, Perl), programming languages

(Java), and Mail transfers agents such as Sendmail (Madey et al., 2002).

2.4.2 History of OSS

The Open source software phenomenon has come a long way since its inception and it

is one of the most influential aspects of information technology. It has produced some

of the most stable and widely used software packages ever produced (Bretthauer,

2001). Since the early 90s it hasn’t been a specific piece of software which caught the

IT world’s attention but more the way software has been developed and distributed.

Needless to say it was the introduction of the OSS movement.

In the 1960s and 1970s mainframe computers stationed mainly in universities were

used mainly as sources of research where source code was distributed freely (Weber,

2000). As computer technology spread, the level of incompatible and non-portable

software across multiple platforms increased which led to the development of the

Unix operating system and the C programming language in 1969 (Nuvolari, 2003).

Furthermore in 1979 UNIX machines began connecting to a network which further

encouraged the sharing of computer programs.

Following this in the 1980s the talented developers who once served the open source

community in research labs moved to privately owned software company where they

were now prohibited from disclosing the source code of the applications they

developed (Weber, 2000). In retaliation to this copyright movement, Richard

Stallman, an evangelist of the open source movement, created the open source GNU

operating system in 1983 (GNU Operating System) and two years later founded the

Free Software Foundation (FSF) which is a non-profit corporation set up to support

the free software movement (Hars and Ou, 2001). The license schema used in the FSF

was the General Public License (GPL) also referred to as ‘Copyleft’. ‘Copyleft’

outlines that all users are not restricted from using, modifying, and distributing

software (Kuan, 2002). In one of Stallman’s motivational papers, leading up to the

creation of the Free Software Foundation, when debating whether to join the

proprietary software world:

“I could have made money this way, and perhaps amused myself writing

code. But I knew that at the end of my career, I would look back on years of

building walls to divide people, and feel I had spent my life making the

world a worse place.” (Stallman, 1985)

Richard Stallman was one of the most vocal enthusiasts promoting the OSS

movement who believed that software and its source code should flow as freely

through networked communities of developers as ‘data flows in bits through a

microprocessor’ (Weber, 2000).

Ciaran Reidy Page 33 9/29/2008

In 1987 the Perl scripting language was designed by Larry Wall, where it was

originally used for text manipulation until the growth of the Internet where it was later

used as a programming language for HTML form processing (Scotts, 2002). The

GNU operating system founded by Stallman, lacked a Kernel which later came from

Linus Benedict Torvalds in 1991 (West and Dedrick, 2001), a second year student at

the University of Helsinki. Torvalds disclosed a short note on an Internet newsgroup

which marked the birth of the Linux Operating system.

“I'm doing a (free) operating system (just a hobby, won't be big and

professional like gnu) for 386(486) AT clones. This has been brewing since

april, and is starting to get ready. I'd like any feedback on things people

like/dislike in minix...I've currently ported bash(1.08) and gcc(1.40), and

things seem to work. Any suggestions are welcome, but I won't promise to

implement them :-)” (Dirk and Dusty, 2003)

OSS is a social movement with goals set by a volunteer network of developers

(Healy, 2003) and since these developers can be dispersed across the world, the OSS

movement relies heavily on communication mediums to spread their ideas and

theories (Hann, Roberts, Slaughter, Fielding, 2002).

With this in mind, OSS activity received a burst of energy around the same time the

Internet exploded in the early 90s (Weber, 2000). The fact that the Internet and the

Open Source movement work in parallel coincides with the SourceForge website

claims of having over 600,000 users with a further 700 members joining daily and

over 60,000 projects being worked on by these users with a further 60 new projects

added daily (Elliott & Scacchi, 2003).

The Apache HTTP web server emerged in 1995 and is primarily used to serve both

static and dynamic Web pages on the World Wide Web (Apache YEAR). The open

source database MySQL was introduced a year later in 1996, and subsequently a year

after that again, PHP was born (PHP).

In 1998 the Open Source Mozilla project created its finest product, the web browser

which is being worked on by one of the largest communities within the OSS (Reis and

Fortes, 2002). The Mozilla web browser has been ‘designed for standards compliance,

performance and portability’ (Mozilla). This open source product is also user-friendly

for the visually impaired, as it has the capability of enabling the caret function which

can then indicate to the screen reader the current content of interest (King, Evans, and

Blenkhorn, 2004). Furthermore, in aiding the blind, the Mozilla web browser’s web

authoring tool ‘requires that authors address the need for alternate text for images’

(Thompson, 2005).

In 1998 the term ‘free software’ was changed to ‘open source’ because it is more

ambiguous and more acceptable by the corporate world (Times Daily). Also, Stallman

Ciaran Reidy Page 34 9/29/2008

and other advocates didn’t want people to view the software as just free with regard to

cost, but that it was ‘open’ for all to use, modify and distribute (Elliott).

2.4.3 Closed Source Software

Software which is not open source has been labeled in numerous documents as

‘proprietary’, ‘closed’, or ‘commercial’ software. Software giants like Microsoft

create proprietary software where the source code is never disclosed to the end user.

Releasing the source code along with their applications would reduce their sales if the

user modified the original source code for personal release. Such software companies

treat their software, and the nature of it being closed source, as its secret ingredient

which contributes to the company’s success in the market. Such software can be

viewed as a blueprint of its construction (Edwards, 2001).

2.4.4 Open Source Software Development Methodology

As a project grows, be it of an OSS or proprietary nature, the needs of the company or

individual often changes. These changes subsequently means that the software needs

to adapt to cater for those special purpose needs. Most, if not all software ever

produced, undergoes continual redesign and upgrading, typically in the form of

incremental releases which can either be in short intervals or long intervals

(Jorgensen, 2001).

There are a number of software development models such as the Waterfall model,

Spiral model, Evolutionary prototyping, Extreme Programming, Prototyping and

many more. It is these models which allow software to evolve while at the same time

ensuring that the new software produced remains reliable. Most traditional proprietary

software projects use a variant of the waterfall model, where each release is broken

into phrases which must be signed off on completion (Bednar & Robertson, 2005).

Ciaran Reidy Page 35 9/29/2008

Figure 2.3 Classic waterfall development model typically found in proprietary

systems (New Rowley TechView)

The waterfall model derives its name due to the cascading effect from one phase to

the other as illustrated in figure 2.3. This type of development model is carefully

coordinated in order to ensure that all components and features as outlined in the

functional specification at the requirements stage are incorporated into the final

product.

In contrast the majority of open source documents refer to Raymond’s paper ‘The

Cathedral and the Bazaar’, which outlines two fundamentally different types of

software development. This paper contrasts how proprietary software is built like

‘cathedrals’, ‘carefully crafted by individual wizards’ working in isolation and in a

centralized environment. On the contrary to proprietary software development, he

mentions the Linux software development methodology which he refers to as

‘bazaar’.

“The Linux community seems to resemble a great babbling bazaar of

differing agendas and approaches out … which a coherent and stable

system could seemingly emerge only by a succession of miracles.”

(Raymond, 2000).

The ‘bazaar’ mode of development initiates from a piece of code which evolves in the

direction the developers choose. There is no formal centralized environment, but a

group of uncoordinated programmers who modify the project on their own accord.

Unlike traditional proprietary models there is no system-level design, little or no

design documentation, and no system level testing (McConnell, 1999).

Raymond coined the phrase “release early, release often” to characterize the OSS

development methodology (Raymond, 2000). In this paper the idea of mini-releases

adds value on a motivational level too because the developers and users see the results

of the work much sooner.

2.4.5 Open Source Software Quality & Performance

Since programming began on the ENIAC computer in the 1940s there has been a

large emphasis placed on the reliability of the algorithm or program which the

software produced (ENIAC). The ongoing debate of whether open source systems or

proprietary systems produces better software, better with regard performance,

reliability, and security rages on. This is one debate which no article or study has ever

been able to prove definitively as to which software produced is best.

From a motivational perspective, an Open Source project or application is different

from a proprietary project. It is developed because it is wanted, because it is needed

and not because of monetary reward. There is a desire by one to design an application

Ciaran Reidy Page 36 9/29/2008

from scratch, or tweak an existing application to cater for the needs of the developers

creating it. Since this in itself is a personal motivation for the developer, we would

expect the end product to be better. Eric S. Raymond (1998b) reiterates this belief by

noting that ‘every good work of software starts by scratching a developer’s personal

itch’. Raymond’s theory could be the force behind claims that OSS produces more

bug-free code than closed source software (Madey, Freeh, Tynan, 2002). Open source

software is believed to be more stable and secure since developers can identify bugs

and fix them on their own accord (Comino and Manenti, 2003).

As a result of a greater number of developers working on open source software, more

bugs are exposed and corrected faster. As a result of this trend, that there exists far

more developers working on OSS than proprietary software, open-source enthusiasts

conclude that large numbers of reviewers lead to “efficient” development

(McConnell, 1999).

In the seminal open source book “Open Sources: Voices from the Open Source

Revolution”, Paul Vixie states that open source software is better tested than closed

source software which is due to the fact that users, often developers, are more helpful

to one another when they are permitted to use, modify, and release the source code

(O’Reilly, 1999).

2.4.5.1 Full Disclosure V. Security through Obscurity

Security in software, especially when discussing Open Source software, has two sides

to it. The very topic ‘full disclosure v. security through obscurity’ is almost a debate

within a debate. ‘Full Disclosure’ can be viewed as the term which best describes

open source as the source code is fully disclosed to the public, whereas ‘Security

through Obscurity’ can be viewed as proprietary software. This debate is based

around whether the public should have full access to security holes and vulnerability

information within the software. Those who are against full disclosure believe that

hacker’s are aided by full disclosure in pursuing criminal and unlawful activity such

as installing malicious malware on systems and theft (Ragragio, 2007). On the

contrary, full disclosure would encourage developers to take their coding more serious

as all flaws will be disseminated to the public which in turn would be bad publicity.

Having said this, the availability of source code does not increase the possibility of

finding code defects within software. Miller et al. (1989) found code defects by

submitting unusual data to the system and then analyzing how the program responded.

Any unusual behavior may uncover a possible defect. Furthermore, it can be difficult

to reverse-engineer compiled source code, but not impossible meaning that the

original source code can be gotten anyway from proprietary software (Johnson, 2001).

Ciaran Reidy Page 37 9/29/2008

2.4.5.2 Drawbacks of Open Source Software

Despite the numerous advantages the open source movement has brought to the IT

world over the past couple of decades there have been times when open source

systems have underperformed and found to be insecure. Roughly 20 years ago, the

mail transfer agent, sendmail, was found to be insecure. Robert Tappan Morris

created a Worm whose primary aim, in the author’s own words, was to find out the

size of the internet (REFERENCE OTHER THAN WIKIPEDIA). However instead of

actually gauzing the actual size of the Internet he successfully managed to cripple a

nationwide network and breached the Computer Fraud and Abuse Act (CFAA) by

copying the worm onto each machine it found.

Similarly in 2002 the Slammer worm found vulnerabilities in the OpenSSL program

which resulted in thousands of machines around the world being infected (Perriot and

Szor, 2003). A patch for this bug was deployed within the same day it was found. All

software, be it open source of proprietary, contains code defects and always will. The

critical difference here is the low turnaround times that open source can boast about in

comparison to the proprietary world. In June of 2002 Microsoft was notified of a

critical flaw which was exploited via the clicking of a URL link which in turn caused

files to be deleted on the user’s system. Microsoft chose to play down this

vulnerability until the release of Windows XP Service Pack 1 two months later in

September 2002 (Gibson Research Corp).

2.4.6 Open Source Software Success

It is hard to believe that the open source systems that were once limited to research

groups back in the 60s are now being developed for mass usage. As the open source

community continues to grow, it makes sense to place more emphasis on these

systems being reliable and secure. There have been clear movements which would

indicate the success of the open source movement which I would like to highlight

below.

Large IT corporations such as IBM and Novell have been investing in Open Source

software. For example the Open source Linux operating system was found to be the

most popular on powerful networked systems and it is growing in use on desktop

systems (Shankland, 2004).

Ciaran Reidy Page 38 9/29/2008

Figure 2.4 Market Share for Top Servers across All Domains August 1995 - June

2008 (Netcraft)

From figure 2.4, we can see in 2000 the OSS Apache web server supported about

59% of all web pages which increased to 67% in 2004, while in 1998 the OSS Linux

operating system was the operating system of choice for roughly 17% of users

(Johnson, 2001). Although in more recent years the gap between open source and

closed source web servers dominating the HTTP market has narrowed, we can still

clearly see a significant margin that Apache has over Microsoft. In July 08, Apache

still held almost 50% of the market share while Microsoft was in second with only

35% (Netcraft).

The billionaire software company Microsoft see open source systems as a significant

threat and challenge to their own business model and the consequences this may have

on the sales of their own products (Securities and Exchange Commission, 2004).

In 2000, Linux has developed into a robust and highly stable platform used by

approximately 20 million people, with an annual growth rate of almost 200% (Weber,

2000). To remain competitive as a result of the open source success, some

commercial companies, namely Sun, has switched most of its Solaris operating

systems to an open source license to save costs (Hars and Ou, 2001).

2.5 Conclusions

In this chapter existing literature relating to this thesis was gathered and reviewed.

Such literature included accessibility constraints in the Information Technology (IT)

arena, Instant Messaging (IM) technology, and Open Source Software (OSS).

Ciaran Reidy Page 39 9/29/2008

Accessibility from an IM perspective was also reviewed and how current IM software

and vendors have fallen short of providing software of a universal nature. Ways to

rectify this situation can now be envisaged after researching Open Source Software

(OSS) and how OSS can be used to allow Instant Messaging tools be available for the

visually impaired and the blind. Based on the literature reviewed in this chapter, in the

next chapter we will see how to design such a system (NetSpeak) based on existing

research and previous experiments.

Ciaran Reidy Page 40 9/29/2008

3. Design of NetSpeak

3.1 Introduction

Having done most research in the area of computer networking, instant messaging,

software accessibility, and open source the design of a speech enabled chat

application can now begin. The design stage is the prelude to the implementation

stage which will be discussed in chapter 4.

If we are trying to design a computerized system it stands to reason that we need first

to understand the business context within which the system will reside. The system

will first be described using an analysis model with use cases and some domain

analysis. The design model will aim to describe a technical solution, and finally it will

be programmed in Java to create an application that will be ready to be deployed. This

thesis will show how the usage of various UML diagrams created from analysis of

requirements via a design model can be developed into the actual code and running

application.

It is important to remember that the main purpose of performing systems analysis and

design before constructing the system itself is to safeguard against delivering the

wrong system to the users. This is particularly important for this project as it’s

designed with the visually-impaired in mind. As a result it will be even more crucial

to ensure that all functionality as outlined in the design stage will be completed in the

implementation stage. Use Case modeling is the technique UML recommends as a

start-off technique in my quest for delivering the right system to the users.

In the first section a structured requirement analysis technique that will help ensure

that the final system will fit within the mission and objectives of the organization with

be introduced. This technique is called Use Case Modeling. This technique is UML’s

approach.

The UML approach will be used to find out what is going on in the environment of

the system. Considerations of who is involved in each activity, when the activity is

performed and why, are recorded and catered for, but the method assumes that there is

no major conflict within the user community. The techniques that are introduced after

Use Case modeling deal in depth with how the system works.

3.2 Requirements

The vast majority of software is developed for human beings to use. It is therefore

essential to work with users when developing requirements.

Use-cases can be used to capture the requirements of the user. Through use-case

modeling, the external actors that have interest in the system are modeled along with

Ciaran Reidy Page 41 9/29/2008

the functionality they require from the system (the use cases). The actors and use

cases are described in a UML use-case diagram. Each use-case is described in text,

and that specifies the requirements of the user.

The following is an example of a specification written by a typical user of the system.

The typical user of the system would be a visually impaired user where the speech

chat application system would be tailored for the needs of this typical user.

• It is a chat application with speech functional tools for visually impaired users.

• The chat application allows visually impaired users to communicate.

• The chat application dictates conversations to the users and accepts voice

commands as the primary input.

• The system administrator is the author of the system.

• The application allows users to chat to one or many different users in a user

friendly environment.

• The user can navigate the system with ease through the use of instant

synthesized feedback.

• The user can control the controls of the system using sticky keys.

• The application will only allowed authorized users to use the system.

• The user can login to the system and logout of the system at any time.

• The chat application can run on all popular technical environments (Unix,

Windows etc.) and has a modern graphical user interface (GUI).

• On sign in to the system, the requesting user receives an acceptance or

rejection notice immediately.

• A user must be accepted by the system before it may send chat messages.

3.3 Analysis

The analysis is intended to capture and describe all the requirements of the system,

and to make a model that defines the key domain classes in the system (what entities

in the system, which will hold valuable information). The purpose at this stage is to

provide an understanding and to enable a communication about the system between

Ciaran Reidy Page 42 9/29/2008

the developers and the users, therefore the analysis is typically conducted in

cooperation with the end user.

At this early phase of the design, technical solutions or details will not restrict the

analysis and will not be considered in terms of code or implementation. It is really just

the first step towards really trying to understand the system requirements.

3.3.1 Unified Modeling Language

The Unified Modeling Language is a universal standard for designing and

documenting a system in an object-oriented manner. The diagrams produced in the

design phase can easily be mapped to classes in the development stage. There are

numerous diagrams which make up the suite of diagrams in the UML model. A set of

stereotypes are defined using UML that help in the construction of intuitive analysis

and design models in the development of Web applications (Koch, 2000). UML is

used to express object-oriented analysis and design which is completely independent

of the language used to implement the system. This is specifically important in the

design stages of creating any system because at such an early stage it is often the case

that the language has not been decided upon. Similarly the way architects use their

drawings as blueprints for their constructions; business analysts use the notion of

UML to write system blueprints outlining the functionality of their software system.

3.3.2 Requirements Analysis

One of the fist stages of the analysis phase is to define the use cases, which describes

what the system provides in terms of functionality – i.e. the functional requirements

of the system. Essentially it involves reading and analyzing the specifications, as well

as discussing the system with potential users of the system. The model is eventually

built through an iterative process during which discussions between the system

developer (the author) and the customers lead to a requirement specification on which

all can agree. It’s extremely critical at this stage of the development process to

continually communicate with the users as it will be them who will be using the

system.

3.3.3 Use Case Modeling

A use case model consists of a set of use cases, and an optional description or diagram

indicating how they are related. A use case diagram consists of actors, depicted by

stickmen, and use cases, depicted by bubbles. The actors or users require some

functionality from the system and the use cases describe some functionality of the

Ciaran Reidy Page 43 9/29/2008

system. Arrows represent relationships between the actors and use cases and also

between different use cases.

The functionality is represented by a number of use cases, and each use case specifies

a complete functionality. A use case must always deliver some value to an actor, the

value being whatever the actor wants from the system.

3.3.3.1 Initial Use Cases

The actors in the speech activated chat application are identified as authenticated user,

system administrator, chat room, and anonymous user.

The main use cases in the chat application system are:

Authenticated User Chat Room

• Log on

• View user list

• Enter message

• Submit message

• View conversation

• Chat with users(s)

• Logout

• Message Storage

• Query Database

• Message Delivery

Anonymous User

• Try again

• Exit system

System Administrator

• Add user

• Remove user

• Edit user

Not included on the list is Maintenance and Control, which are more general use case that

uses other use cases. It can be argued whether it is really a use case of its own, but I have

decided it is to clearly separate the specific control tasks from the key functions of the

system. The ‘Maintenance’ and ‘Control settings’ Use Cases will be introduced after the main

use cases are discussed.

The authenticated user use case analysis for the system is shown below in a Use Case

diagram. This Use Case describes the main areas of functionality in the chat system. The user

of the chat system logs on to the system where they can then access messages typed by other

members of the chat room as they appear on the screen. They then have the option to log out

or to enter a message and post it to the room. This can be done many times before logging out

of the room.

Ciaran Reidy Page 44 9/29/2008

One Use Case may extend the behavior of another – typically when exceptional

circumstances are encountered. For example, if a user signs into the system successfully, the

user can automatically gain access to the user list and main chat area. The terms ‘access user

list’ and ‘access conversation’ are used instead of ‘view user list’ and ‘view conversation’

because there will be some users who are unable to view these areas of the application, but all

users will be able to access them through alternative methods of communication.

Figure 3.1 Authenticated User Use Case Diagram [source: author using Visual

Paradigm]

A Use Case may ‘use’ another Use Cases’ functionality or ‘extend’ another Use Case with its

own behavior. A Use Case may be included by one or more Use Cases, so it helps to reduce

duplication of functionality by factoring out common behavior into Use Cases that are re-

used many times. A good example of this can be seen in figure 3.1 where the logon Use Case

automatically inherits the functionality of accessing the user list and conversations in the

main chat arena. However we must be careful when it comes to use cases which ‘uses’ or

‘extends’ another use case, because some use cases can be abused in this manner. As Fowler

(1998) points out in his article called ‘Abuse Cases’, the breaking down of use cases down to

‘some kind of elemental use case’ leads to functional decomposition which he describes as

‘the antithesis of object-oriented development’. This can be reflected directly into the code as

‘rich controller objects manipulate dumb data objects, which are little more than an

encapsulated data structure’.

By design, this automatic step into the main chat arena would be best for the end user

considering the strong possibility of the end user being blind. It is best to keep the logging in

process, and the system as a whole as completely user friendly as possible.

The other user of the system, the anonymous user, although is functionally limited in using

the system, must still be mentioned from the design stage so that when implementation

begins the type of coding scenarios to cater for will be known. As Timothy C. Lethbridge

points out in Object-Oriented Software Engineering, a ‘scenario is an instance of a use case

Ciaran Reidy Page 45 9/29/2008

that expresses a specific occurrence of the use case with a specific actor operating at a

specific time and using specific data’ (Lethbridge, 2001).

Figure 3.2 Anonymous User Use Case Diagram [source: author using Visual Paradigm]

Each Use Case is also documented with text, describing the use case and its interaction with

the actor in more detail. For example, the use case ‘log on’ would be described as follows:

1. If the user has not yet logged into the system

• User launches application

• User’s login credentials are entered

• Boolean result returned on success / failure

• The user is identified

• User accesses main area of system

2. If the user has already logged into the system.

• The user is identified

• The available options are available to the user

• The system responds to the users input

• Once logged in, the user can choose to logout

• Once logged out, the user is back to scenario one of this use case

The Use Cases are implemented throughout the development of the system to provide

descriptions of the functional requirements of the system. They are also used in the analysis

to check whether the appropriate domain classes have been identified. Below is another

example of an actor (system administrator) which is involved with a number of different use

cases.

Ciaran Reidy Page 46 9/29/2008

Figure 3.3 System Administrator Use Case Diagram [source: author using Visual

Paradigm]

In figure 3.4 below the second general use case as already mentioned above is used. This is

another use case which was needed to be described in a separate context. It was decided to

keep this Use Case separate from the other use cases to avoid confusion between control

settings and the main functions of the system as already outlined above. With the visually

impaired in mind, the control settings could well determine how easily navigable the system

will be and determine how user friendly the system actually is. The user will be able to

control these settings in a user friendly manner.

Figure 3.4 Authenticated User Use Case Diagram [source: author using Visual

Paradigm]

3.4 Domain Analysis

An analysis also tried to identify the objects in the system. Looking at the use cases usually

identifies the objects and deciding which concepts should be handled by the system.

Essentially an object is an item we can talk about and manipulate. An object exists in the real

world.

Ciaran Reidy Page 47 9/29/2008

3.4.1 Class Diagrams

A class is a description of an object type and their main intention is to describe the data found

in a software system. All objects are instances or examples of classes. For example ‘user’

would be considered a class and the actual user ‘Joe Bloggs’ would be an actual object of that

class. The main symbols shown on class diagrams are:

• Classes, which represent the types of data themselves

• Associations, which represent linkages between classes

• Attributes, which are simple data found in classes and their instances

• Generalizations, which group classes into inheritance hierarchies

A class is represented as a box with the name of the class inside. When we draw a class in a

class diagram, we are saying that the system will contain a class by that name, and that when

the system runs, instances of that class will be created. Optionally, the class diagram can be

divided into three sections depending on how much detail you want your class diagrams to

capture. The top section will include just the business object or class name, the second part

includes the attributes and their types (optional), and the lower part will include operations or

methods which are used to change the values of the attributes and thus the state of the object.

An association, depicted as a line, is used to show how two classes are related to each other.

There is further multiplicity constraints associated with each association which indicates the

how many instances of classes are linked with other classes.

3.4.1.1 Initial Class Diagram

In line with the application needed to be developed, there are obviously two classes anyway

which need to be modeled, i.e. the User and ChatRoom. At this early stage in the design

process we explicitly model behavior (connection requests and chat messages) with a high

level of abstraction. Later, this model of the user will be replaced by more specific

interactions by users with the ChatRoom. At this stage in the design process, it is more of a

guideline until more feedback from the users has been obtained.

Figure 3.5 Initial Class Diagram [source: author using Visual Paradigm]

The initial class diagram is relatively simple. There is a class User and a class ChatRoom.

Each user can be associated with only one ChatRoom, whereas a ChatRoom can have one or

many instances of a User associated with it. As the design evolves more classes and

Ciaran Reidy Page 48 9/29/2008

associations linking these classes will be modeled. The classes will be more detailed

including more attributes and operations.

3.4.1.2 Detailed Class Diagram

At this stage of the domain analysis a chat Manager or Handler class is added as it will be

needed in the implementation stage. The Handler class acts as a mediator and relays all the

communication between components. The ChatHandler class will alleviate much of the work

from the Chatserver class. The ChatServer will accept incoming connections from the User

which in turn will query the database with the DatabaseHelper class. On success an instance

of the User class will be created. All messages the user sends will first be relayed to the

ChatHandler class which in turn will broadcast the message to all clients connected to the

Server at that time. As shown in figure 3.6 the User class will have an aggregation

relationship with both LoginScreen class and the MainScreen class. In other words the User

class is ‘composed of’ the parts LoginScreen and MainScreen. This is depicted on class

diagrams as an empty diamond nearest the class which controls them.

Figure 3.6 Detailed Class Diagram [source: author using Visual Paradigm]

3.4.2 State Diagrams

State diagrams are used to capture the life cycles of objects, subsystems, and systems. They

identify all the possible states an object can be in at any given time and how different events

such as received messages, time elapsed, errors, and conditions become true affect those

different states over time. A state diagram should be attached to all cases that have clearly

identifiable states and complex behavior, the diagram states the behavior and how it differs

depending on the current behavior and how it differs depending on the current state. It will

also illustrate which events will change the state of the objects of the class.

States and transitions

Ciaran Reidy Page 49 9/29/2008

All objects have a state, the state is a result of previous activities performed by the object, and

is typically determined by the values of its attributes and links to other objects. A class can

have a specific attribute that specifies the state, or the state can be determined by the values

of the normal attributes in the object. An object changes state when something happens,

which is called an event, for example a user logging into the system is an event which will

change the state of the object.

3.4.2.1 Initial State Diagram

Some diagrams mix well with state diagrams but not all. For example below a

state diagram will be illustrated for the User class.

Figure 3.7 Initial State Diagram for class User [source: author using Visual Paradigm]

An obvious constraint on the above diagram would be to only allow a change of state from

‘Logged In’ to ‘Logged Out’ if the Online Status for that user has a boolean value of ‘true’.

3.4.2.2 Detailed State Diagram

A more detailed state diagram for the User class can be seen in Figure 3.8.

Ciaran Reidy Page 50 9/29/2008

Figure 3.8 Detailed State Diagram for class User [source: author using Visual

Paradigm]

From above we can see all the possible states that a User can be in. If a user experiences an

exception timeout or a connection error the user will not be able to log in and thus there will

be no state change for the instance of the User class. If the user’s authentication details are

valid, then the user’s state will change to ‘Logged In’ otherwise the state will remain as

‘Logged Out’.

3.4.3 Sequence Diagram

Any of the dynamic (sequence, collaboration, or activity) UML diagrams can be used in order

to describe the dynamic behavior of the domain class. The flow of logic is modeled using

sequence diagrams. Sequence diagrams are used for both analysis and design purposes. The

basis for the sequence diagrams are the use cases, where each use case has been described

with its impact on the classes, to illustrate how the classes collaborate to perform the use case

inside the system. When modeling the sequence diagrams new operations are usually found

that can be added to the various classes already outlined at this stage. The goals of this

analysis are to achieve a communication between the end user and create an understanding of

the system being built; it is not a detailed design solution.

The sequence diagrams are not as abstract as the class diagrams. At this stage of the analysis

phase we aim to capture more details of the system.

The rectangles across the top of the diagram represent classifiers or their instances i.e.

typically actors, use cases, classes, user interfaces etc. The vertical dashed lines directly

under the classifiers are called lifelines which represent the life span of the classifier during

the use-case being described.

Ciaran Reidy Page 51 9/29/2008

Figure 3.9 Sequence Diagram for Use Case Log In [source: author using Visual

Paradigm]

We have now captured a much greater level of detail about the system being developed.

Figure 3.9 details the full life cycle of a typical successful user log in to the system.

• The user first submits their login credentials to the chat server

• The chat server checks these details on the database

• A result is returned back to the chat server and the user. On Success this result will be

a Boolean of true and a personalized profile

• The user is now presented with the main chat screen

When modeling the sequence diagram, it is important to show a user interface as part of the

system. In the analysis, it is sufficient to be aware that interface windows are needed and to

identify the basic interfaces. Windows that can be identified are for logging in, sending a

message, a window for maintaining users is also necessary. The user interfaces are not

specified at this point it’s to show what they are and how they will be used in the context of

the whole system.

Figure 3.10 Sequence Diagram for Use Case Send Message [source: author using Visual

Paradigm]

Figure 3.10 presents the interaction between the different system components for the send

message use case.

• The user can post a message to the chat lobby

• This message is taken care of by the chat handler, which subsequently broadcasts this

message to all clients who have a connection to the server

• Each clients screen is now updated and all screens are synchronized

Ciaran Reidy Page 52 9/29/2008

3.4.4 Activity Diagrams

An activity diagram shows a sequential flow of activities, as shown in figure 3.11. The

activity diagram is a cousin of a state diagram and has a slightly different purpose, which is to

capture actions. The states in the activity diagram transition to the next stage directly when

the action in the state is performed.

The rectangular boxes with round corners represent the activity performed in the system. The

control flow lines show the order in which the activities are carried out. Synchronization bars,

in an activity diagrams indicate that that all activities prior to the bar must complete before

the flow of the activities continues. Diamonds represents decisions that the system may have

to make e.g. are password valid, yes or no.

Figure 3.11 Activity Diagram for User [source: author using Visual Paradigm]

The above diagram shows the process involved in logging into the system. The user must

enter their log in details, which are verified with the data stored for that user in the database.

If they are invalid an appropriate message is displayed to the user notifying the user of the

next steps to take. If the details are valid then the user is allowed to proceed in entering the

main chat area.

Figure 3.12 Activity Diagram for a System Administrator [source: author using Visual

Paradigm]

Ciaran Reidy Page 53 9/29/2008

In the activity diagram in figure 3.12, the orders of activities are described for the system

administrator for managing the users of the system. On log in the system administrator can

add a new user or edit a current users details. After saving any changes the system

administrator may choose to amend more details or log out.

3.5 Design

The design phase and the resulting UML model expands and details the analysis model by

taking into account all technical implications and restrictions. The purpose of the design is to

specify a working solution that can be easily translated into programming code. The classes

defined in the analysis are detailed, and new classes are added to handle technical areas such

as a database, a user interface, a communication, devices, and more.

The design phase of the systems development life cycle involves using the findings

uncovered during the analyses phase to create a strategy for developing the system. During

the design phase, the outlines and illustrations of how to implement the project goals are

documented.

The design can be divided into two segments:

• Architectural Design: This is the high-level design where the packages are defined,

including the dependencies and primary communication mechanisms between the

packages. Naturally, a clear and simple architecture is the goal, where the

dependencies are few and bi-directional dependencies are avoided if at all possible.

• Detailed Design: This part details the contents in the packages, so that all classes are

described in enough detail to give clear specifications to the programmer who will

code the class. Dynamic models from the UML are used to demonstrate how objects

of the classes behave in specific situations.

3.5.1 Architectural Design

A well defined architecture is the foundation for an extensible and changeable system. The

packages can concern either handling of a specific functional area or a specific technical area.

It is vital to separate logic (the domain classes discussed earlier in this chapter) from the

technical logic so that changes in either of these segments can be done easily with out too

much impact on the other part. Key issues to address when defining the architecture are to

identify and set up rules for dependencies are created between packages, and so identify the

need for standard libraries and to find libraries to use.

The packages, or subsystems, or layers in the system are:

Ciaran Reidy Page 54 9/29/2008

User interface package: Classes for the entire user interface, to enable the user to view the

data from the system and to enter new data. These classes are based on the Java AWT

package and the Java Swing package, which are standard libraries in Java for writing user-

interface applications. This package co-operates with the business objects package, which

contains the classes where the data is actually stored. The UI package calls operations on the

business objects to retrieve and insert data into them.

Business objects package: This includes the domain classes from the analysis model such as

ChatServer, ChatHandler, User, DatabaseHelper classes etc. These classes are detailed in the

design so that their operations are completely defined, and support for persistence is added.

The business object package co-operates with the database package in all that business object

classes must inherit from the persistent class in the database package.

Database package: The database package supplies services to other classes in the business

object package so that they can be stored persistently.

Utility package: The utility package contains services that are used in other packages in the

system. It is used to refer to persistent objects throughout the system and is used in the user-

interface, business objects, and database packages. Below I present a class diagram showing

an architectural overview with the application packages and their dependencies.

Figure 3.13 Architectural Class Diagram [source: author using Visual Paradigm]

3.5.2 Detailed Design

The purpose of the detailed design is to describe the new technical classes – classes in the

user-interface and database packages – and to expand and detail the descriptions of the

business object classes, which already have been sketched in the analysis stage. Creating new

class diagrams, state diagrams, and dynamic diagrams (such as sequence, collaboration, and

activity diagrams) do this. These are the same diagrams that are used in the analysis, but here,

Ciaran Reidy Page 55 9/29/2008

they are defined on a more detailed and technical level. The user-case descriptions from the

analysis are used to verify that the use-cases are handled in the design, and sequence

diagrams are used to illustrate how each use case is technically realized in the system.

Database Package

The application must have objects stored persistently; therefore a database layer must be

added to provide this service. Details about the storage are hidden from the specification,

which has to call only common operations such as connect(), store(), update(), delete() and so

on for the objects. All the implementation of the persistent storage handling is done in a class

called DatabaseHelper, which all classes that need to query the database must reference.

Business Objects Package

The business objects package in the design is based on the corresponding package in the

analysis, the domain classes. The classes, their relationships, and behavior are preserved, only

the classes are described in more detail, including how their relationships and behavior are

implemented. The operations from the analysis have been detailed, which means some of

them have been translated into several operations in the design model and some have changed

names. All operations in the design model must have well-defined signatures and return

values.

The state diagrams from the analysis are also detailed in the design, showing how the states

are represented and handled in the working system. The states are implemented in the design

by using a vector called userlist, which contains a list of objects of type User. When the

vector has a size of zero elements (i.e. it is empty), the User is in the state ‘Logged Out’,

when the size is one or more, the state for the users logged in is ‘Logged In’. When the

userlist size is one or more it means that a user can log in and chat to another user. The

userlist can increment and decrement via instances of the user class calling the operations

signIn() and signOut().

Figure 3.14 State Diagram vector userlist [source: author using Visual Paradigm]

Ciaran Reidy Page 56 9/29/2008

User interface Package

The user interface package is on top of other packages. It presents the services and

information about them to a user. As stated already, this package is based on the standard

Java SWT class library and Java Swing class library for writing user-interface applications in

Java, and can be executed on all Java platforms.

The dynamic models in the design model have been allocated to the GUI package, since all

interactions with the user are initiated through the user interface. Again, I have chosen

sequence diagrams to show the dynamic models. The basis for the sequence diagram is like

that in the analysis of the use case, except that the realizations of the use cases are shown in

exact in the design model (including the actual operations on the classes, the analysis of the

interaction was more of an overview). The sequence diagrams are not drawn on a once of

basis, but rather they are drawn in iterations, whereby the final design is slowly generated.

Other modifications in the sequence diagrams are generated by discoveries in the

implementation phase. The operations and signatures appear exactly as they appear in the

code.

In figure 3.15 we can now see a more detailed sequence diagram for the user case ‘send

message’. Having gained enough information at this stage through the requirements, analysis,

and design phases we could amend figure 3.10 accordingly to produce figure 3.15. It can now

clearly be seen how the sequence of events must occur in order for one to send a message to

the chat room.

Figure 3.15 Detailed Sequence Diagram for Use Case Send Message [source: author

using Visual Paradigm]

Collaboration diagrams can be used as an alternative to sequence diagrams, but they still have

the same idea, i.e. a sequence of steps which all must be completed in order for the use case

to return a completed function to the actor. Collaboration diagrams are generally considered

the easier alternative to sequence diagrams. Figure 3.16 essentially is just a different way of

representing what is already modeled in figure 3.15.

Ciaran Reidy Page 57 9/29/2008

Figure 3.16 Detailed Collaboration Diagram for Use Case Send Message [source: author

using Visual Paradigm].

3.5.3 User-Interface Design

A special activity carried out during the design phase is the creation of the user interface, i.e.

it’s look and feel. Initiated during the analysis phase, this is done separately, but in parallel to

the other design work. The user interface in this application is based on the use cases, and has

been divided into the following sections, each of which has been given a separate menu in the

main window menu.

Functions: A window(s) for the primary functions of the application, i.e. logging in, typing a

message, sending a message, controlling the synthesizer, logging out, synthesizing the buddy

list, etc.

Information: A window for viewing the information in the system, buddy list, conversations,

etc.

Maintenance: A window for maintaining the system that is, adding, updating and removing

users from the system.

In the user interface environment, it is easy to add event handlers for user generated events

such as mouse clicks and menu choices, by selecting specific component such as the

sendButton and then selecting an event on that button that needs to be handled such as the

clicked event. The resulting application user interface will be composed of a log in window,

main chat window, and system administration window. The login window and the admin

window will be of a simple nature. The login window will have a couple of text fields for the

user to enter their username and password. There will be buttons called login, close and reset.

When the user clicks the login button, their details will be submitted across the network to the

server. This is also where the backend database will reside. The server in turn will query the

database and then return a success or failed result to the user.

Ciaran Reidy Page 58 9/29/2008

On success, an instance of the main chat class will be created. This will be the main chat area

of the system where the user can:

• view a personalized profile for their account

• view the most up to date buddy list

• customize the speech synthesizer for their needs

• send messages

• view conversations etc

The admin window will be composed of options to add a user, edit a current user, and remove

a user.

3.5.4 Prototype Screenshots of System Interface

The user interface is often the most complex and important part of any system. It can take

over half of all development effort and is the part that is most likely to cause users to perceive

a lack of quality (Lethbridge, 2001). It is therefore important to draft mock up GUIs from

early on. Since the implementation stage has not yet begun, these screen shots are just a

rough guide as to what the interfaces for the system will resemble. These screen shots were

generated using Microsoft PowerPoint. As already mentioned in section 3.4.3, the windows

that can be identified are for logging in, sending a message, and a window for maintaining

users.

3.5.4.1 Login Screen

The login screen in figure 3.17 as presented below is an initial impression of what the login

screen for the system may look like. As coding begins at the implementation stage it may

look different.

Figure 3.17 Initial Login Screen

Ciaran Reidy Page 59 9/29/2008

3.5.4.2 Main Chat Area Screen

This screen will no doubt be redesigned a few times in order to cater for all functionality in

the system. When the implementation begins certain add-on features to be added to this

screen as the system evolves. Also, feedback from the user will result in certain additional

functionality becoming available. However, an initial screen show could look like the screen

in figure 3.18.

Figure 3.18 Initial Main Chat Screen

3.5.4.3 System Administrator Screen

The admin screen would include buttons to add, remove and edit a current user.

Figure 3.19 Initial Admin Screen

The clicking of any of these buttons would refresh this screen, hide these buttons and set the

visibility of text fields figure 3.19 in order to insert, edit, or remove certain data from the

database.

Ciaran Reidy Page 60 9/29/2008

Figure 3.20 Initial Admin Screen

3.6 Justification for tools and technologies

3.6.1 TCP / IP

TCP/IP (Transmission Control Protocol/Internet Protocol) is the basic communication

language or protocol of the Internet. This was the communications protocol used to handle

the communication process in this system as it can be used in a private network (either an

intranet or an extranet). Once a user has access to the Internet, their computer is provided

with a copy of the TCP/IP program just as every other computer that you may send messages

to or get information from also has a copy of TCP/IP. This meant no additional configuration

would be needed in order to allow users to start communicating.

3.6.2 Java

Java was chosen as the language to implement the solution as the author has previous

experience with Java, it maps well with domain classes, it is open source, and it should

communicate with relative ease with the speech synthesizer (FreeTTS) as it was also coded

using the Java programming language. Java makes mapping the logical classes to the code

components easy, because there is a one-to-one mapping of a class to a Java code file (.java).

3.6.3 MySQL

The requirements specify that the system be able to run on a number of different machines, so

Java was chosen as the Object-oriented programming language and the database chosen was

MySQL; because both are open source. Also MySQL was designed to easily interact with

Java.

Ciaran Reidy Page 61 9/29/2008

3.7 Conclusions

In this chapter the system design was described in an analysis model with use cases in order

to capture the requirements of the end user of the system. The next stage in the analysis and

design stage was to identify the objects in the system which was obtained by reviewing the

use cases and then deciding which concepts should be handled by the system. The domain

classes modeled were more detailed than the use cases and thus were not as abstract as the

use cases. This is the normal procedure in designing a system whereby the level of

abstraction decreases as the design proceeds. Following the domain class analysis, state and

activity diagrams were used to capture the life cycles of the objects identified in the class

diagrams. Finally in the domain analysis, sequence diagrams and collaboration diagrams

were used in order to describe the dynamic behavior of the domain class. The post analysis or

design stage saw the already defined classes in the analysis model amended as more detail

was added, and new classes added to handle to technical areas such as a database, a user

interface, and more. The end of the design stage specified a working solution that can now be

easily translated into programming code which will be outlined in the next chapter.

Ciaran Reidy Page 62 9/29/2008

4. Development

The construction or implementation phase is when the classes are programmed. As already

mentioned in section 3.6 Java will be the language of choice in order to implement this

speech enabled chat application. This chapter will correlate with chapter 3 where the design

will be transformed into a functionally working application.

4.1 Introduction

In the next section we will see how each part of the design phase was needed in order to

create a smoother transition from the design to the implementation. Also in this section the

idea of speech enabled technologies and how they will be integrated into this chat system will

be introduced.

The main section of this chapter, section 4.5 will discuss the development process of how the

design and analysis models map to the implementation classes. Such mappings are not always

exact, and at times the design stage acts as more of an outline just to safe guard from

designing an incorrect system. With this in mind, it is not uncommon to tweak certain classes

in order to implement a required functionality.

In section 4.6 we will see how the initial use cases, as discussed in section 3.3.3, and the

prototype screen shots, as discussed in section 3.5.4, have evolved into functionally working

graphical user interfaces that allows the user communicate with the system.

In section 4.7, additional functionality outlines what added on features were added to the

system after the development phase was completed. Such functionality was mainly geared

towards the visually impaired. Finally in section 4.8, the idea of error detection and exception

handling is introduced. This section uncovers the importance of allocating sufficient time so

that all possible code defects are avoided and detected. The defects which can’t be avoided

will be handled accordingly so that system will continue to operate.

Below illustrates that the component diagrams in the design model contain a simple mapping

of the classes in the logical to components in the component view. It identifies the

components that implement the domain classes. The associations of these classes are bi-

directional; therefore dependencies go in both directions between the classes involved in the

association.

Ciaran Reidy Page 63 9/29/2008

Figure 4.1 Component Diagram for Chat System [source: author using Visual

Paradigm]

From above it can seen that all the components have bi-directional dependencies. For

example, when the user first logs in there is no thread involved. The user’s login details go

straight to the server. The response from the server goes straight back the user. Assuming the

login details are valid, the ChatServer then creates an instance of the ChatHandler class and

passes details from the ChatUser class through the ChatHandler’s constructor. The details

passed through as parameters are the user’s username and an instance of the socket created.

Once a successful result is passed back to the ChatUser class, an instance of the

ChatClientFrame class is created. This is the main interface of the system. Once the main

interface frame is created a separate client thread is also created which in turn communicates

and has a link to the ChatHandler class via the ChatHandlerThread.

4.2 Methodology

According to an article submitted by Scott Berinato on CIO.com, almost three quarters of

software projects have fell ill to one of the following: total failure, cost overruns, time

overruns, or an end product without all the requirements as outlined in the design spec

(Berinato, 2001). This is mainly due to software projects not being managed adequately.

Good software project management requires a particular methodology to be followed.

With regard to software development, there are many different definitions for the term

methodology. Jayaswal in his book ‘Software Development Methodology Today’ defines a

software development model as

“an organized strategy for carrying out the steps in the life cycle of a software

application program or system in a predictable, efficient, and repeatable way”

Every software project needs a methodology which outlines the process of developing the

software. A software process or methodology is needed in order to improve the quality of the

software produced. If the correct methodical approach to software development is used then

fewer defects, shorter delivery, and better value can be achieved (Hariska, 2007). The type of

Ciaran Reidy Page 64 9/29/2008

project, its criticality, and the size of the team involved in the project all determine the type of

methodology used in developing the project.

There are numerous ways to develop software. Many approaches to software development

include the classical traditional methods such as the Waterfall model, Rational Unified

Process (RUP), Spiral, and Evolutionary model (Bednar & Robertson, 2005). Such

approaches to software development involve requirements gathering, software design,

software development, testing, and the delivery processes. Such approaches are also referred

to as plan-driven methods that escalate from a sound foundation composted of documents

outlining the requirements (Williams, 2007). From here the business analysts and software

engineers have a strong plat-form to work from as they begin to design and implement the

application. These traditional methodologies have been around since the 1970s (Nelson,

2007).

It’s only in the last few years that Agile Methodologies have replaced some of the more

classical approaches. There different from previous methodologies in that they put

individuals and face to face interactions over processes and tool, and put the idea of changes

over a set plan (Williams, 2007). Researchers in the new area of methodological work believe

that the idea of heavy documentation and strict plans are no longer appropriate for many

software applications (Lyons, 2004).

Crystal Clear

The Crystal Methodology was created by Alistair Cockburn in the 1990s as an alternative

approach to traditional methodologies. The Crystal methodology is one of the agile

methodologies that favor flexibility over rigorous processes and face-to-face interaction over

written documents. Cockburn created a family of Crystal methodologies because he believed

that different projects with regard to team size and amount of risk involved required different

methodologies (Wolak, 2001). The different Crystal methodologies are divided into color-

coded brands of Clear, Yellow, Orange, Red, and Maroon as can be seen below in figure 4.2

Ciaran Reidy Page 65 9/29/2008

Figure 4.2 Crystal Family Methodologies (A Practical Guide to Seven Agile

Methodologies, Part 2, www.devx.com)

From the graph above, Cockburn used the X-axis to represent the number on the team and the

Y-axis to represent the amount of risk involved in the project. As the number of team

members working on a project increases, the need for documentation to co-ordinate the

project also increases. The more documentation needed to co-ordinate a project means less

face-to-face contact with the end user is needed. Each color brand has its own rules and basic

elements. The lightest of the methodologies is crystal clear which is used for small projects of

up to 4-6 people.

The methodology used in this thesis was Crystal Clear as the work was done solely by one

person, i.e. the author, and the project was not critical. This is the most suited methodology

for this thesis as it allowed maximum individual preference in the design and implementation

of the application. With just one developer on the application (the author) and the lowest

damage impact being loss of comfort this methodology is represented as C6 on the diagram

in figure 4.2. In accordance with Crystal Clear, the author of this thesis has defined roles of

sponsor, senior designer, programmer, user, and tester (Dubinsky & Hazzan, 2004).

4.3 Development Requirements

The design stage plays a significant part in the development process of any software

application. In order to develop and code this application, the specifications were fetched

from the following diagrams in the design model.

The class diagrams in the analysis and design stage show its static structure and its

relationship to other classes in its environment. The specifications of each class show in

detail the necessary attributes and operations that are required. Of course in the development

phase these attributes and operations will change accordingly as the project evolves.

The state diagrams for the various classes showed the possible states that an object could be

in at any one time and the transitions between these states that need to be handled.

The dynamic diagrams (sequence, collaboration, activity) in which objects of the class are

involved show the implementation of a specific method within the class. They also show how

other objects are using objects of the class. These diagrams are more closely related to code

specifics as they are not as abstract as the class diagrams. From an implementation

perspective these diagrams depict the parameters passed between the different objects which

make up the system.

Use-Case Diagrams and specifications: Diagrams that show the result of the system are used

when the developer needs more information regarding how the system will be used.

Ciaran Reidy Page 66 9/29/2008

Naturally, deficiencies will be uncovered from the design model during the coding phase and

the need for new or modified operations may be required, meaning that such changes will

also need to be made to the design model. This happens in all projects and it is natural to

expect these change requirements. It is important that the design model and the code are

synchronized so that the model can be used as final documentation of the system.

4.4 Development Process

In this section the system architecture and the tools used will be discussed. In section 4.4.1

the system architecture and the reasons why this type of architecture was used is outlined. In

section 4.4.2 the idea of speech technology, speech API, and the background of speech

synthesis is introduced. Finally in section 4.4.3 a brief note on each of the technologies used

in developing this system is given and the reasons why using these technologies would be

best in creating this system.

4.4.1 n-tier Architecture

The architecture used in developing any system plays a crucial role in determining the

success or failure of the application being developed. Robustness, scalability, performance,

and future incremental releases are all very important elements which could determine the

type of system architecture which is used.

In this section the concept of n-tier architecture will be discussed and how the type of

architecture adopted could have a significant impact on the system’s performance both now

and for future releases. An n-tier architectural system typically has 3 or more layers or parts

to the application. From the diagram below we can see how each layer rests on the layer just

below it. For example, the user interface would have very little, if any, interaction with the

database layer. This will be demonstrated later on in this chapter with specific code walk

through examples. The physical actors in the system are the client / computer and the

database.

Ciaran Reidy Page 67 9/29/2008

Figure 4.3 n-Tier architecture [source: author using Visual Paradigm]

Between these two there are three different layers. The layer nearest the database is called the

integration layer or data access layer (DAL). This layer deals with connections to the

database, uses stored procedures to return results from the database to the layer above it, the

application layer. The application layer is also sometimes referred to as the business logic

(BL) layer. This layer handles all the business logic within the application, the multi-

threading involved in a chat environment, the socket programming for connection clients /

servers, and calls to the speech engines via the JSAPI. After the application layer handles the

business logic, given the data from the integration layer, it then hands the results to the

presentation layer which is then presented to the user via graphical user interfaces. The Java

Swing / AWT libraries provide rich classes to do this. This architecture allows the decoupling

of the interfaces from the implementation. This is the essence of object-oriented

programming whereby a change in one section of the code will be isolated and have little or

no affect across the application (Buhler, Starr, Schroder, Vidal, 2004).

4.4.2 Speech Technology

In the design stage the chat area of the application was focused mainly upon whereas in this

chapter the speech system and how it will link into the main chat system will be investigated.

Speech synthesis is the process of generating speech from text. Speech applications have

evolved and refined speech technology, making it now feasible to develop applications that

use speech technology to enhance the user's experience.

Ciaran Reidy Page 68 9/29/2008

Figure 4.4 Speech enabled technology

A speech-enabled application does not directly interact with the audio hardware such as the

microphone, speakers, and headphones. The Speech Engine, be it speech synthesis engine or

speech recognition engine, provides speech capability and provides a smooth communication

process between the speech enabled application and the audio hardware.

Figure 4.5 Speech engine [source: author using Visual Paradigm]

Similarly, Speech Application Programming Interfaces (APIs) allow applications

communicate in a bi-directional process with the speech engine implementations. This allows

the complicated speech code to be hidden from the developer so that the developer can spend

their time focusing on implementing the project (Neumeyer, Franco,1998). The Java Speech

API (JSAPI) defines a standard cross-platform software interface to the latest speech

technology. Two core speech technologies are supported through the Java Speech API:

speech recognition and speech synthesis (Teppo and Vuorimaa, 2001).

Ciaran Reidy Page 69 9/29/2008

Figure 4.6 Java Speech Stack [source: author using Visual Paradigm]

The Java Speech Application Programming Interface (JSAPI) is used as the gateway or

interface to the world of speech enabled technologies. Like any speech synthesis application,

it was important to use a JSAPI because it allowed the cross-platform development of such

applications. It meant that it was not dependent on one platform or one specific

implementation of a speech engine. Since the implementation was already developed by other

vendors, the JSAPI allowed the use of speech technology in the application with as little as

10 lines of code.

Decoupling of the speech engine from the main chat application was important as this also

meant that more than one voice could be used with this application. For this application one

voice was enough to accommodate the functional requirements set from the offset, but for

future releases of this application coupled with advancements in speech technology it was

imperative to design a system which could cater for multiple voices. There are currently three

different voices (Kevin, kevin16, Alan) that are packaged with FreeTTS , and it is possible to

import other voices from Festfox and Mbrola (FreeTTS).

For this research the FreeTTS speech engine implementation was used. The reasons for this

were that it is open source and written entirely in Java as is the rest of this chat application.

This means that it is free and will work on Windows, Linux and Mac, as well as any other

operating system that Java works on. The only real requirement is that you are using a least

JDK 1.4.

The Java Speech API 1.0 was first released by Sun in 1998 (ITB Journal) and defines

packages for both speech recognition and speech synthesis.

4.4.3 Justification for Tools and Technology

MySQL

The database chosen to develop this system was MySQL. This was due to a number of

different reasons, no least because it is open source and through the use of a Java DataBase

Connectivity (JDBC) driver it maps well with Java. The version of MySQL used was 5.0.

Ciaran Reidy Page 70 9/29/2008

JDBC is a Java API which is used to manipulate relational databases such as MySQL. The set

of core classes that form the JDBC API can be found in the java.sql package. The JDBC

driver used was MySQL Connector/J 3.0.17-ga.

Java

Java was the programming language of choice as it is also open source which can work

across multiple platforms. The version of Java used in the development of this application

was Java JDK 6 Update 6 (Version: 1.6.0_06-b02). It has also be shown (Julia,Neumeyer,

YEAR) that multi-threading capabilities of Java are used to improve the speed and the

efficiency in communication applications such as the one in this thesis.

Edit Plus

The software tool used to write the code for this application was EditPlus v3.01. EditPlus is a

programmer’s editor for windows. It is more than a text editor, as it allows syntax

highlighting for many different scripting, markup, and programming languages. It allows the

rapid development of small applications as it provides full visibility to multiple classes

concurrently. Unlike IDEs it’s a lightweight program ideal for developing systems with a

small number of modules. Furthermore, using a light weight editor as opposed to IDEs meant

that very little hardware space and RAM was necessary to run the program.

Speech Technology

There are a number of speech synthesis tools on the market today. However most of them are

either of a commercial nature (TextAloud, SVTTS, JAWS) or specifically designed

(WeatherAloud) and thus are not adaptable for my particular application. The Festival speech

synthesis software is open source but since it is developed in C++ it wouldn’t have been as

easily integrated into my system (Festival). Also, the JSAPI is not part of the Java process

itself, rather it talks to a Festival sever elsewhere (Festival - JSAPI). Having researched the

possible speech technologies available, it was decided to use the FreeTTS speech synthesizer

with this system. FreeTTS provides loosely coupled rich speech APIs, it is open-source, and

it was written in the Java programming language, making it easily compatible with my

application. The FreeTTS version used in the implementation of this application was freetts-

1.2.1.

4.4.4 Environment Configuration

In order for this application to run the following downloads, installations, and configurations

need to be addressed.

Ciaran Reidy Page 71 9/29/2008

4.4.4.1 Java

To compile and run a java program we need to install java platform. JDK (Java Development

Kit). JDK is the basic set of tools required to compile and run java programs. This section

enables the JDK to be downloaded and teaches you the steps to install it. The latest version of

jdk is 6 (update 1) at the time of writing this thesis. The latest version of jdk can be

downloaded from the following website;

 http://java.sun.com/javase/downloads/index.jsp

Once the .exe file is downloaded it can be installed it by double clicking on the downloaded

exe file (jdk-6u1-windows-i586-p.exe) and just following the screen shots as instructed.

4.4.4.2 MySQL

MySQL is downloaded in a similar way to Java. The executable can be downloaded from

http://dev.mysql.com/downloads/mysql/5.0.html. Once downloaded

MySQL 5.0 can in installed by double clicking the executable as can be seen below.

Figure 4.7 Installing MySQL 5.0

Once Java and MySQL are running, we need a bridge to allow these two technologies talk to

one another. This is achieved by downloading the JDBC driver which allows applications use

MySQL. The JDBC driver used in this application was mysql-connector-java-3.0.17-ga and it

can be downloaded from http://downloads.mysql.com/archives.php?p=mysql-

connector-java-3.0&o=other

4.4.4.3 FreeTTS

The FreeTTS speech synthesizer used in this application can be downloaded from this

website

http://sourceforge.net/project/showfiles.php?group_id=42080&package_i

d=34183&release_id=311626 . As can be seen in figure 4.8, there are three options to

choose from. The option needed for this application was freetts-1.2.1-bin.zip. Since this

application only wanted to use FreeTTS with this application the bin package was sufficient.

If modifications need to be made with FreeTTS then the src package is required. As its open

source this is permitted.

Ciaran Reidy Page 72 9/29/2008

Figure 4.8 Downloading FreeTTS 1.2.1-bin.zip

Once the FreeTTS has completed downloading, these file can be extracted anywhere. In order

for FreeTTS to be used in any application the Java Speech API (JSAPI) environment needs to

be set up. This can be achieved by double clicking on the jsapi icon in the lib directory of

freetts-1.2.1 as seen in figure 4.9.

Figure 4.9 Downloading FreeTTS 1.2.1-bin.zip

Finally the speech.properties file needs to be copied to the home directory before running the

demos that use JSAPI. The speech.properties file can also be gotten from freeTTS lib

directory as seen in figure 4.9.

4.4.4.4 Environment Settings

Once the relevant technologies and packages were downloaded and installed the relevant

environment variables and class paths need to be set. First of all select the "My Computer"

icon from the desktop and right click the mouse button. Now click on "system Properties"

option. It provides the "System Properties" window, click the 'Advanced' tab. Then Click the

"Environment Variables" button as seen in figure 4.10.

Ciaran Reidy Page 73 9/29/2008

Figure 4.10 Configuring the classpath

The following paths need to be appended to the existing list:

• C:\Program Files\Java\jdk1.6.0_06\lib;

• C:\Documents and Settings\Administrator\Desktop\mysql-connector-java-3.0.17-

ga\mysql-connector-java-3.0.17-ga;

• C:\Program Files\Java\jdk1.6.0_06\thesis-test\freetts-1.2.1-bin\freetts-

1.2.1\lib\freetts.jar;

• C:\Program Files\Java\jdk1.6.0_06\thesis-test\freetts-1.2.1-bin\freetts-

1.2.1\lib\jsapi.jar;

Ciaran Reidy Page 74 9/29/2008

4.5 Phases in Development Environment

In this section the various classes and methods that are implemented and invoked in order to

produce a functionally working chat application are discussed. In section 4.5.2 the individual

classes and the methods that make up these classes and how they are linked together will be

addressed. The various interfaces that these classes implement and the classes they inherit

will also be discussed.

4.5.1 Classes and Methods

Below we see the various classes used to implement this system. In the class diagram in

section 3.4.1.2 six main classes were identified which were to be used in this application.

Figure 4.11 Class Diagram from Chapter 3 [source: author using Visual Paradigm]

However, since the speech technology was not integrated into the system at this early stage

there was a need to alter this diagram to include the speech classes. Also, in the design stage

the various methods and their parameters were not outlined. In the diagram below we can see

the full application and how the various classes are interlinked. In this updated diagram, extra

classes and interfaces are included which were needed in order for the application to function

correctly. These classes were not identified in the earlier design stage. Other classes such as

UserListServer, UserListClient, and ChatClient have also been integrated into the

development stage. Also highlighted in figure 4.12 are the associations, generalizations /

inheritance, and dependencies among the various classes and interfaces. The ChatClient class

was added to separate the design code from the sockets and threading code so that the

application could be maintained more easily.

Ciaran Reidy Page 75 9/29/2008

Figure 4.12 Detailed Development Class Diagram [source: author using Visual

Paradigm]

Ciaran Reidy Page 76 9/29/2008

4.5.1.1 ChatServer

In this client / server architectural model a ChatServer class was developed, which, as the

name suggests, acts as a server to the various clients / users who use the system. The

ChatServer takes incoming connections from clients and determines whether the user is

authorized to use the system or not. It creates a thread for each authorized user which the

ChatHandler takes care of.

The ChatServer class uses an infinite while loop so that the server is constantly running. A

ServerSocket is instantiated which constantly listens on port 9200 for TCP/IP connections

from clients. Once the server accepts an incoming connection, a DataInputStream is opened

to read in the client’s login details, which are captured by the LoginScreen’s interface. A

database connection is then opened so that the client’s details can be checked. A notification

is sent back to the client indicating success or failure. On success, the main ChatScreen is

presented to the client, and on failure the user is given the option to try again.

Figure 4.13 ChatServer accepting a connection

Where getLoginDetails is a method created that opens a DataInputStream reader so that the

users details can be read. This implementation for getLoginDetails can be seen in figure 4.14.

Figure 4.14 Method getLoginDetails

Once the details have been read by the server, the string is split so that the user name and

password can be assigned into two variables. This is required for the next stage which

involves querying the database. The next screen shot outlines how the DatabaseHelper is

invoked by the ChatServer class.

Ciaran Reidy Page 77 9/29/2008

Figure 4.15 Invoking DatabaseHelper class from ChatServer class

Once the user’s login details have been checked by the server, a response is sent to the user.

The variable validLogin is set to true and the user has been successful. The LoginScreen then

instantiates an instance of the ChatScreen. If variable validLogin has a value of 0 the user is

given the option to try again.

Figure 4.16 Server’s submitResponse method submits success / failed response to client

Finally, if the client has been successful, the image obtained from the database is sent back to

the client. Part of the user’s chat screen is populated with this image for a customizable

effect. A new instance of ChatHandler is then created which takes care of all the clients. It

will maintain a list of users in a vector. A new thread will also be created (c.start()) for each

client, and when it received a new message from any one of the clients, it will broadcast this

message to each client on the list.

Figure 4.17 ChatServer sends personalized image to client and creates an instance of the

ChatHandler class to be run

Since the transmission of an image is not like transmitting strings, it proved difficult in trying

to submit the image across the network initially. Trying to send images via

DataOutputStream, and ObjectOutputStream has failed. With the aid from other developers

on Suns forums, it was established that the image had to be first read into a FileInputStream

as a serious of bytes, which could then be sent as an object by an ObjectOutputStream. This

is demonstrated below.

Ciaran Reidy Page 78 9/29/2008

Figure 4.18 Converting image to serializable format for TCP transmission

4.5.1.2 DatabaseHelper

The DatabaseHelper class is used as a communication link between the application logic and

the database. It separates a large amount of database connection code from the other classes,

where the other classes’ main functionality is not connecting to the database. It also

encourages the idea of code reuse which is one of the main aspects of object-oriented

programming (Garrigue, 2000). Almost every class needs to communicate with the database

at some stage, whether it’s the ChatServer checking user details, or the ChatClient saving

conversations to the database. It is for these reasons that the database connection code should

be implemented only once but invoked any number of times.

Figure 4.19 Validating user with the database

The connection code from DatabaseHelper class can be seen above. This example piece of

code opens a connection to the database and if the where clause of the SQL statement is met,

a record from the table will be returned. This code is executed when the ChatServer class

determines whether the user is authorized to use the system. Also, in this code snippet we can

see where an image path is selected from the database. As already mentioned in the previous

section, this is needed for customizing each user’s interface with their personal picture.

The user can save a conversation in one of two different ways. The user can click the ‘save’

button, or hold down ‘Alt’, ‘Shift’ and ‘S’. Each event will make a call to the database via the

saveMsg method of the DatabaseHelper class seen below. The conversation along with the

current timestamp will be inserted into the table tblmessage.

Ciaran Reidy Page 79 9/29/2008

Figure 4.20 Saving a message to the database

Since a database connection is opened on more than one occasion, a connect method was

created which will reuse the connection code each time a call to the database is issued.

4.5.1.3 ChatHandler

Although this class is less than 100 lines of code it handles most of the business logic that

makes up this chat application. It maintains a list of socket connections, one for each client

which has successfully logged into the system. It makes great use of multithreading by

extending the Thread class. A thread is a separate line of control or functionality within a

single process or program. Multi-threading can be implemented in Java in two ways – either

by extending the Thread class or implementing the Runnable interface.

It was necessary to use multi-threading in this application, because, like all chat systems any

number of users must be able to communicate concurrently (Hamza-Lup, Bot, Salomie).

Multiple threads within a program all share the same data and resources which makes it

easier for clients to share data in a real time communication environment. However it also

makes it easier for them to cause problems for one another if say two clients are attempting to

use the same data or resource at the same time (Chen, 2003).

The below code demonstrates how extra code was wrote to combat such a scenario arising,

whereby two clients are attempting to submit a message at exactly the same time.

Ciaran Reidy Page 80 9/29/2008

Figure 4.21 Multi-threading environment depicting the ChatHandler class broadcasting

a message to clients

In Java programming each object has a lock which can be obtained by using the

‘synchronized’ keyword.

Methods, or synchronized blocks of code, can only be executed by one thread at a

time for a given instantiation of a class, because that code requires obtaining the

object's lock before execution (Roetter, 2001).

4.5.1.4 ChatClient

The ChatClient class is the main client class which controls all the functionality for the end

user. It ties in the client interface classes, the speech classes, and takes care of all the

multithreading involved in order for the application to run. This class acts as the central hub

for the client, making appropriate calls to the various client classes when needed. It was

important to separate the design classes, namely the LoginScreen and ChatScreen, and the

speech classes, namely the SpeakSynthesizerAPI, from the main ChatClient class, which

resulted in being better able to maintain the code and classes.

Once this class is invoked, the class first makes a call to the LoginScreen call. As mentioned

in section 4.5.1.1, the LoginScreen captures the user’s login details and submits them to the

ChatServer. If the user successfully logs in, an instance of the ChatScreen class is created.

This interface displays the main chat screen which incorporates the main functionality of the

system.

Once the user has successfully reached this stage in the application, a new thread is created

for this user which handles all incoming and outbound messages to the server. On figure 4.12,

Ciaran Reidy Page 81 9/29/2008

depicting the development class diagram, this is represented by the link between the

ChatClient and the ChatHandler class. Calls to the speech class’s methods are made from

within this class. Additional functionality to reduce cognitive load for the visually impaired,

as discussed in section 4.7, is also handled within the ChatClient class.

Figure 4.22 ChatClient thread reading incoming message from the ChatHandler class

The above code snippet is the implementation behind the Thread run method, which when

called, starts the thread for the ChatClient. This piece of code creates a thread which allows

the continuous communication with the server while the user can still input commands to the

system in a multi-threading environment (Hilderink, Broenink.. 1997). Once the thread is

running, it will continue to listen for any incoming data from the ChatHandler broadcast

method (discussed in 4.5.1.3). Any data received will be appended to the user’s main screen

in the form of a conversational message. The third line of code will synthesize this message

so that the visually impaired user can comprehend the conversation.

4.5.1.5 LoginScreen

The user interface classes, LoginScreen and ChatScreen, will be discussed in more detail in

section 4.6. Both this section and section 4.7 will discuss the type of functionality each class

has to offer the end user. The LoginScreen interface is not nearly as technically developed as

the ChatScreen class.

The LoginScreen class is composed of a couple of text fields, a couple of labels, and a few

buttons displayed on a picture background to enhance its appeal to the user. The text fields

capture the user’s username and password which are then transmitted to the server when the

user clicks the ‘login’ button. The other two buttons are called ‘Clear’, and ‘Close’. As the

names suggest, the ‘login’ button submits the user’s details to the server for validation, the

‘clear’ button clears the text fields of any data, and the ‘close’ button closes the interface.

These three buttons can be triggered in more than one way. The event behind each button will

be triggered if mouse is clicked when the courser is over the button. The LoginScreen

implements the ActionListener interface so that it can receive action events. When an action

event occurs, that object's actionPerformed method is invoked.

Ciaran Reidy Page 82 9/29/2008

The class that is interested in processing an action event implements this interface,

and the object created with that class is registered with a component, using the

component's addActionListener method (Sun Website).

In the code below we can see the ActionListener’s actionPerformed method implementation

within the LoginScreen class.

Figure 4.23 ActionListener’s actionPerformed method implementation in the

LoginScreen class

This action is then registered with the instance ‘login’ of the JButton class;

Figure 4.24 ActionListener’s actionPerformed event registered with ‘login’ component

An event will also be triggered if the ‘enter’ key on the keyboard is pressed. This is an

alternative way of accepting input from the user and all buttons have this dual command

acceptance.

Figure 4.25 KeyListener code executed once the ‘Enter’ key is pressed

The KeyAdapter is an abstract adapter class which is used to receive keyboard events. It

creates the keyListener objects, such as the ‘login’ button in this example, using the

addKeyListener method. When any key is pressed to the object, the generated event is

received via the KeyPressed method.

Ciaran Reidy Page 83 9/29/2008

Once the event is triggered the details are submitted to the server via the submitDetails

method. This method opens a two way communication with the server, whereby the

username and password are sent to the server, and a response of either 0 or 1 is returned from

the server. This was also mentioned in section 4.5.2.1.

Figure 4.26 LoginScreen submits user login details to server on port 9200

A ‘0’ returned from the server indicates the user was unsuccessful in logging in. The user will

then be alerted with a pop up prompt asking if they would like to try again. The code used to

generate this is displayed below.

Figure 4.27 Pop up prompt prompting the user to try logging in again

If the user is successful on logging in a ‘1’ is returned and the user is then presented with the

main chat screen.

Ciaran Reidy Page 84 9/29/2008

Figure 4.28 User successfully logs in and is presented with main Chat Screen

The image received from the server and saved locally on the client’s machine. A new

instance of a Thread and ChatScreen are created for the client.

4.5.1.6 ChatScreen

The ChatScreen interface enables the user to gain access to the majority of the system

functions.

It allows the user to:

• view who is currently logged into the system

• submit a message to the main chat lobby

• control the speech synthesizer to best suit their needs

• re-synthesize old messages (discussed in 4.7.1)

• maintain a list of acronyms, initialisms, and abbreviations (discussed in 4.7.3)

• save a message to the database (discussed in 4.7.2)

Needless to say, the main function of the system is to chat with other users of the system. In

order to submit a message to the lobby area, the data is first sent to the ChatHandler class

which then relays this message to all users connected at the time. From the code below, we

can see that if the user clicks the ‘send’ button, the entire message is captured via a getText

method of the JTextField class. This value is then transmitted to an already opened

connection to the ChatHandler object via the writeUTF function of the DataOutputStream

class.

Ciaran Reidy Page 85 9/29/2008

Figure 4.29 Message submitted to the lobby

The next fragment of code demonstrates how the user is informed of what they have typed.

The speech synthesizer synthesis any character that the user types. If the character typed is a

comma, space, semi-colon etc, then the synthesizer will treat this as the end of a word, and

synthesize the whole word to the user. This is to ensure the visually impaired user is

constantly aware of what they have typed, and reduces the number of typos being submitted

to the conversation.

Figure 4.30 Character / word typed synthesized before being submitted to the lobby

In order for the user to control the speech synthesizer, four sliders which allow the user to set

the pitch, range, volume, and speed of the speech synthesizer accordingly have been

provided. As each slider re-used code, there was a need to create a method called createSlider

which returned a slider with different settings, given the dimensions via its parameters. The

method is called like so:

Figure 4.31 createSlider method called to initialize pitchSlider

The implementation behind the createSlider method is given below. This returns an instance

of the JSlider class. The parameters will vary accordingly given the type of slider that needs

to be created.

Ciaran Reidy Page 86 9/29/2008

Figure 4.32 Slider created to control the synthesizer settings

The user can control the sliders via one of three different ways:

• the mouse

• the up and down arrows (once the slider has focus)

• access keys

Access keys allow operators to select or execute an item by pressing a key combination, even

when that item is not the currently focused item. For example, a button labeled 'Open' with an

access key of 'O' can be activated at any time by pressing Alt+O. Access keys are

applicable to menu items, push buttons, checkboxes, radio buttons and tab pages. All access

keys within a window should be unique, including keys used in the top level of the pull-down

menu (typically F for File, E for Edit, etc.).

Accelerators are keyboard shortcuts for actions that are frequently performed, for example,

Ctrl+P for Print. Keyboard shortcuts allow users to bypass opening the menu by using a

specific combination of keystrokes that perform the same function as a corresponding menu

item. Instead of pressing Ctrl+F, then S, to activate menu item File-Save, a user can just press

Ctrl+S to execute the same function. Accelerator keys are desirable but not mandatory and

are listed in Keyboard Help at runtime.

The use of access keys would be very important for the end user, especially if they were

blind. For example, if the user held down the ‘Alt’ key and pressed ‘P’, the pitch slider would

raise and thus increase the pitch of the synthesizer. Similarly if the user held down the ‘Ctrl’

key and typed ‘P’ then the pitch would decrease. The other three sliders were designed in the

same way except for speed the letter used was ‘S’, for range it was ‘R’ and for volume ‘V’

was used.

Ciaran Reidy Page 87 9/29/2008

In the code displayed below an example of how this was done is presented. An actionListener

was created called setPitchHigher. Any time the action event was triggered for this, the pitch

was increased and set as the new pitch to be used by the synthesizer. The highest the pitch

can be set to is 200. If any of the sliders are being set to a value out of the valid range then the

user will be notified through synthesized speech. An instance of the keystroke class called

pitchIncrement was also created that triggered an event if the keys ‘Alt’ and ‘P’ were pressed

at the same time. Finally, the setPitchHigher actionListener and pitchIncrememt Keystroke

object were registered with a component of the ChatInterface.

Figure 4.33 ActionListener used to set the pitch slider higher using access keys (‘Alt’

and ‘P’)

Other KetStroke and ActionListener instances were created to cater for incrementing and

decrementing the range, volume, and speed of the synthesizer.

4.5.1.7 UserListServer

The UserListServer class’s main function is to run as a Thread in the background that updates

each client’s user list with all the users currently logged into the system. The Thread is set to

sleep for one second, it then wakes up and updates all users logged into the system. The

Thread was specifically designed this way so that processor and memory were not used up

unnecessarily (Pederson, 2003)

The UserListServer class was not considered as part of the design stage as it was presumed

the ChatHandler class could have handled this extra functionality early on. Once

development commenced a number of bugs and issues were encountered. The ChatHandler

class could not have two threads running within the same class. The ChatHandler class

already had an existing Thread running for handling the broadcasting of message to all

clients. As a result there was a need to tweak the initial design in order to combat this issue.

The UserListServer class is invoked from the ChatHandler class as follows:

Ciaran Reidy Page 88 9/29/2008

Figure 4.34 UserListServer Thread class created and started

Once the Thread wakes up, it accepts a connection from the client (UserClientList class).

Once this ServerSocket receives a connection, the rest of the code will be executed in

sequence. The user list is stored in a vector variable and as a result, an instance of the

ObjectOutputStream class needed to be created in order to send the list of users to the clients

since a Vector is also an object.

Figure 4.35 Code used to send list of users logged in to the clients once every second

4.5.1.8 UserListClient

The UserListClient class communicates with the UserClientServer class. Like the

UserClientServer class, a Thread is also created which sleeps for just over one second. Once

the thread wakes up, the class attempts to make a connection to the UserClientServer. Once a

connection is made, the UserClientServer proceeds to execute the code following the

acceptance of the connection, which submits the object (userlist) to the UserListClient. On

the UserListClient side, the object is read which needs to be cast to a Vector object. An

instance of the enumeration class is then created and assigned the list of elements in this

vector. The list of user names are iterated through and each value is appended to the user list

area on the client’s interface. This process is repeated once every second. As the project

evolves, and more memory is being used by the application, the time intervals of suspending

the Thread can be delayed even further.

Ciaran Reidy Page 89 9/29/2008

Figure 4.36 Code used to receive list of users logged in from the UserListServer class

once every second

4.5.1.9 SpeakSynthesizerAPI

Each instance of the SpeakSynthesizerAPI is created with default values as can be seen in

figure 4.37. The synthesizers pitch is set to 100, the volume is set to 10, the speed or word per

minute is set to 150, and the pitch range is set to 10. In the code below a general domain

synthesizer for US English is being used. In order to find this synthesizer the Central class of

the JSAPI is called to find a Synthesizer. The Central class expects to find a

speech.properties file in user.home or java.home/lib. The user has the choice to control the

various synthesizer settings via access keys. This was achieved by parameter passing control

values to public methods coded by the author of this thesis.

Ciaran Reidy Page 90 9/29/2008

Figure 4.37 SpeakSynthesizerAPI constructor

Ciaran Reidy Page 91 9/29/2008

4.6 Interface Screen Shots

The graphical user interface (GUI) is one of the most important components of any system. It

acts as a gateway to all functionality of any system. It is therefore needless to say that the

design and layout of any user interface is hugely important for any application. Since the first

interfaces designed in the late 60s (Engelbart & English, 1968), GUIs have evolved

immensely into graphical icons and visual indicators of software applications today. In the

early days there was no interface for users, the user had their punch cards which were read in

to a reader which in turn sent the results to the printer (Constantine, 2000). The idea behind

GUIs stems from the fact that using the mouse to point to a desired command on the interface

is far easier than having to remember hundreds of commands in operating systems like AIX,

Unix, and MS Dos. Using the mouse to gain functionality from a system is far easier than

using the keyboard. The idea of pointing to something is more of a human gesture (Gladden,

2000) whereas using the keyboard is more machine like. As a result an extra effort was made

to make the interaction process with the keyboard more human like since this application will

be used by the visually impaired.

4.6.1 User Interface Guidelines

Smith and Mosier (1986) noted, a single flaw in the user interface may not result in system

failure, but a combination of defects may result in system failure, poor performance, and user

complaints. As a result, there was a need for a set of guidelines or usability principles to be

used in this thesis, so that common design pitfalls were less likely to be encountered. These

usability principles can then be used to analyze an interface for usability issues.

Nielsen’s (1994) “Ten Usability Heuristics” were used in the interface design of this system

to perform heuristic evaluations.

Nielsen’s Heuristic 1: Visibility of System Status

‘The system should always keep users informed about what is going on, through appropriate

feedback within reasonable time’

This heuristic applies to this speech enabled chat application, typically through synthesized

speech and visual displays. This is achieved through issuing constant feedback to the user.

Anytime a user logs in/out of the system, the end user is notified about this. The user is also

given feedback regarding the key the user pressed though synthesized speech. Finally,

through the use of access keys, the user is also notified about key information. This will be

discussed more in section 4.6, additional functionality.

Nielsen’s Heuristic 2: Match between system and the real world

Ciaran Reidy Page 92 9/29/2008

‘The system should speak the users' language, with words, phrases and concepts familiar to

the user, rather than system-oriented terms. Follow real-world conventions, making

information appear in a natural and logical order’

Through the use of user interface metaphors or analogies to the real world users can better

comprehend how to navigate through the environment and interact with other users via

conversing.

Nielsen’s Heuristic 3: User control and freedom

‘Users often choose system functions by mistake and will need a clearly marked "emergency

exit" to leave the unwanted state without having to go through an extended dialogue. Support

undo and redo’

If the user feels restricted, they will most likely become frustrated, and the result can be

disinterest in the application (Norman, 1990). Therefore, the user needs to feel that they are in

control in any part of the application. An ‘emergency exit’ can be achieved either by clicking

the x on the top right hand corner of the application or by clicking the ‘logout’ button on the

interface. In order to cater for the visually impaired, the user has the ability to logout of the

system through the use of access keys. If the use types ‘Alt’ and ‘L’, the user will be logged

out of the system.

Figure 4.38 Access Keys ‘Alt’ and ‘L’ to logout of the system

Nielsen’s Heuristic 4: Consistency and standards

‘Users should not have to wonder whether different words, situations, or actions mean the

same thing. Follow platform conventions’

Ciaran Reidy Page 93 9/29/2008

The chat application user interface, as with all the interfaces, should be consistent throughout.

All the button texts, labels, alt tags, frame texts etc mean exactly as they intend to eliminate

any confusion for the end user.

Nielsen’s Heuristic 5: Error prevention

‘Even better than good error messages is a careful design which prevents a problem from

occurring in the first place. Either eliminate error-prone conditions or check for them and

present users with a confirmation option before they commit to the action’

Error detection and exception handling is catered for in this application for roughly 80% of

the possible bugs that may arise. This is discussed in more detail in section 4.7.

The users are presented with confirmation options just before various actions are committed.

For example, if the user wants to save a conversation, then the user will be prompted to

confirm before the conversation is saved. Such alert prompt include ‘Are you sure you want

to save this conversation?’ and ‘Your login attempt was unsuccessful. Would you like to try

again?’. An example of the code of such a confirmation concept can be seen in figure 4.39.

Figure 4.39 Access Keys ‘Shift’, ‘Alt’ and ‘S’ to save a conversation

Nielsen’s Heuristic 6: Recognition rather than recall

‘Minimize the user's memory load by making objects, actions, and options visible. The user

should not have to remember information from one part of the dialogue to another.

Instructions for use of the system should be visible or easily retrievable whenever

appropriate’

Ciaran Reidy Page 94 9/29/2008

In line with this heuristic, instructions for the system can be synthesized to the user through

the use of access keys. If the user types ‘Alt’ and ‘I’ then the list of instructions and

commands will be reiterated to the user through synthetic speech (Appendix B). Also, given

the end user of the system could be blind, an additional piece of functionality was added to

the application. This includes synthesizing previous messages from other users to the end

users since the visually impaired do not have the option of scrolling up on the conversation

pane.

Nielsen’s Heuristic 7: Flexibility and efficiency of use

‘Accelerators -- unseen by the novice user -- may often speed up the interaction for the expert

user such that the system can cater to both inexperienced and experienced users. Allow users

to tailor frequent actions’

This chat application was designed to be simple by nature, and no degree of experience or

technicality is required in order to use this application.

Nielsen’s Heuristic 8: Aesthetic and minimalist design

‘Dialogues should not contain information which is irrelevant or rarely needed. Every extra

unit of information in a dialogue competes with the relevant units of information and

diminishes their relative visibility’

As mentioned in the previous heuristic, this application is simple by design, and no additional

needless information is seen or can be used from the interface.

Nielsen’s Heuristic 9: Help users recognize, diagnose, and recover from errors

‘Error messages should be expressed in plain language (no codes), precisely indicate the

problem, and constructively suggest a solution’

This heuristic is relevant to the chat applications user interface which is able to assist the user

in preventing errors from arising initially. If an error is generated it will be handled

accordingly through exception handling (as discussed in Nielsen’s Heuristic 5: Error

Prevention).

Nielsen’s Heuristic 10: Help and documentation

‘Even though it is better if the system can be used without documentation, it may be

necessary to provide help and documentation. Any such information should be easy to

search, focused on the user's task, list concrete steps to be carried out, and not be too large’

Ciaran Reidy Page 95 9/29/2008

As this chat application is designed to be simple, no tutorial is required for this application.

Nevertheless, help can be obtained through appendix B which outlines the list of access key

commands to control the system.

4.6.2 Evolution of Screenshots

In section 3.3.3.1 use cases were discussed and the initial functionality required of the

system, and how each use case represented specifies a complete functionality within the

system. Alistair Cockburn’s described use cases as ‘a sequence of transactions between

external actors and the system’ (Cockburn, 1997). With this in mind, we can see why people

map use cases to user interfaces, as use cases are just user interface descriptions. The design

of the user interface comes at a later stage in the development life cycle after the goals and

objectives have been clearly defined though the various use cases.

The initial requirements were first captured through a use case diagram. As we seen in the

design stage, this use case describes the main areas of functionality in the chat system. The

user of the chat system logs on to the system where they can then access messages typed by

other members of the chat room as they appear on the screen. They then have the option to

log out or to enter a message and post it to the room. This can be done many times before

logging out of the room.

Figure 4.40 Use case from Section 3.3.3.1

This use case mapped nicely with the initial prototype screen shots designed on Microsoft

Powerpoint. As seen in section 3.5.4, the initial prototype screen shots were designed in order

to gain vision and focus of what the developed application interface would look like.

Ciaran Reidy Page 96 9/29/2008

Initial Login Interface Main Chat Interface

Figure 4.41 Prototype screen shots from section 3.5.4

The initial prototypes (seen above and in section 3.5.4) have since evolved into working

applications. Their appearance has been greatly altered and their appearance enhanced. The

initial prototype login screen has evolved into a functionally working login screen depicted

below.

Figure 4.42 Login Screen Application Screenshot

Similarly, the main chat application has evolved into what is now the main chat application.

This interface has been redesigned incrementally in numerous mini releases, as with all

applications developed under Crystal Clear (Stojanovic, Dahanayake, Sol, 2003) with added

functionality appended with each release.

Ciaran Reidy Page 97 9/29/2008

Figure 4.43 Main Chat Lobby Application Screenshot

4.7 Additional Functionality

Once the application was developed, it was clear that extra functionality was needed. Since

the methodology used to develop this application was Crystal Clear, it paved the way to add

additional functionality to the system without too many problems.

4.7.1 Reduce Cognitive Load

The term cognitive load refers to the load on working memory during instruction. During the

development process the need to reduce the amount of cognitive load for the end user was

reviewed. In a normal chat application, to view previous messages typed by other users the

user needs only to scroll up. The visually impaired have no way of revisiting previous

messages which undoubtedly would increase cognitive load for them when trying to

remember everything said in the conversation. The cognitive load would undoubtedly be

even higher with multiple people conversing concurrently. Even if the speech can be

presented at a loud enough level to be heard - and this may not always possible -

understanding this speech will provide a greater cognitive load than would be exerted on a

person with normal hearing (Newell, 2003).

Cognitive load naturally increases with the amount of information to process. With the advent

high internet usage cognitive load has become more of an issue (Quiroga, Crosby & Iding,

2004).

Ciaran Reidy Page 98 9/29/2008

This research attempts to combat this issue in such a way that the visually impaired are able

to gain access to what a sighted person has access to in a chat application environment. Such

a tool would alleviate the pressure on the end user of trying to remember previous messages

while typing at the same time.

Figure 4.44 Recall Function

A storage mechanism of some sort was needed to hold the messages for each user. Initially I

had thought about using a ‘Hash Table’ for this purpose. In computer software a ‘Hash Table’

is a data structure that associates key and value pairs. For example, in this instance the key

could be the user name and the value could hold the different messages for this key or

username.

Figure 4.45 Hash Table Key (username) - value (message) pairs. [source: author using

MS PowerPoint].

The development on this concept had started; however, this approach did not work as initially

planned. This was because after each user sent a message, the original message by that same

user was overwritten by the most recent message. So, for example, the key-value pair

‘ciaran’,‘Hello!’ was overwrote by ‘ciaran’,‘how are you?’. Other data structures such as

‘Linked Lists’ and ‘Array Lists’ were researched for this purpose but similar issues were

encountered.

Through online aid from Devshed forums, a fellow developer suggested the use a ‘Hash

Table’ but instead of using the string data type for a value, a ‘Vector’ could be used. Now

Ciaran Reidy Page 99 9/29/2008

there would be a unique username because every key in the ‘Hash Table’ must be unique, and

a list of messages for each username. This can be better explained in figure 4.46.

Figure 4.46 Hash Table Key (username) - value (vector of messages) pairs. [source:

author using MS PowerPoint].

The messages can then be retrieved by accessing the individual messages from the vector

with a username and an index. The username will first select the key value pair, and the index

will retrieve the relevant message for that user in the vector list. Below how such a concept

was achieved is explained using the relevant coding commands. The code snippet below has

grouped to relevant hash table coding techniques into one section of code for demonstration

purposes.

Figure 4.47 Code to demonstrate the handling of synthesizing previous messages

Anytime an instance of the ChatClient class is created, an instance of a Vector and HashTable

are also created. Once a user joins the conversation, a key-value pair is added to the

HashTable. The key will be set to the username and a new empty vector will be inserted for

the corresponding value. Similarly, when a user leaves the conversation, the key and its value

for that user will be removed from the HashTable. Any inbound string message from the

ChatHandler will be sectioned so that the username and message can be identified.

Ciaran Reidy Page 100 9/29/2008

As can be seen in figure 4.48, any inbound message is of the form “Ciaran says: Hi

Christina”. This string is then stripped down by an extra method that was created called

getRememberedLine. The getRememberedLine takes a string parameter which will be the

inbound message from ChatHandler, analyzes this message accordingly, and then returns the

relevant line to be synthesized to the user.

Figure 4.48 Code to retrieve the previous message

In order to synthesize a particular message for a particular user, the command given to the

system naturally needs to be in a certain form so that the system understands how to action it.

The command issued to the system needs to be of the following syntax:

‘<remember>,index,username’. This command was only used to demonstrate that such

functionality was achievable.

For example, if the user wishes to re-synthesize the third most recent message sent by user

‘ciaran’ then the following command would need to be entered onto the interface:

‘<remember>,3,ciaran’.

From code snippet displayed in figure 4.48, the message accepted as a parameter to the

method, is first divided so that relevant command, index and username can be obtained for

processing. After these details have been obtained, the relevant message to be synthesized

can be retrieved from the HashTable instance. The piece of code in order to achieve this is

highlighted with a green oval in figure 4.48.

4.7.2 Additional Access Keys

Access keys are keys used on the keyboard to navigate the system. Access keys are

particularly useful for handheld devices, laptops, and visually impaired users. Not all users

can access graphical environments with a mouse. Some users depend on alternative methods

of communicating with systems either through speech or the keyboard in order to navigate

Ciaran Reidy Page 101 9/29/2008

the system at ease. Horton (2005) found that these shortcuts improve keyboard navigation

and can be a real timesaver for disabled users.

It stands to reason that designing an application for keyboard access will improve the overall

design appeal of the application. Navigating through an application and gaining focus of key

components on the interface can be faster through the use of access keys (Buzzi, Andronico,

Leporini, 2004). Easier navigation aside, there are times when the end user has no other

choice but to use access keys. Therefore, it was more important that such functionality was

enabled for the end user of this system. The visually impaired don’t have the ability to use a

pointing device such as a mouse but can, however, use a keyboard. Wright (2004) noted that

when designing and developing an application, one should consider proper use of keyboard

tabbing and access keys with these users in mind.

4.7.2.1 Logout of Chat Application

As mentioned in section 4.6, to comply with Nielsen’s Heuristic 3: ‘User control and

freedom’, an easy exit option was necessary for all users of the system. All users of the

system include the visually impaired users too. Since there exits no easy exit option for the

visually impaired users through the click of a mouse, an alternative exit route was necessary.

This functionality was achieved though the use of sticky keys, whereby if the user pressed

‘Alt’ and ‘L’ the user was logged out of the system.

Figure 4.49 Logging out of System via Access Keys

An ActionListener object called chatLogoutListener has been set up to listen for the

actionEvent, which when triggered will log the user out of the system. If the key stroke

obtained is a combination of ‘Alt’ and ‘L’ is found then the actionEvent is actioned.

Ciaran Reidy Page 102 9/29/2008

4.7.2.2 Saving a Conversation

The user also has the option to save the current conversation as any time. If the user clicks the

‘save’ button or uses access keys ‘Alt’, ‘Shift’ and ‘S’ together, an instance of the

DatabaseHelper class is created, and the saveMsg method of this helper class is invoked. The

conversation is passed as a parameter to the method, which is then saved to a table in the

database along with a unique message id, and the timestamp of when the conversation was

saved.

Figure 4.50 Saving Conversation via Mouse

Figure 4.51 Saving Conversation via Access Keys

4.7.2.3 Synthesizing list of Logged in Users

An instance of the SpeakSyntheizerAPI is first created so that its methods can be referenced

from within the ChatClient class. As described in the other access key functions, the

ActionListener and ActionEvent classes are initiated, and once triggered via key strokes ‘Alt’

and ‘U’, the list of users who are currently logged in are synthesized to the user. The

‘userlist’ is iterated through and each element in synthesized to the end user.

Ciaran Reidy Page 103 9/29/2008

Figure 4.52 Synthesizing logged in users via access keys

4.7.3 Acronyms interpreted

With the popularity and rise in usage of real time text-based communications, such as instant

messaging, e-mail, Internet and online gaming chat rooms, discussion boards and cell phone

text messaging (SMS), came the emergence of a new language tailored to the immediacy and

compactness of these new communication media.

As a result it was only natural to integrate such a concept into this application. This will not

only further reduce cognitive load on the visually impaired end user but it will also quicken

the conversation for both sender and received of any message.

As mentioned previously, each letter the user types is synthesized and when the end of each

word is reached the entire word is synthesized. If that word is saved on the database as an

acronym, then the actual meaning of this word will be synthesized instead. For example, if

the user typed ‘ttyl’, then the meaning of this acronym ‘talk to you later’ will be synthesized

instead, provided this acronym is already added to the list.

The user has control of what acronyms they would like added to the database. This

functionality is highlighted in Figure 4.53. This functionality can also be accessed via access

keys ‘Alt’ and ‘A’ for acronym.

Ciaran Reidy Page 104 9/29/2008

Figure 4.53 Add Acronym GUI

When the button ‘Add Acronym’ is accessed the user is then presented with a smaller

Acronym GUI. Once the user adds the acronym it this acronym is then appended to the list in

the database table called tblAcronym. As from the main chat, the user can also access this add

button via access keys ‘Alt’ and ‘A’ when the Acronym GUI is in focus. If the user clicks

‘Alt’ and ‘C’ the Acronym GUI will close. The user will be back on the main screen ready to

start chatting with the enter message field already set in focus. The user is aware of this

through synthesized speech

Figure 4.54 Code to add Acronym

Ciaran Reidy Page 105 9/29/2008

The above code snippet adds an acronym to the database. It first checks whether the acronym

has already been entered on the database and if it hasn’t it adds it. Once it has successfully

been added, the user is ready to add another acronym.

If the user enters a blank space for either ‘Acronym’ or ‘Meaning’ the system will notify the

user of this through the synthesizer. Similarly, if the user enters an acronym that is already

entered on the database then the user will also be notified of this via synthetic speech.

Figure 4.55 Synthesizes meaning of acronym

The code snippet in Figure 4.55 depicts the system substituting and synthesizing the meaning

of the acronym. If the acronym is not found then just the word typed by the user is

synthesized.

4.8 Error Detection and Exception Handling

Although all software has defects or bugs (Weise & Baer, 2008), there are ways of reducing

the number of bugs in software or dealing with the bugs that cannot be avoided. This can be

achieved through error detection and exception handling. Exception handling is the process

of handling abnormal system events and exception handling features enable developers to

declare exceptions (Romanovsky, 2001). Developers can implement a piece of code which

will be executed once an error in the code is encountered. The normal sequential execution of

the code stops at the exception and a corresponding handler is then called and executed in

place of the error.

Unexpected errors can arise from almost any part of the code. For example, you could be

trying to open a file that no longer exists, or you are trying to save data to a read only device,

or you are trying to use an object that has not been correctly initialized.

It was found that between 1% and 5% of program text in a study (Weimer & Necula, 2004)

was comprised of error-handling catch and finally blocks and between 3% and 46% of the

program text could be reached from catch and finally blocks. These stats provide enough

evidence that error handling is a significant part of any application.

The following piece of code illustrates a simple exception handler.

Ciaran Reidy Page 106 9/29/2008

Figure 4.56 Example of Error Handling

Typically, an exception handler consists of two parts or blocks of code enclosed in curly

brackets. The try block encloses some code that may generate an error or throw an exception,

and the catch block specifies what action needs to be taken if the exception is thrown. If an

error is generated exception handling provides a means of exiting the application in a graceful

manner. In this application roughly 80% of the catastrophic errors have been catered for

which allows a relatively smooth interaction between the system and end user.

4.8.1 Examples

4.8.1.1 ArrayIndexOutOfBoundsException

According to Sun this exception is thrown at runtime when an array is indexed with a value

less than zero or greater than or equal to the size of the array. For example, in the screenshot

below we can see that the user is trying to retrieve a value which does not exist. In the main

chat lobby, the user ‘ciaran’ has contributed only two messages to the conversation.

However, the command used by the user is trying to retrieve the third last message by the

user ‘ciaran’ which does not exist. This is clearly demonstrated below in figure 4.57.

Figure 4.57 Interface Command to generate Array Index Out Of Bounds Exception

At runtime, when such a command was submitted to the system and exception was thrown

and the application terminated abnormally. The below error was returned to the console

command prompt and the interface refused any further input from the user.

Ciaran Reidy Page 107 9/29/2008

Figure 4.58 Console error - Array Index Out Of Bounds Exception

In order to cater for such an error been thrown, a try-catch block was needed. If the code in

the try block, i.e. attempting to retrieve a previous message, generates an error then this piece

of code stops executing and the exception block is executed. The piece of code to handle such

scenarios is given below in figure 4.59.

Figure 4.59 Exception Handling Code - Array Index Out Of Bounds Exception

This piece of code returned a user friendly alert as seen in figure 4.60 outlining the problem

to the user while also synthesizing the error to the user so that full comprehension is achieved

by the end user.

Figure 4.60 User Friendly Error - Array Index Out Of Bounds Exception

4.8.1.2 NumberFormatException

This error is thrown to indicate that the application has attempted to convert a string to one of

the numeric types, but that the string does not have the appropriate format. In this application,

such an exception can be thrown if the command does not contain the right syntax, as in the

previous example. For example, the second parameter in the command

‘<remember>,2,ciaran’ is a numeric character. This command is divided up into three

separate strings separated by a comma for processing. If the wrong syntax is entered, say for

Ciaran Reidy Page 108 9/29/2008

example, a comma is omitted then an exception is thrown. As in the interface below I have

demonstrated how this is possible.

Figure 4.61 Interface Command to generate Number Format Exception

This command would be divided into two strings, ‘<remember>1’ and ‘christina’. The

program would then try to convert the string ‘<remember>1’ into an integer to be used as an

index for hash table vector. Before any exception handling was introduced, the below error

was generated from the command prompt.

Figure 4.62 Console error - Array Number Format Exception

The below exception handling code prevented the application from terminating abnormally.

The program attempts to convert the second parameter in the command to an integer, and on

failure the catch block is executed instead.

Ciaran Reidy Page 109 9/29/2008

Figure 4.63 Exception Handling Code – Number Format Exception

The above code again enabled a user friendly error returned to the user without the

application freezing. The result of the above catch block being invoked can be seen below in

figure 4.64

Figure 4.64 User Friendly Error – Number Format Exception

4.9 Conclusions

In this chapter it was clearly demonstrated and proven that a speech synthesis chat application

can be developed using the architecture and tools outlined in section 4.4. The various classes

used in developing this system, and how each of these classes is associated with each other,

were addressed separately in section 4.5. Using the methodology outlined in section 4.2, it

has also been demonstrated that in an iterative development process, the additional

functionality as outlined section 4.7 can be appended to the system with little or no

implications to the rest of the system. An overlap of use case diagrams and the prototype

interfaces outlined in chapter 3 and the actual screen shots of the working application was

clearly demonstrated in section 4.6, highlighting the relationship from the initial requirements

through to the design and into the implementation of these requirements. Finally section 4.8

looked at the importance of using proper error handling in any system.

Ciaran Reidy Page 110 9/29/2008

5. Testing and Evaluation

5.1 Introduction

In the previous chapter, we saw how it is possible to develop a speech enabled chat

application. We saw how it is possible to integrate ‘network communication mediums and

open source speech synthesis’ in order to produce a functionally working real time

communication medium for the visually impaired to use at ease. In this chapter, testing and

evaluation, we will first see the different methods used for testing the system. We will see the

types of testing methods carried out, a test plan, example test cases with inputs and results,

the features tested, and environmental needs. In the latter part of this chapter we will discuss

the evaluation process used to qualitatively determine the success of the implementation

carried out in chapter 4. This will be achieved using questionnaires to be answered by end

users of the system and then evaluating the system’s performance on these answers.

5.2 Testing

Sami Zahran stated in his book ‘Software Process Improvement’ that roughly 4,000 people

have died over the last 15 years due to software defects (Zahran, 1998). Such atrocities in

military combat, aviation and the aerospace industry could have been prevented with proper

testing plans and documentation in place. With software continuing to play a significant role

in every day life, it stands to reason that there is more of a need that the software developed is

of a sound nature with as few defects as possible. After all there is not point in producing

software with some of the latest tools and technologies if it does not work. Software

engineers are acknowledging that software should not be left to some one else, and that

software testing should not begin once the development ends. (Ogilvy) believes that

integrating testing directly into your development process can produce more robust and error-

free code.

5.2.1 Development of Test Plan

Over the years various different test plans were thought up by companies and individuals to

allow the control of testing for all phases of testing. As a result this has caused confusion

among software testers as there was no agreed set of document standards and templates for

testing. The IEEE (Institute of Electrical and Electronics Engineers, Inc.) have provided the

829 Standard for Software Test Documentation specifically for all types of software testing.

The IEEE 829 standard was applied to this application as a basis for structuring the testing

process. Although there are nineteen clauses to consider when building a successful test plan

(IEEE 829), I have used the most suitable clauses for the testing of this application.

While this standard has a similar scope to and is based on the principles defined in IEEE 829,

this standard has customized these principles for the chat application environment. The test

Ciaran Reidy Page 111 9/29/2008

plan document for the chat application environment, and in accordance with IEEE 829, shall

have the following structure:

• Introduction

• Test items

• Features to be tested

• Features not to be tested

• Approach

• Item pass/fail criteria

• Test deliverables

• Testing tasks

• Environmental needs

• Responsibilities

• Staffing and training needs

• Schedule

• Approvals

5.2.2 Test Plan Features

The Test Plan for the speech enabled chat application was drafted by the author of this thesis

and it describes the testing strategy to validate the quality of this product prior to release. It

also contains various resources required for the successful completion of this project. The test

plan will outline the scope, approach, and the schedule of intended testing activities. The test

plan will identify the test items to be tested, the features that will be tested, and who will test

each unit or item.

5.2.3 Schedules and Resources

The developer (author) will test each unit or component as it is built. In practice though, as

each code component is built, it is handed over to the testing team for finer grained testing

before released to UAT. The developer does not usually test their own work.

Once the use cases have been tested and confirmed as working, they can be escalated to the

UAT environment for the end user to test. Any errors encountered will be recorded in a log.

The resource for such recording of errors will be MS Access. Once the defects have been

Ciaran Reidy Page 112 9/29/2008

ironed out, the normal test suite can begin again. It should be noted that some of these testing

stages will need to be repeated and/or overlapped.

Generally speaking, once the UAT team has signed off, the code is deployed to the

production environment in the next release. For the first week of the new system being in a

live environment, the development team works with the production support team in aiding the

usage of the system for the end user. As there are no automatic test scripts needed for the

testing of this application, the main resource needed is the tester’s time.

5.2.4 Testing Approach

Unit testing will be undertaken by the developer (author of this thesis). Approval of unit

testing will also be done by the developer (author of this thesis).

Integration testing will be performed by the test developer (author of this thesis). No specific

test tools are available or required for this project. Programs will enter into integration test

after all critical defects have been removed from unit testing.

Acceptance testing will be performed by the developer (author of this thesis) and by the

actual end users with the assistance of the author of this thesis. The acceptance test will be

done in parallel with the existing test script generated by the author of this thesis. As

mentioned under the methodology section (section 4.2), the adoption of the Crystal Clear

methodology enables the author of this thesis to play the role of the sponsor, senior designer,

programmer, user, and tester.

5.2.5 Features to be tested

At the end of each development life cycle, all use cases as outlined in chapter 3 will be tested.

For example, the use cases to be tested for an authenticated user are as follows:

• Log on

• View user list

• Enter message

• Submit message

• View conversation

• Retrieve Previous Message

• Acronyms Interpreted

• ‘Alt’ + ‘L’ – Logout of system

• ‘Alt’ + ‘S’ – Saving a conversation to the database

• ‘Alt’ + ‘U’ – Synthesizing list of logged in users

Ciaran Reidy Page 113 9/29/2008

• Logout

As an example, I will now detail a specific use case for clarity. The test item to be explored

further is for the use case ‘log on’.

Log on test case in accordance with IEEE 829 test case specification template.

Test item This test case validates the user’s loginid and password and determines

whether the use is authenticated to use the system or not

Input Details

Input items Data items to be used

username

password

Ordering The username is entered first, followed by the password.

Values No aschii character validation has been done as this system is a prototype

States Test case executed once details are submitted from LoginScreen.java

Response Time Response time should be no more than 4 seconds.

Output Details

Message

Responses

‘Login Success’ or ‘Login Failed. Would you like to try again?’

Response Time Response time should be no more than 4 seconds.

5.2.6 Environmental Needs

Hardware: properly configured hardware and appropriate arrangement of connection to the

network for both the server and client.

Software: the correct version of Java, FreeTTS, MySQL (including jdbc driver), Sphinx-4,

class paths and libraries configured as outlined in section 4.3.3.1 (setting up environment)

5.2.7 Item Pass/Fail Criteria

Since this is still a small application compared to industry standards, for each individual test

item to pass it is a requirement that no defects are reported. Also, the result returned from all

test items tested combined must also return no defects (see test-script). Such a tight constraint

is feasible since this project is still relatively small and contained.

Ciaran Reidy Page 114 9/29/2008

5.2.8 Test Deliverables

The following will be delivered as part of the test plan:

• Test plan document.

• Test cases.

• Test design specifications.

• Error logs and execution logs.

• Problem reports and corrective actions.

5.3 Types of Testing

In the diagram below we can see how the testing phase fits into the design and development

phases. The design phase was a prelude to the development phase which in turn is a prelude

to the testing phase. We can see in figure 5.1 the different types of testing which was done in

this application, and highlighted is the ‘system testing’ to show that although it was not used

in the test plans for this system, this is where it would fit in if it was used. This diagram was

produced in accordance with the V model (V-model).

Figure 5.1 Integration of Testing methods into Design and Development of System

[source: author using Visual Paradigm]

5.3.1 Unit Testing

Unit testing is a method of testing and verifying that each unit of code works as designed

before proceeding with further development. A unit is the smallest testable part of an

application that developers can discuss as an independent entity (Redmonk, 1999). In

Ciaran Reidy Page 115 9/29/2008

computer programming, this may be an individual class, method, or any piece of code that

delivers functionality to the end user. The source code is tested in isolation from the main

application. Unit testing proved to be critical in the design of this system, as it was important

to be able to test certain parts without having to wait (Rajendran) on user / developer

feedback on other parts. Such feedback related to advice being given from fellow developers

and on performance and functionality feedback from typical users of the system.

5.3.2 Integration Testing

Integration testing is the next stage in the testing phase. Once all the units have passed testing

in isolation, the individual units were tested together as a whole. Although modules of code

may work in isolation, they may not always work in an integrated environment. This was the

case for this application because this application involved numerous individual units calling

various different classes, some even on the other end of the network.

For example, it was important to test that the ChatServer and ChatClient classes worked in

isolation but it was pivotal for such a chat communication application to work as a whole.

Integration testing unveiled further defects in the code with regard to Socket programming

issues, Connection refused exceptions; Connection reset exceptions, and Socket binding

connections. In the screenshots below we can see three examples of how ‘integration testing’

revealed bug defects. In the first example, we can see the Client attempting to connect to the

Server but the connection is refused. Although both units and classes worked in isolation,

connection concerns were raised during integration testing.

Figure 5.2 ConnectException (generated by developer).

The second socket programming exception occurred by the client ending its connection to the

server ungracefully. Such an exception was handled by closing all open stream connections to

the server before closing the instance. Such an exception was handled using the close method

in socket.close().

Ciaran Reidy Page 116 9/29/2008

Figure 5.3 SocketException (generated by developer).

The final of examples where defects were discovered during ‘integration testing’ involved

multiple instances of the ChatHandler object listening for incoming connections on the same

port. This resulted in the below error being returned on the console because two sockets

cannot connect to the same port on the same machine simultaneously (SunManagers).

Figure 5.4 BindException (generated by developer).

5.3.3 Stress Testing

The idea of stress testing is to push the boundaries of the system on all fronts to the point of

failure. As this application is a prototype ‘stress testing’ was not the main method of testing

but a certain element of testing was used. The ‘stress testing’ carried out on this application

involved setting up a few different users on the system by adding new records to the database

tblUsers table. I then ran a few different instances of the application in a local environment

(on one IP and multiple IPs). I envisioned how a normal conversation would be carried out

among five different users on a typical chat application and proceeded to create such an

environment. The results showed that the ChatHandler could handle and broadcast all

incoming messages from any of the clients. The Speech Synthesizer worked perfectly too,

however when I used just the one IP address I noticed there was an echo from the synthesizer.

This just meant that all instances of the ChatClient calling the speech synthesizer were

working. When more than one IP was used the echo was removed and the synthesizer worked

on all remote machines under the same network.

5.3.4 System Testing

System testing was not involved in the testing of this application as this type of testing

generally only applies to projects within the industry that have separate Q&A teams.

5.3.5 Acceptance Testing

The final phase during testing is the ‘acceptance testing’ which is carried out by the users of

the system. ‘Acceptance testing’ is also sometimes referred to as User Acceptance Testing

(UAT) or Beta Testing. For this thesis, this involved allowing user’s of the system test the

application. The users in turn confirmed if the requirements and functionality as outlined in

the design stage have been met or not.

Ciaran Reidy Page 117 9/29/2008

5.4 Software Evaluation

5.4.1 Introduction

In this section the chat application product’s quality is determined and evaluated. Software

evaluation is a process which helps to improve the software product quality. The ISO

(International Organization for Standardization) is the world’s largest developer and

publisher of international standards. In evaluating the chat application as an end product, the

evaluation process used was based on ISO 14598 (ISO 14598) and in determining the quality

of the application as an end product it was based on ISO 9126 (ISO 9126).

ISO 14598

The ISO 14598 standard can be used by various different types of users to evaluate software.

Such users can be acquirers, users or evaluators, and developers (ISO 14598). For this

particular application to be evaluated successfully we are only concerned with the evaluation

being done by evaluators or the end users. In standard ISO 14598, to achieve software

evaluations the various entities, components, and attributes need to be quantitatively

measured using validated metrics. In order to evaluate the software, the ISO 14598-5 (process

for evaluators) standard was used in conjunction with the ISO 9126 standards which describe

the product quality characteristics and metrics.

ISO 9126

According to ISO 9126 there are six quality characteristics which can be applied to a

software product, they are functionality, reliability, usability, efficiency, maintainability, and

portability. Each of these characteristics can be subdivided into sub-characteristics which in

turn can be divided further into elementary quality attributes that can be measured and rated

(ISO 9126).

Figure 5.5 ISO 9126-1 Quality Model Characteristics [source: author using Visual

Paradigm].

These individual elementary subsections of the software can then be measured and rated

using customized metrics. The metrics adopted for this product was the making of a checklist

Ciaran Reidy Page 118 9/29/2008

where the various components of the software and its attributes were transformed into

question format to be answered by the evaluator.

Since the quality characteristics cannot be measured in a quantitative manner, there needs to

exist some sort of quality metric that maps the software quality characteristic to a set of

numeric terms. Each measure of quality, presented in question format, that the end user

answers will be a numerical value between 1 and 10. This new value can then be interpreted

to indicate how satisfied the end user is with the application.

The feedback obtained from the user can then be assessed and the software quality evaluated.

The result will indicate whether the software product meets the quality requirements.

5.4.2 Software Evaluation Process

The research methodologies used to gather the information needed to address the evaluation

objectives were as follows:

• Primary research: interviews and questionnaires

• Secondary research: review of literature

• Critical Analysis

• Data collection

In this thesis, interviews and questionnaires were the major sources of date to provide

quantitative and qualitative data. Such methods of acquiring data provided the opportunity to

allow the end user, some visually impaired, to comment on how they felt the speech enabled

chat application was for them. The visually impaired users had very positive and powerful

feedback, more so than the sighted users.

The questions used in the questionnaire were designed to be simple and open ended to allow

the evaluators to express clearly and openly their impressions of the system. I felt such

feedback would be more beneficial in going forward with future redesign and additional

functionality.

5.4.3 Rubric Provided

The researcher of this thesis developed an evaluation rubric which is a paper based

instrument to assess and evaluate the quality of the software system developed. According to

Wikipedia, rubrics allow for ‘standardized evaluation according to specified criteria’ in order

to ‘assess criteria which are complex and subjective and also provide ground for self-

evaluation, reflection and peer review’.

Ciaran Reidy Page 119 9/29/2008

The rubric provided to the interviewees was composed of a number of questions which

allowed them to express clearly and openly their thoughts of the system. The idea of using

open ended questions meant that more open and fruitful answers could be obtained. I felt this

was more important in gaining an overview to properly evaluate the success of researching,

designing, and implementing such a voice enabled chat application for the visually impaired.

In successfully evaluating the software system developed, four interviews were conducted. I

have used a coding scheme, given below in figure 5.6, throughout this research to conform to

confidentiality and anonymity.

 Gender Code Throughout Research

Interview 1 Female F1

Interview 2 Female F2

Interview 3 Male M1

Figure 5.6 Interviewees Coded.

Since this research is about visual issues, it was imperative that the information obtained

from the rubric was obtained from visually impaired users, and / or users with sight

impairments. All three of the interviewees had a strong background in using computers (F1,

F2, M1). One particular interviewee (F3) also had touch typing skills. Since this system was

designed for the visually impaired it was important that most of the interviews were

conducting with people who had visual impairments.

5.4.4 Evaluator Feedback

The characteristics for the four interviewees were as follows:

• F1 represents a female teenager who wore spectacles with a strong lens

• F2 represents a female in her early 50s who has been blind since birth.

• M1 represents a male in his late 50s who has no visual impairments. The interviewee

M1 filled in the rubric twice. The first time represented the results of M1 using the

system normally, while the second set of answers (interview 3b) reflected M1’s

thoughts of using the system whilst blind-folded.

The results obtained from the rubric were far more beneficial in evaluating the speech

enabled chat application.

Ciaran Reidy Page 120 9/29/2008

What are your initial impressions of the system?

The first impressions of any system are very important to any user as this can have a lasting

effect for them.

When this question was put to F1 the answers obtained were not as positive as

were the answers from the other interviewees. F1 stated “I use MSN a lot but it

would be better if this tool had more of the features that MSN and the likes had

such as changing the background to an image of my choice, games, and image

icons”.

In reviewing this answer, this application is just a prototype and more development can and

will be done, but as it’s a communication medium for the visually impaired there should not

be as much emphasis placed on entertainment features that other main stream applications

facilitate.

F2 had a completely different and more optimistic view on this application. F2 stated “Wow,

this is a really good idea. I’m surprised I haven’t heard of this idea before.” They also found

the system easily navigable. This answer was very welcoming as such a concept was a

concern from the beginning. It was no surprise such a more positive first impression came

from a blind user.

When this question was put to M1, he stated “I had problems initially starting off but as soon

as I was in the main chat lobby it was easier to interact with the system.” He also mentioned

how he thought that it was good idea to integrate IM software with speech tools. M1 felt that

it was ”good for visually impaired users to socialize via the internet as they probably

wouldn’t socialize as much as sighted people like over a beer etc”. (Kinght et al, 2002)

mentioned that 54% of disabled people found that the internet was a necessity which could be

to do with a socializing concept more so than anything else such as online shopping.

Did you find it difficult starting off?

M1 stated “as well as finding it difficult to first get into the application, I also found it

difficult to use the shortcuts provided since I’m so used to using the mouse”.

F1 was not pleased with the quality of the synthesizer and found it a little robotic. F1 asked if

there “were better synthesizers we could use instead”.

However, on the contrary to F1’s view on the synthesizer’s quality, F2 was not surprised and

that it sounded similar to most synthesizers she had heard before. She also reiterated M1’s

opinion on finding it straight forward with regard navigating throughout the system and

‘being in control’.

Ciaran Reidy Page 121 9/29/2008

What features did you like best about the system?

F2 stated “I loved the idea of synthesizing old messages as this is always an issue for blind

users”. Such a remark comes as no surprise from a blind user. This user told me that trying to

remember previous content just synthesized was ‘very frustrating when using the web’ in

particular. F2 also found that it was great to have such technology free of charge, as other

screen readers such as JAWS was expensive. This related well to what (Fichten, 2001)

highlights when they found that cost was a huge factor for adaptive computer technologies.

F1 replied to this question saying “I love the idea of a computer talking to me, it’s so cool”.

For those who do not usually hear speech synthesis in there everyday life this was no

surprise.

M1 appreciated the concept of how each key was synthesized and appreciated how such a

concept would be of great benefit to the visually impaired. M1 demonstrated this by using a

blind-fold and of roughly 100 words typed no mistake was made. This experiment proved

that this particular piece of functionality worked perfectly.

How do you think it could be improved in the future?

M1 had some very interesting ideas regarding this question. M1 wanted to know whether the

synthesizer control settings were saved so that every time he logged back on he wouldn’t

have to reset them each time. Having given time to think about this idea, it would be possible

to add this functionality onto the system. This could be achieved by saving the preferred

settings to the tblUsers table on the database. Then each time the user logged on these

settings could be retrieved and applied to the interface.

F1 suggested the option to allow the user enable or disable the speech synthesis.

F2, the blind user, suggested synthesizing the component, button, or control that the mouse

was placed over on the interface. With a little bit of work this could be achieved through

mouse coordinates. If the mouse coordinates were within a specified range around a

particular component, then the synthesizer could synthesize this particular component.

Would you like to add any further comments about the system?

F2 stated she found the system very user friendly and “always felt in the loop” when

discussing the system and this was achieved through ‘constant synthesized feedback’. This

was great to hear because (Pew, 2003) found that people with disabilities had a more negative

opinion on technology than able bodied people which is related to software not being entirely

user friendly.

M1 went as far as requesting ‘full time access to the system’ and how does one set oneself

up.

Ciaran Reidy Page 122 9/29/2008

5.5 Conclusion

We have learned that this speech enabled chat application is critically important to these

users. It is liberating. For many of our participants, this application has brought a greater

sense of independence than ever before. It allows them to "read" a conversation for the first

time. It gave them an easy way to socialize and interact. It made them less dependent on

others to tell them what people had said if they were chatting using one of the main stream

chat applications.

Ciaran Reidy Page 123 9/29/2008

6. Conclusions

6.1 Introduction

In this conclusion chapter we will revisit this dissertation and the research involved, give a

summary of the findings found in the previous chapters, list the problems encountered in the

research and investigation, and outline plausible suggestions for future work in this area of

research.

6.2 Key Findings

6.2.1 Review of Literature

In chapter 2, the literature review, there were numerous papers, books, conference readings,

and journals on software accessibility, assistive technologies, instant messaging software, and

open source software. It was not one of these, but all these topics, which combined gave

some belief and structure in recommending a path to combat the issues regarding accessible

instant messaging software for the visually impaired to use.

It is clear that more and more people are using computers in today’s world which is due to

improvements in computing technology, better high-speed broadband connections, and the

reduced cost of these technologies. Despite the advancements in software and technology,

software accessibility remains a significant issue for the visually impaired. This has been

documented in a paper ‘Is the web truly accessible to the Disabled?’ by McGrane (2000)

where 98% of all websites pose some form of accessibility constraint. Such negative statistics

has caused difficulty or even prevented roughly 10 million blind or visually impaired users

from participating in the cyber society of the modern age (AFB – American Foundation for

the blind).

Instant Messaging (IM) software is a relatively new technology compared to most software

applications. Most websites have been forced to conform to W3C guidelines. It is a new form

of social interaction that has gained acceptance by people from all generations for many

different purposes ranging from socializing (Oblinger, 2004), education, and corporate

related agendas (Tang, Yankelovich, Begole, 2001).

(Pew, 2003) found that people with disabilities had a negative opinion on technology. This

could well be due to the face that software, as mentioned above, is not entirely accessible by

all. The literature review also revealed that assistive technology is not always readily

available which is due to inadequate refunding for adaptive computer technologies (Fichten,

2001). This is the case because adaptive technologies have been specifically designed for a

particular segment for the market. Also documented in the literature review was that most of

these technologies, such as JAWS, are closed source meaning that the software is not

distributed with the executable to be reused again in other applications. This highlights a

need to use existing open source software such as speech enabled technologies with open

Ciaran Reidy Page 124 9/29/2008

source speech tools such as Java to develop create a new application that the blind would

benefit from.

The above literature combined paves the way for developing and instant messaging chat

socializing tool coupled with speech enabled technologies for the visually impaired to use.

IM allows people to discuss real experiences in virtual spaces, where often physical

accessibility barriers may prevent real life community situations occurring for the disabled.

6.2.2 Review of design

The design stage proved very important in this thesis as it helped develop the right system for

the users. UML is ideally suited for the design of this system. The various UML diagrams

gave structure to what classes and methods were needed for the development of this project.

The domain analysis provided a direct mapping from the objects in the real world to the

various components of the system. The state and activity diagrams outlined the various states

the objects could be in given a scenario. Finally the sequence diagrams proved very useful

with regard to parameter passing among the various classes and methods of the system. The

sequence diagrams also helped in documenting the sequence of steps which must be

completed in order for the use case return a completed function to the end user. However, the

collaboration diagram, sometimes used instead of the sequence diagram provided no more

value to the design as they only documented what the sequence diagram had already

documented.

The prototype screenshots helped clarify in my own mind how the UI was going to work. The

initial prototype screenshots were designed to be very basic as it was important to not give

any false indication of progress to the end user (Fowler, 1998). Such initial prototype GUIs

gave direction in what the end system would look like. It was important to have an initial plan

that could be visualized from early on.

6.2.3 Review of Development

Having completed the development of this application, it has been established that such an

accessible communication tool can be implemented using the Java programming language

and open source speech enabled technologies. It has also been shown that such technologies

can be easily integrated into one system as the programming language for all components in

this thesis was Java. The scientific conclusions also highlight that the unlimited tuning of

open source software can be performed in order to deliver the exact system requirements to

the end user.

Ciaran Reidy Page 125 9/29/2008

6.2.4 Review of Testing and Evaluation

It was interesting to investigate standards associated with both software testing and software

evaluation. IEE 829 proved to be a very comprehensive test plan in controlling the testing of

this application. The different types of testing proved exceptionally important in this project

as not one, but the various types of testing together, proved very influential in removing bugs

from the system.

In evaluating this project as an end product, the evaluation process, based on ISO 14598, and

the process of determining the quality of the application, based on ISO 9126, proved very

important in gaining substantial feedback with regard to quality and success of this project.

6.3 Problems Encountered

There were numerous difficulties and obstacles encountered throughout this thesis from the

offset through to completion. There were numerous technical problems encountered during

the development phase of this thesis. Coding of any project is never straight forward and

there were times when it proved impossible to deliver certain functionality in a certain way.

This was largely because it was beyond the capabilities technologies used. In these

circumstances, such problems were addressed by requesting the aid from professionals in the

area of Java programming through online forums such as Sun and DevShed. Another

difficulty was that these experts delayed a few days before responding which delayed

development.

Environmental issues and configuration settings also caused many problems when certain

libraries and dll were being used. To overcome such difficulties involved editing the

classpath variable a few times.

One of the difficulties associated with researching instant messaging accessibility was that

access to material on this specific topic was only of a marginal amount. There was a lot of

material which covered software accessibility but this was mainly confined to websites, and

of the instant messaging literature that was found there was very little which addressed the

concept of accessibility. However this problem was addressed by reading a variety of

literature sources of all aspects of this dissertation, and also by engaging in discussions with

experienced users in order to acquire direction and assistance on this dissertation.

The copying of certain images from visual paradigm, the software IDE tool used in the

creation of system diagrams, to this document proved difficult. For example, the detailed

class diagram depicting the whole diagram of the system was too big to select as one image.

In order to address this issue, the diagram needed to be copied as two separate diagrams

which were then rejoined using MS Paint before being copied.

There were performance issues with the synthesizer as some users felt the synthesis was not

of a high enough quality. Again this was beyond the capabilities of modern speech

synthesizers which has to cater for such a large vocabulary. However this system was

Ciaran Reidy Page 126 9/29/2008

designed so that other voices could be imported once they become available. The synthesizer

also behaved differently to what was expected when attempting to synthesize certain keys

that were pressed. For example, when the numlock functionality was enabled it synthesized a

- i when 1 – 9 were pressed. When the numlock was disabled the word ‘hash’ was

synthesized for 1, the word ‘percent’ was synthesized for 4, the word ‘dollar’ was synthesized

for 7, and the word ‘ampersand’ was synthesized for the number 8. The remaining numbers

from 1-9 returned nothing. There were also issues with the synthesizer pronunciating words

with great confusion. This issue could almost be addressed in another thesis as it is so broad.

6.4 Conclusions

This research thesis set out to review current software accessibility, in particular Instant

Messaging (IM) Software. A great deal of desk-based research was undertaken in order to

complete this thesis. The relevant literature was researched such as software accessibility,

instant messaging, and open source software in a quest to combining this selection of existing

literature and attempting to provide something new and beneficial for the visually impaired.

It has been clearly demonstrated and proven in this thesis that an accessible communication

and socializing tool can be developed for the visually impaired. It has also been clearly

demonstrated that open source speech enabled technologies can be fine tuned and used to

cater for one’s desires. Such a concept proved exceptionally important for this application as

each incremental release provided more speech synthesis functionality. In order to evaluate

the development undertaken in this thesis a rubric was created which invited user’s thoughts

about their use of the system. The results obtained from section 5.3 help confirm that this

newly developed speech enabled chat application specifically designed for the visually

impaired represents an important building step in software accessibility.

6.5 Future Work

6.5.1 Speech Synthesis

This thesis has undergone a huge amount of research to help completing a functionally

working chat enabled communication medium. A great deal more work can be done in the

area of speech synthesis, as the additional functionality section proved. There is an endless

amount of work and experimentation that can be applied to the speech synthesis of this

particular application. by importing voices from Festival, it would be interesting to try to

allocate different voices to different people in the conversation. For example, if the

conversationalist was female then a female synthetic voice could be allocated for this

particular user.

6.5.2 Speech Recognition

Speech recognition could be integrated into this chat application in a similar manner to the

speech synthesis approach. By integrating such a feature, this would really make this

Ciaran Reidy Page 127 9/29/2008

application a truly speech operated device for those who not only having visual difficulties

but also for those who dislike using the keyboard as the primary input.

Social-psychological research has shown that people treat media the same way as they treat

other people. Professors Byron Reeves and Clifford Nass from Cambridge University say that

a speech recognition system is viewed as a social actor by the users of the system (Reeves,

1996). With this in mind it seems only natural to enable the use of speech recognition in

applications. As already mentioned in this thesis it is important to treat computers more as

humans rather than machines.

Speech recognition technology is constantly improving. Today's speech recognition systems

can understand more than just one word or phrase at a time. A typical North American

English speech recognition system is so good that it can match a single spoken utterance

against a list of 80,000 items with upwards of 95% accuracy while still being able to respond

to the caller with the next question or statement in tenths of a second (Kotelly, 2003).

6.5.2.1 Previous Work

Speech recognition technology has thus far been deployed in a number of applications in a

number of different industries from air transport (United Airlines) to freight forwarding

(Fedex) (Juang and Rabiner, 2004). Voice dialling applications such as these can be used in a

number of applications seeking to retrieve various types of information for the user. Car

navigation is one of the latest speech recognition systems on the market day (Muthusamy,

1999). The VODIS (voice operated driver’s information systems) project (Pouteau, 1997)

was launched in Europe to investigate a robust speech interface for command and control

applications of car functions. These types of applications face obvious problems such as cost,

and accuracy. Naturally word recognition accuracy would deteriate in the car environment

due to noises coming from the engine, the wind, the car radio, the horn, etc.

Voice dialing is a simple task and everybody believes that in the car environment the use of

voice dialing can improve driver safety. However, a study in Canada (Redelmeier and

Tibshirani, 1997) has demonstrated that the risk of having a car accident while using a

telephone is comparable to the risk arising from the consumption of alcohol. Furthermore, the

dangers are similar whether the telephone in use is of a hands free design or not.

In other words, the risk is associated with the verbal task in which the driver is engaged, and

not necessarily with the physical manipulation of the telephone handset. Furthermore, (Boves

and den Os, 1999) observed that voice dialing cannot be considered a successful application.

They found that most ignore this add on to existing applications and only 10 to 20% of users

actually use it. Although if the user of the system is blind and may have no other choice in

communicating with the system then this figure would certainly not be as low.

6.5.2.2 Performance Issues

Earlier studies (Hirsch, 1989) have shown that the recognition rates of word recognition

systems deteriorate considerably for a hands free speech input in reverberant environments.

The reason for this is the masking of the spectral features of certain phonemes. The

Ciaran Reidy Page 128 9/29/2008

dominating vowels mask the following phonemes with less energy and less duration. Many

users today use a hands free system to communicate either via mobile, Skye, Msn Messenger

etc. If the end user of the system is blind then the chances are even greater that they will use a

hands free speech as the primary input. Having said that, noise suppression algorithms have

been developed to improve the noisy speech in such communication situations (Compernolle,

1989).

Since potential recognition to be used in this project would not involve the speech being

transmitted across the network, there would be no bandwidth or line noise and distortion

issues and therefore accuracy of the recognizer should not be affected. Every time someone

speaks into a telephone microphone, the signal is compressed and transmitted across the

telephone network, inevitably losing quality along the way (Kotelly, 2003). By the time the

signal reaches the other end it can be very difficult for the recognizer to understand the

muffled signal.

6.5.2.3 Trained Data Concerns

Acoustic models used in speech recognizers are trained using data from people in the age

range of 15-60. This then naturally poses an age group problem when one considers the

interaction of the system and speech from other groups such as children and the elderly.

It has been proven that the word error rate among these groups is much higher than other age

groups (Wilpon and Jacobsen, 1996) and reports have shown that children's speech is slower

than that of adult speech and that children exhibit higher variability as compared to adults in

speaking rate, vocal effort and degree of spontaneity (Lee et al, 1997).

Another area of recognition performance which one must not ignore when designing a system

is the speaking rate of the user, and the consequences this will have on promising

performance statistics (Walker, 2004). It was found that as people spoke more quickly, word

error rate increased as the confusion between the phones also increased. It has bee observed

that for fast speakers error rate is more than double as compared to average speakers (Pallett,

1994).

Research has shown that the performance levels of speech recognizers are greatly reduced

when non native speakers use recognizers which have been trained on native speech. This is

because non-native speakers tend to use sounds that do not belong to the main language that

trained the recognizer. Such "foreign" sounds are sometime called xenophones (Eklund and

Lindström, 1998) and depending on how these xeneophones are dealt with, recognition

performance will be affected.

6.5.2.4 Potential Speech Recognizer

The Sphinx-4 speech recognizer was developed entirely in the Java programming language

by researchers at the Carnegie Mallon University. As with the FreeTTS speech synthesizer,

this speech recognizer is also open source meaning this recognizer could be altered and

Ciaran Reidy Page 129 9/29/2008

designed with a dictionary that would suit the vocabulary needed by an instant messaging

chat application.

According to the developers of the Sphinx-4 speech recognition system, the success and

modularity was largely due to the use of the Java programming language. Wille Walker

stated, ‘the ability of the Java platform to load code at run time permits simple support for the

pluggable framework’. He also said that the Java platform also provides Sphinx-4 with a

number of other advantages such as: built-in support for multithreading makes it simple to

experiment with distributing decoding tasks across multiple threads’ (Walker, 2004).

However, (Moreno and Stern, 1994) found additive stationary noise, impulse noise, and low-

frequency tones increased recognition errors when they used a commercial telephone channel

simulator together with the Sphinx speech recognition system.

Ciaran Reidy Page 130 9/29/2008

Appendix A:

Test Script

Date Version Author Remarks

10/09/2008 0.01 Ciaran Reidy Initial Draft

Functional Spec

Ref:

Step Test Purpose / Sequence Expected Result Actual Result Pass /

Fail

Functional Spec

Ref:

Ensure that the new User has been created on the database.

Step Test Purpose / Sequence Expected Result Actual Result Pass /

Fail

1. Log in to the system

‘Login Successful’ or

‘Login Failed – Would

you like to try again?’

‘Login Successful’ Pass

Functional Spec

Ref:

Ensure that all application functionality is working

Step Test Purpose / Sequence Expected Result Actual Result Pass /

Fail

Ciaran Reidy Page 131 9/29/2008

Functional Spec

Ref:

Ensure that all application functionality is working

Step Test Purpose / Sequence Expected Result Actual Result Pass /

Fail

2. View User List The User List is

updated every 1

second with the latest

users logged in

As Expected – User

List updated as users

logged in / out

system

Pass

3. Enter Message The ChatLine is

enabled to allow the

user to type message

As Expected – User

successfully able to

type

Pass

4. Submit Message The users message is

sent to the server for

broadcast and

appended to ChatArea

As Expected – All

Interfaces connected

to server were

updated.

Pass

5. View Conversation The correct messages

in sequence are

displayed to user

screen

As Expected – User

can view all

messages

Pass

6. Retrieve Previous Message Previous Message

synthesized

As Expected – The

correct user and

message retrieved

Pass

7. Acronyms Interpreted The correct meaning

given an acronym is

displayed and

synthesized

As Expected –

acronyms worked

fine

Pass

8. Logout ‘You have successfully

logged out of the

system’

As Expected –

connection to server

closed gracefully

Pass

Functional Spec

Ref:

Ensure all access keys function as expected.

Step Test Purpose / Sequence Expected Result Actual Result Pass /

Fail

9. ‘Alt’ + ‘L’ – Logout of system

‘You have successfully

logged out of the

system’

As Expected –

connection to server

closed gracefully

Pass

Ciaran Reidy Page 132 9/29/2008

Functional Spec

Ref:

Ensure all access keys function as expected.

Step Test Purpose / Sequence Expected Result Actual Result Pass /

Fail

10. ‘Alt’ + ‘S’ – Saving a

conversation to the database

You have successfully

saved this conversation

As Expected –

Message saved to

the database

Pass

11. ‘Alt’ + ‘U’ – Synthesizing list of

logged in users

‘The following users are

currently logged in…’

As Expected – User

notified of the list of

users logged in

Pass

12.

Sign Off: Ciaran Reidy

Ciaran Reidy Page 133 9/29/2008

Appendix B:

Rubric Provided

What are your initial impressions of the system?

Did you find it difficult starting off?

What features did you like best about the system?

How do you think it could be improved in the future?

Would you like to add any further comments about the system?

Ciaran Reidy Page 134 9/29/2008

Appendix C:

System Commands

‘Alt’, ’Shift’, ‘S’ Save Conversation

‘Alt’ ‘L’ Logout

‘Alt’ ‘U’ Synthesize list of users logged in

‘Alt’ ‘C’ Get ready to start chatting

‘Alt’ ‘C’ Close out of Acronym box / Get ready to start chatting

‘Alt’ ‘P’ Increase pitch of synthesizer

‘Ctrl’ ‘P’ Decrease pitch of synthesizer

‘Alt’ ‘S’ Increase pitch of synthesizer

‘Ctrl’ ‘S’ Decrease pitch of synthesizer

‘Alt’ ‘V’ Increase volume of synthesizer

‘Ctrl’ ‘V’ Decrease volume of synthesizer

‘Alt’ ‘R’ Increase pitch range of synthesizer

‘Ctrl’ ‘A’ Add an abbreviation

Ciaran Reidy Page 135 9/29/2008

Ciaran Reidy Page 136 9/29/2008

Appendix D:

Java Installation Guide

Step 1. Double Click the icon just downloaded from Sun’s Website.

You will see jdk 6 update 1 window as shown below.

Step 2: Now a "License Agreement" window opens. Just read the agreement and click the

"Accept" button to accept and proceed to the ext step.

Ciaran Reidy Page 137 9/29/2008

Step 3: Now a "Custom Setup" window opens.

Step 4: Click on "Change" button to choose the installation directory. Here it is

"C:\Program Files\ Java\jdk1.6.0_01". Now click on "OK" button.

Ciaran Reidy Page 138 9/29/2008

Clicking the "OK" button starts the installation. It is shown in the following figure.

Ciaran Reidy Page 139 9/29/2008

Step 5: Next window asks to install Runtime Environment.

Click the "Change" button to choose the installation directory of Runtime Environment. It is

best not to change it. So click "OK" button.

Ciaran Reidy Page 140 9/29/2008

Step 6: Click "OK" button to start the installation.

Step 7: Now "Complete" window appears indicating that installation of jdk 1.6 has

completed successfully. Click "Finish" button to exit from the installation process.

Ciaran Reidy Page 141 9/29/2008

Step 8: The above installation will create two folders "jdk1.6.0_01" and "jre1.6.0_01" in

"C:\ Program Files\ java" folder.

Step 9: To make available Java Compiler and Runtime Environment for compiling and

running java programs, set the system environment variables. This is also discussed in section

4.4.4.

First of all select "My Computer" icon and right click the mouse button. Now click on

"system Properties" option. It provides the "System Properties" window; click the

Ciaran Reidy Page 142 9/29/2008

'Advanced' tab. Then Click the "Environment Variables" button. It provides

"Environment Variables" window. Now select the path in System variables and click

'Edit' button. The"Edit System Variable" window will open. Add "c:\Program

Files\Java\jdk1.6.0_01\bin" to 'variable value' and click 'Ok', 'Ok' and 'Ok' buttons.

Step 10: Now set the JAVA_HOME variable and set its value to " C:\Program

Files\Java\jdk1.6.0_01 ". If this variable has not been declared earlier then create a new

system variable by clicking on "New" button and give variable name as "JAVA_HOME"

and variable value as " C:\Program Files\Java\jdk1.6.0_01 ". Now click "OK". This

variable is used by other applications to find jdk installation directory. For example, Tomcat

server needs "JAVA_HOME" variable to find the installation directory of jdk.

Ciaran Reidy Page 143 9/29/2008

Step 11: Now this is the final step to check that you have installed jdk successfully and it is

working fine. Just go to the command prompt and type javac and hit enter key you will get

the screen as shown below:

Ciaran Reidy Page 144 9/29/2008

Now you can create, compile and run java programs.

Ciaran Reidy Page 145 9/29/2008

Bibliography

Access-board.gov. The Rehabilitation Act Amendments (Section 508) – Online at:

http://www.access-board.gov/sec508/guide/act.htm

Access Now. Miami Daily Business Review 10/7/02 - The ADA and The Internet

http://www.adaaccessnow.org/internet.htm

AFB - American Foundation for the blind Online at: http://afb.org/Section.asp?SectionID=15

Allen, J., Hunnicut, M. and Klatt, D. (1987) From Text to Speech: The MITalk system,

Cambridge University Press

Americans with Disability Act (ADA). Doe v. Mutual of Omaha Insurance Company (1999)

http://www.ada.gov/briefs/doebr.doc

AOL Launches Real-Time Instant Messaging Targeted to Deaf and Hard of Hearing Users

Online at: http://www.pr-inside.com/aol-launches-real-time-instant-messaging-targeted-

r388334.htm

Apache HTTP Web Server. Online at: http://httpd.apache.org/ABOUT_APACHE.html

Arons B, (1993) SpeechSkimmer: Interactively skimming recorded speech, Proceedings of

the Sixth ACM Symposium on User Interface Software and Technology, Atlanta, USA, 3-5th

November 1993, 187-196.

Bednar, J. and Robertson, D (2005) Development Methodologies. Online at:

http://www.inf.ed.ac.uk/teaching/courses/seoc2/2004_2005/slides/methodologies.pdf

Bell, T. W. (2002) Access Now, Inc. v. Southwest Airlines, Co

http://www.tomwbell.com/NetLaw/Ch02/AccessNow.html

Berinato, S. (2001). “The Secret to Software Success”. Retrieved article from www.cio.com.

Online at: http://www.cio.com/article/30341/The_Secret_to_Software_Success?page=1

Bigham, J., Aller, M., Brudvik, J., Leung, J., Yazzolino, L. and Ladner, R. - Inspiring Blind

High School Students to Pursue Computer Science with Instant Messaging Chatbots. Online

at: http://webinsight.cs.washington.edu/papers/sigcse.pdf

Blanck, P. and Sandler, L. (2000) ADA Title III and the Internet: Technology and Civil

Rights. Online at:

http://disability.law.uiowa.edu/lhpdc/publications/documents/blancketaldocs/ADA_Title_3_a

nd_Internet.pdf

Bovs, L. and den Os, E., (1999) "Applications of Speech Technology: Designing for

Usability". Proc. IEEE Worshop on ASR and Understanding, 353-362

Ciaran Reidy Page 146 9/29/2008

Bretthauer, D. (2001) - Open Source Software: A History. UConn Libraries Published Works.

Online at:

http://digitalcommons.uconn.edu/cgi/viewcontent.cgi?article=1009&context=libr_pubs

Brunet, P., Feigenbaum, B., Harris, K., Laws, C., Schwerdtfeger, R. and Weiss, L. (2005).

Accessibility requirements for systems design to accommodate users with vision

impairments. Online at: http://www.research.ibm.com/journal/sj/443/brunet.pdf

Buhler, P, Starr, C., Schroder, W. and Vidal, J. (2004) Preparing for Service-Oriented

Computing: a composite design pattern for stubless Web service invocation. Online at:

http://jmvidal.cse.sc.edu/papers/buhler04b.pdf

Buzzi, M, Andronico, P. and Leporini, B. (2004) Accessibility and Usability of Search

Engine Interfaces: Preliminary Testing. Online at:

http://www.ui4all.gr/workshop2004/files/ui4all_proceedings/adjunct/accessibility/58.pdf

Cabinet Office. Online Annual Report, 2002. Online at: http://archive.cabinetoffice.gov.uk/e-

envoy/reports-annrep-2002-pdf/$file/annualreport02.pdf

Chen, Z. (2003) Building Eclipse Instance Messenger. Online at:

http://www.scs.carleton.ca/~arpwhite/documents/honoursProjects/paul-chen-2003.pdf

Cockburn, A. (1997). Structuring Use Cases with Goals. Online at: http://atlas-project-tdaq-

awg.web.cern.ch/atlas-project-tdaq-awg/Documents/StructuringUseCasesWithGoals.pdf

Coffin, R. and Lane, D. - A Practical Guide to Seven Agile Methodologies, Part 2 Article

posted on devx.com. Online at: www.devx.com/architect/Article/32836/1954

Comino, S. and Manenti, F. (2003) - Open Source vs. Closed Source Software - Public

Policies in the Software Market. Online at:

http://opensource.mit.edu/papers/cominomanenti.pdf

Compernolle, V (1989) “Speech Recognition in noisy environments with the aid of

microphone arrays”, Proc. European Conference on Speech Communication and

TRechnology, Paris, pp. 657-660

Constantine, L. (2000) What do users want? Engineering usability into Software. Online at:

http://www.foruse.com/articles/whatusers.pdf

Dirk, G. and Dusty, S. (2003) The Linux Kernel & the File System Subsystem : An

Architectural Overview. Online at: http://azungu.dyndns.org/files/gevpaper.pdf

Disability Discrimination Act 1995. Online at:

http://www.opsi.gov.uk/acts/acts1995/ukpga_19950050_en_1

Dolan, D. (2004) The academic journal of the Institute of Technology Blanchardstown.

Special Edition for ITB Research Conference 2004 Conference papers 22/23 April 2004

Ciaran Reidy Page 147 9/29/2008

Dubinsky, Y. and Hazzan, O. (2004) Roles in Agile Software Development Teams. Online at:

http://edu.technion.ac.il/Courses/cs_methods/eXtremeProgramming/XP_Papers/Dubinsky&H

azzanXP2004includingAppendix.pdf

Edwards, K. (2001) Epistemic Communities, Situated Learning and Open Source Software

Development. Online at: http://opensource.mit.edu/papers/kasperedwards-ec.pdf

Eklund, R. and Lindström, A., (1998). How to handle "foreign" sounds in swedish text-to-

speech conversion: Approaching the "Xenophone" problem. 5th International Conference on

Spoken Language Processing, Sydney, Australia November 30 - December 4, 1998

Elliott, M. (2008) Examining the success of computerization movements in the ubiquitous

computing era: Free and Open Source Software Movements. Online at:

http://www.crito.uci.edu/si/resources/elliott.pdf

Elliott, M and Scacchi, W. (2003) - Free Software Development: Cooperation and Conflict in

A Virtual Organizational Culture. Revised version submitted to: S. Koch (ed.), Free/Open

Source Software Development, IDEA Publishing, 2004 Online at:

http://www.ics.uci.edu/~wscacchi/Papers/New/Elliott-Scacchi-BookChapter.pdf

Engelbert, D. and English, W (1968). A research center for augmenting human intellect.

Online at:

http://www.bootstrap.org/augdocs/friedewald030402/researchcenter1968/ResearchCenter196

8.html

Fichten, S., Asuncion, J., Barile, M., Fossey, M., Robillard, C. and Wolforth, J. (2001).

Computer technologies for postsecondary students with disabilities II: Resources and

recommendations for postsecondary service providers. Journal of Postsecondary Education

and Disability, 15(1), 59-82.

Fowler, M. (1998) Use and abuse cases. Online at:

http://martinfowler.com/distributedComputing/abuse.pdf

FreeTTS 1.2 - A speech synthesizer written entirely in the JavaTM programming language.

Online at: http://freetts.sourceforge.net/docs/index.php

Garrigue, J. (2000) Code reuse through polymorphic variants. Online at:

http://www.math.nagoya-u.ac.jp/~garrigue/papers/variant-reuse.pdf

Georgia Northern District. Martin v. Metro Atlanta Rapid Transit Authoriry, 2001

http://www.gand.uscourts.gov/documents/1001cv3255TWTinj.pdf

Gibson Research Corp: Steve Gibson: Without XPdite, Microsoft's Patch, or XP's Service

Pack 1, clicking on a simple, but malicious, URL can delete the entire contents of your

directories. Online at: http://www.grc.com/xpdite/xpdite.htm

Ciaran Reidy Page 148 9/29/2008

Gladden, J. (2000) History of Computer Graphics. Online at:

http://www.gladdengraphics.com/academics/GradCourses/ComputerGraphicsHistory/Researc

hPaper/parcgui01.pdf

GNU. Overview of the GNU Operating System - http://www.gnu.org/gnu/gnu-history.html

Hamza-Lup, F., Bot, R. and Salomie, I. (1999) Virtual University of Cluj-Napoca, A Web

Based Educational Framework. Online at:

http://www.cs.ucf.edu/~fhamza/papers/VirtualUniversity_Hamza-Lup.pdf

Hann, I., Roberts, J., Slaughter, S., Fielding, R. (2002) - Why Do Developers Contribute to

Open Source Projects? First Evidence of Economic Incentives. Online at:

http://opensource.ucc.ie/icse2002/HannRobertsSlaughterFielding.pdf

Harisha, K. (2007) Software Development Process and Its Importance posted on

articlesbase.com. Online at: http://www.articlesbase.com/softwarearticles/software-

development-process-and-its-importance-155037.html

Hars, A. and Ou, S. (2001) - Working for Free? – Motivations of Participating in Open

Source Projects. Proceedings of the 34th Hawaii International Conference on System

Sciences – 2001. Online at:

http://csdl2.computer.org/comp/proceedings/hicss/2001/0981/07/09817014.pdf

Healy, K. and Schussman, A. (2003) - The Ecology of Open-Source Software Development.

Online at: http://opensource.mit.edu/papers/healyschussman.pdf

Herbsleb, J., Atkins, D., Boyer, D., Handel, M and Finholt, T. (2002). Introducing Instant

Messaging and Chat in the Workplace. Online at:

http://www.crew.umich.edu/Technical%20reports/Herbsleb_Atkins_Boyer_Handel_Finholt_

Introducing_instant_messaging_12_10_01.pdf

High Tech Center Training Unit. High Tech Center Training Unit of the Chancellor’s Office

of California Community Colleges. (1999, August). Distance education: Access guidelines

for students with disabilities. Online at:

http://www.htctu.net/publications/guidelines/distance_ed/disted.htm

Hilderink, G., Broenink, J., Vervoort, W. and Bakkers, A. (1997) Communicating Java

Threads. Online at: http://www.ce.utwente.nl/javapp/cjt/CJT-paper.PDF

Hirsch, H.G., (1989) Speech Recognition in the Noisy Car Environment, Proc. European

Conference on Speech Communication and Technology, Paris, pp. 652-655

Horton, S. (2005) Accessible Design Guidelines. Online at:

http://www.dartmouth.edu/~webteach/resources/download/guidelines5.pdf

IEEE 829. Test Plan Outline (IEEE 829 Format). Foundation Course in Software Testing.

Online at: itisfun.tistory.com/attachment/jk2.pdf

Ciaran Reidy Page 149 9/29/2008

Jayaswal, B. and Patton, P. (2006) Design for Trustworthy Software: Tools, Techniques, and

Methodology of Developing Robust Software. Chapter 1: Software Development

Methodology Today

Johnson, J. (2001) Economics of Open Source Software. Online at:

http://opensource.mit.edu/papers/johnsonopensource.pdf

Jorgensen, N. (2001) Putting it All in the Trunk. Incremental Software Development in the

FreeBSD Open Source Project. Online at:

http://webhotel2.ruc.dk/nielsj//research/publications/freebsd.pdf

Junqua, J. (2000) Robust Speech Recognition in Embedded Systems and PC applications,

Chapter 3, Page 99.

Karaali O, Corrigan G, Gerson I, (1996) “Speech Synthesis with Neural Networks.” Invited

paper, World Congress on Neural Networks, San Diego, September 1996, pages: 45-50.

Online at: http://arxiv.org/PS_cache/cs/pdf/9811/9811031v1.pdf

KDE, The KDE Instant Messenger. Online at: http://kopete.kde.org/

King, A., Evans, G. and Blenkhorn, P. (2004) - WebbIE: a Web Browser for Visually

Impaired People. Online at: http://rehab-www.eng.cam.ac.uk/cwuaat/04/08-pat-cmc-king-

webbie.pdf

Koch, N., Baumeister, H., Hennicker, R. and Mandel, L. (2000) - Extending UML to Model

Navigation and Presentation in Web Applications. Online at:

http://www.pst.informatik.unimuenchen.de/personen/kochn/ExtendingUML.pdf

Kotelly, B. (2003) The art and business of speech recognition. Chapter 1, Page 9.

Kuan, J. (2002) - Open Source Software as Lead User’s Make or Buy Decision: A Study of

Open and Closed Source Quality. Online at:

http://idei.fr/doc/conf/sic/papers_2002/osskuan.pdf

Kuhn, Thomas S (1961) "The Function of Measurement in Modern Physical Science”, Isis,

Vol. 52, No. 2 (Jun., 1961), pp. 161-193

Lee, S., Potamianos, A., and Narayanan, S., (1997). “Analysis of Children's Speech:

Duration, Pitch and Formants”. Eurospeech, pages 473-476

Lethbridge, T. and Laganiere, R. (2001) Object-Oriented Software Engineering, Practical

software development using UML and Java. Ch 7. P 243.

Lyons, K. (2004) The Agile Approach. Online at:

http://www.agilealliance.org/system/article/file/1324/file.pdf

Madey, G., Freeh, V. and Tynan, R. (2002) - The Open Source Software Development

Phenomenon: An Analysis Based On Social Network Theory. Eighth Americas Conference

on Information Systems.

Ciaran Reidy Page 150 9/29/2008

McConnell, S. (1999) Open-Source Methodology: Ready for Prime Time? Online at:

http://www.stevemcconnell.com/ieeesoftware/OpenSource.pdf

McGrane, S. (2000) Is the web truly accessible to the Disabled? Article on cnet.com. Online

at: http://www.cnet.com/4520-6022_1-105104-1.html

Microsoft Corporation (2004 - Quarterly Period Ended March 31) - United States Securities

and Exchange Commission. Online at:

http://www.microsoft.com/msft/download/FY04/MSFT_3Q2004_10Q.doc

Miller, M., Fredriksen, L. and So, B. (1989) - An Empirical Study of the Reliability of UNIX

Utilities. Online at: ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf

Moreno, P. and Stern, R., (1994). Sources of Degradation of Speech Recognition in the

Telephone Network. ICASSP, pages I.109-I.112.

Mozilla – online at: http://www.mozilla.org/mozorg.html

MSN Messenger Connect Service . Online at:

http://www.microsoft.com/presspass/press/2002/nov02/11-13corporateimpr.mspx

Muthusamy, Y., Agarwal, R., Gong Y,, Viswanathan, V. (1999). Speech enabled

Information Retrieval in the Automobile Environment. ICASSP. pp 2259-2262

MySQL – Online at: http://en.wikipedia.org/wiki/MySQL#History

National Telecommunications and Information Administration. A nation online - How

Americans Are Expanding Their Use of the Internet. Online at:

http://www.ntia.doc.gov/ntiahome/dn/anationonline2.pdf

Nelson, G. (2007) Reexamining the Waterfall Model. Online at:

http://www.fiercekitten.com/blog/papers/635ResearchPaper1_GNelson.pdf

Netcraft Statistics. Market Share for Top Servers Across All Domains August 1995 - June

2008. Online at: http://news.netcraft.com/archives/2008/06/

Neumeyer, L., Franco, H., Abrash, V.,Julia, L., Ronen, O., Bratt, H., Bing, J., Digalakis, V.

and Rypa, M. (1998) WebGraderTM: A Multilingual Pronunciation Practice Tool. Online at:

http://www.speech.sri.com/people/leo/papers/still98-webgrader.pdf

Newell, A. (2003) Spoken Language and e-inclusion. Euro speech 2003 – Geneva. Online at:

http://www.computing.dundee.ac.uk/projects/UTOPIA/publications/Eurospeech%202003.pdf

New Rowley TechView. Online at:

http://www.newrowley.com/2006/08/introducing_the_wicket_a_new_a.html

NextUp Talker. Online at: http://www.nextup.com/

Nielsen, J. (1994) Ten Usability Heuristics. Online at:

http://www.useit.com/papers/heuristic/heuristic_list.html

Ciaran Reidy Page 151 9/29/2008

Nuvolari, A. (2003) - Open Source Software Development: Some Historical Perspectives.

Online at: http://opensource.mit.edu/papers/nuvolari.pdf

Oblinger, D. (2004). The Next Generation of Educational Engagement. Journal of Interactive

Media in Education, 2004, Special Issue on the Educational Semantic Web. Online at:

http://www-jime.open.ac.uk/2004/8/oblinger-2004-8.pdf

Ogilvy, D. Confessions of an Advertising Man, Chapter 5 Preventing Bugs with Unit Testing,

P 69

Pallett, D.S., (1994) Benchmark tests for the ARPA Spoken Language Program. ARPA's

Human Language Technology workshop, pages 49-74

Pederson, D. (2003) A Look into C# Threads. Online at:

http://people.msoe.edu/~taylor/cs384/pedersod.pdf

Peeling, N and Satchell J, (2001) Analysis of the Impact of Open Source Software. Online at:

http://www.govtalk.gov.uk/documents/QinetiQ_OSS_rep.pdf

Perriot, F. and Szor, P. (2003) - An Analysis of the Slapper Worm Exploit. Online at:

http://www.symantec.com/avcenter/reference/analysis.slapper.worm.pdf

PHP – Online at: http://en.wikipedia.org/wiki/PHP#History

Pitt, I., Edwards, A., (2003) Design of Speech-based Devices

Preece, J., Maloney-Krichmar, D. and Abras, C. (2003). History and emergence of online

communities. Online at:

http://www.ifsm.umbc.edu/~preece/paper/6%20Final%20Enc%20preece%20et%20al.pdf

Quiroga, L., Crosby, M. and Iding, M. (2004) Reducing Cognitive Load. Online at:

http://csdl2.computer.org/comp/proceedings/hicss/2004/2056/05/205650131a.pdf

Rabiner, L.R., Juang, B.H., (2004) “Automatic Speech Recognition – A Brief History of the

Technology Development” , Georgia Institute of Technology, Atlanta

Ragragio, I. (2007) - Full Disclosure – IT Security. Article on IT Security. Online at:

http://www.itsecurity.com/features/full-disclosure-032907/

Rajendran, R. (2004) White paper on Unit Testing, Director, Deccanet Designs Ltd. Online

at: http://www.mobilein.com/WhitePaperonUnitTesting.pdf

Raymond, E. (2000) The Cathedral and the Bazaar. Online at:

http://gnuwin.epfl.ch/articles/en/cathedralbazaar/cathedral-bazaar.pdf

Redmonk. Agile QA Automation. A Redmonk Briefing Document, Nov 6 2006. Online at:

http://redmonk.com/public/agile/agileqatools.pdf

Reeves, B. and Nass, C. The Media Equation: How People Treat Computers, Television, and

New Media Like Real People and Places (New York: Cambridge University Press, 1996).

Ciaran Reidy Page 152 9/29/2008

Reich S (1980) “Significance of pauses for speech perception”, Journal of Psycholinguistic

Research., 9(4), 379-389

Reis, C. and Mattos Fortes, R. (2002) - An Overview of the Software Engineering Process

and Tools in the Mozilla Project. Online at:

http://www.async.com.br/~kiko/papers/mozse.pdf

Resig, J., Dawara, S., Homan, C. and Teredesai, A. (2004) Extracting Social Networks from

Instant Messaging Populations. Online at:

http://www.cs.cmu.edu/~dunja/LinkKDD2004/John-Resig-LinkKDD-2004.pdf

Robinson CP and Eberts RE (1987) Comparison of speech and pictorial displays in a cockpit

environment, Human Factors, 29(1), 31-44.

Roetter, A. (2001) Writing multithreaded Java applications. Online at:

http://www.ibm.com/developerworks/library/j-thread.html

Romanovsky, A. (2001) Exception Handling in Component-Based System Development.

Online at: http://rogue.ncl.ac.uk/file_store/trs/724.pdf

Russell N. and Stafford, N. (2002) Trends in ICTAccess and Use. Available online at:

www.dfes.gov.uk/research/data/uploadfiles/RR358.doc

Sauer, G., Hochheiser, H., Feng, J and Lazar, J. (2008) Towards a Universally Usable

CAPTCHA Online at: http://cups.cs.cmu.edu/soups/2008/SOAPS/sauer.pdf

Schroeter, J. (2006) Text to-Speech (TTS) Synthesis.

Shankland, S. (2004) – Novell eyes move into embedded Linux. Article on cnet.com. Online

at: http://news.cnet.com/

Smith, S. and Mosier, J. (1986) Guidelines for designing user Interface Software. Online at:

http://hcibib.org/sam/

Sphinx-4 - A speech recognizer written entirely in the JavaTM programming language.

Online at: http://cmusphinx.sourceforge.net/sphinx4/

Stallman, R. - Why “Open Source” misses the point of Free Software. Online at:

http://www.gnu.org/philosophy/open-source-misses-the-point.html

Stallman, R. The GNU Project. Online at: http://www.gnu.org/gnu/thegnuproject.html

Stojanovic, Z., Dahanayake, A. and Sol, H. (2003). Modeling and Architectural Design in

Agile Development Methodologies. Online at:

http://www.emmsad.org/2003/Final%20Copy/27.pdf

Stotts, D. (2002) - The Perl Scripting Language. Online at: http://rockfish-

cs.cs.unc.edu/comp144/ieperl.pdf

Ciaran Reidy Page 153 9/29/2008

Sunmanagers.org - Bind error - address already in use Online at:

http://www.sunmanagers.org/archives/1993/1164.html

Tang, J., Yankelovich, N., Begole, J., Kleek, M., Li, F. and Bhalodia, J. (2001) ConNexus to

Awarenex: Extending Awareness to mobile Users. Online at:

http://people.csail.mit.edu/emax/papers/connexus.pdf

Teppo, A. and Vuorimaa, P. (2001) Speech Interface Implementation for XML Browser.

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July

29-August 1, 2001. Online at:

http://www.acoustics.hut.fi/icad2001/proceedings/papers/teppo.pdf

thesportsjournal.org. The PGA Tour vs. Casey Martin, 1998 -

http://www.thesportjournal.org/article/pga-tour-vs-casey-martin

Thompson, T. (2005) - Universal Design & The Web: Techniques, Problems, and Solutions.

Online at: http://tcc.kcc.hawaii.edu/2008/tcc/presentation-format2_files/sample_paper.pdf

Times Daily -

http://www.timesdaily.com/apps/pbcs.dll/section?category=NEWS&template=wiki&text=op

en_source_software

University of Pennsylvania. ENIAC’s recessive. Online at:

http://www.upenn.edu/computing/printout/archive/v12/4/pdf/gene.pdf

Walker W, Lamere P, Kwok P (2002) FreeTTS - A Performance Case Study. Online at:

research.sun.com/techrep/2002/abstract-114.html

Warren, S. - Advantages Disadvantages Of Internet Marketing: The Good The Bad And The

Ugly. Article on ESL Teachers Board. Online at: http://www.eslteachersboard.com/cgi-

bin/website/index.pl?read=132

Weber, S. (2000) – The Political Economy of Open Source Software. BRIE Working Paper

140, E-conomy Projectä Working Paper 15, June 2000. Online at: http://e-

conomy.berkeley.edu/publications/wp/wp140.pdf

West, J. and Dedrick, J. (2001) - Open Source Standardization: The Rise of Linux in the

Network Era. Proceedings of the 34th Hawai‘i International Conference on System Sciences,

Jan. 2001. Online at: http://www.cob.sjsu.edu/OpenSource/Research/WestDedrick2001.pdf

Weimer, W. and Necula, G. (2004) Finding and Preventing RunTime Error Handling

Mistakes. Online at: http://www.cs.virginia.edu/~weimer/papers/WN-

FindingAndPreventing.pdf

Weise, T. and Baer, P. (2008) 1st Kassel Student Workshop on Security in Distributed

Systems - KaSWoSDS’08. Online at: https://kobra.bibliothek.uni-

kassel.de/bitstream/urn:nbn:de:hebis:34-2008041421155/3/Technicalreport2008_1.pdf

Ciaran Reidy Page 154 9/29/2008

Williams, L. (2007) A Survey of Agile Development Methodologies. Online at:

http://agile.csc.ncsu.edu/SEMaterials/AgileMethods.pdf

Wilpon, J., and Jacobsen, C., (1996). “A study of speech recognition for children and the

elderly”, ICASSP, pages 3-9

Wolak, W. (2001) System Development: Research Paper 1. SDLC on a Diet. Online at:

http://codecourse.sourceforge.net/materials/System-Development-Life-Cycle.html

W3C. Authoring Tool Accessibility Guidelines 1.0. Online at: http://www.w3.org/TR/WAI-

AUTOOLS/

W3C. User Agent Accessibility Guidelines 1.0. Online at:

http://www.w3.org/TR/WAIUSERAGENT/

W3C. Web Content Accessibility Guidelines 1.0. Online at:

http://www.w3.org/TR/WCAG10/

Wikipedia – Rovert Tappan Morris. Online at:

http://en.wikipedia.org/wiki/Robert_Tappan_Morris

Zahran, S. (1998) Software Process Improvement, Addison-Wesley, p 4

