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ABSTRACT 

 
This dissertation delves into the realm of cloud-native microservice architectures with a 

focus on self-healing mechanisms, investigating their response to chaos engineering 

techniques. In an era where cloud-based applications demand resilience and cost- 

effectiveness, understanding the behavior of self-healing architectures under chaotic 

conditions is of paramount importance. 

 

The primary research objective of this study is to explore how a cost-effective self- 

healing cloud-native microservice architecture reacts when subjected to chaos 

engineered fault injections. By simulating real-world disruptive scenarios, the key aim is 

to provide valuable insights into the architecture's ability to maintain operational 

integrity and recover gracefully. 

 

Key findings from our research indicate that while auto-scaling warm pools have been 

widely advocated to bolster resilience, their actual impact on aiding a cloud architecture's 

recovery from chaos engineered fault injections is less impactful than hitherto claimed. 

This study contributes to the ongoing discourse on self-healing microservice 

architectures, offering practical implications for architects, developers, and organizations 

striving to enhance the robustness and reliability of their cloud-native applications. 

 

The results of this research not only deepen our understanding of self-healing cloud 

architectures but also underscore the need for a comprehensive approach to resilience, 

encompassing aspects beyond mere scalability. This dissertation serves as a valuable 

resource for professionals and researchers engaged in cloud-native system design and 

chaos engineering, providing essential insights for building more resilient, cost-effective, 

and adaptable systems. 
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1 INTRODUCTION 

“In all chaos there is a cosmos, in all disorder a secret order.” 

- Carl Jung, The Archetypes and The Collective Unconscious 

 

1.1 Project Background 

 
Over the past decades, microservice architecture has become the de-facto pattern in the 

Software Engineering industry (P. Jamshidi, et al. 2018). Microservice architecture is 

widely accepted as being a fine-grained, loosely coupled collection of independent 

services communicating through lightweight protocols. When in combination with cloud-

provided infrastructure, microservices become easier to provision and scale (either 

horizontally or vertically). Machines can be provisioned in minutes and billing plans are 

varied and flexible. Furthermore, cloud providers also offer out-of-the-box highly 

available and fault tolerant services, facilitating the creation of self-healing architectures, 

which refers to the ability of systems to detect and remediate issues without human 

intervention. At the time of this writing AWS is the biggest cloud provider in the market, 

leading by a large margin (Borge and Poonia, 2020). 

 

Figure 1.1: Resilience / AWS Architecture Blog (Amazon Blog Posting1) 

 

 

Chaos engineering is a discipline within software engineering and system reliability 

engineering that focuses on proactively testing the resilience and robustness of complex 

systems by intentionally introducing controlled disruptions or failures into them. 

 

 

1 https://aws.amazon.com/blogs/architecture/creating-a-multi-region-application-with-aws-services-part- 

2-data-and-replication/ 

https://aws.amazon.com/blogs/architecture/creating-a-multi-region-application-with-aws-services-part-2-data-and-replication/
https://aws.amazon.com/blogs/architecture/creating-a-multi-region-application-with-aws-services-part-2-data-and-replication/
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The primary objective of chaos engineering is to uncover vulnerabilities, weaknesses, or 

unforeseen behaviors in systems before they cause significant outages or failures in real- 

world scenarios. 

By intentionally introducing chaos or disruptions in a controlled environment, chaos 

engineering aims to build confidence in the system's ability to withstand unexpected 

failures, improve its resilience, and enhance overall reliability. It has gained prominence 

in modern cloud-native architectures, distributed systems, and microservices where 

complexity and interdependencies between components make systems more susceptible 

to failures. 

 

1.2 Project Description 

 
This research will explore the use of Chaos Engineered AWS Fault Injector Simulator 

(FIS) against a Self-Healing Microservice Architecture deployed in AWS. One outcome 

will be to explore that given reasonable Service Level Objectives (SLO), when 

configured appropriately, AWS can be a cost-effective, resilient, and reliable cloud 

provider. This research will assume an SLO of one minute for AWS to self-heal during 

fault injections, which will be referred to as ‘self-healing SLO’ throughout this paper. 

Cloud providers, such as AWS, claim to offer highly available and fault tolerant services, 

but it raises the question, how fault tolerant? If financial resources are not a limitation nor 

concern, then a company or individual could build a software architecture unnecessarily 

redundant in multiple availability zones and regions, and be extremely resilient, but when 

it comes to a cost-effective architecture, how fault tolerant can it be? To answer this 

question, the author proposes an experiment. Inspired by AWS best practices (Amazon 

Web Services, 2023), in this research, a self-healing cost-effective microservice 

architecture will consist of: 

• A microservice application serving HTTP GET requests (backend-service app). 

The service will be running on two general purpose t2.micro instances, for 

redundancy. An Auto Scaling group with the policy described in Table 1.1 below 

will also be provisioned. 

 

Desired Capacity Maximum Capacity Minimum Capacity 

2 4 2 

Table 1.1: Configured to facilitate Warm Pooling 

 

Also, an ELB (Elastic Load Balancer) will be configured to redirect incoming requests to 
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healthy instances. It was decided to run two instances instead of a single instance due to 

AWS EC2 instances committing to 99.99% availability SLA (Service Level Agreement) 

per EC2 Region, therefore two instances present eight 9’s availability, which corresponds 

to 3.15 seconds of downtime per year. To challenge the resilience of the architecture 

described above, faults will be injected via Chaos Engineered AWS Fault Injector 

Simulator (FIS). A FIS experiment template will be created which will define fault 

actions against EC2 instances. 

 

Figure 1.2: FIS – AWS Fault Injection Simulator (Amazon Fault Services2) 

 

 

Metrics will be monitored via a JMeter test plan, which will test the health of the 

application every second and produce metrics and visual reports. 

 

Key Research Question 

Can Chaos Engineering techniques implemented via AWS Fault Injector Simulator (FIS) 

degrade an ‘Industry standard Self-healing Cloud-based microservice architecture’ 

beyond a one-minute self-healing SLO? 

 

Key Hypothesis 

AWS is widely known for its fault tolerance and high availability. However, when 

running a cost- effective architecture, chaos engineering techniques can still bring down 

services and disrupt agreed SLOs. 

• HA: On a microservice architecture running redundant instances under an Elastic 

Load Balancer and Auto Scaling group with warm pooling, AWS Fault Injector 

 

2 https://aws.amazon.com/fis/ 

https://aws.amazon.com/fis/
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Service can inject enough faults so that the public facing service cannot respond to 

requests within a one-minute window. 

 

• H0: The use of ELBs and Auto Scaling groups configured with Warm Pooling over 

redundant EC2 instances is widely accepted as highly resilient and can cope with 

multiple failures while still maintaining high availability and response-times within 

the one-minute window. 

 

1.3 Project Aims and Objectives 

 
Project Objective: To explore how a cost-effective self-healing cloud microservice 

architecture will react to chaos engineered fault injections. 

 

To achieve the objective, an experiment will be executed on the Amazon Web Services 

platform. The experiment will require the creation of a microservice (backend-service) 

connected to an in-memory database. This will be implemented using the Java 

programming language and the Spring Boot framework. An Elastic Load Balancer will 

be configured to route requests to the microservice, exposing an API that will be the 

point of external testing later in the experiment. Internally, the backend-service will run a 

select statement, retrieve data, and expose the data in JSON format in the response. 

Crucially, the computational logic of the applications is not relevant in the context of this 

experiment, given that the experiment is focused on self-healing capabilities, and not 

performance. 

 

To run this architecture, the author will setup the following components in the AWS 

platform: 

• On the AWS console, navigate to ‘Key Pairs’, create a key pair, download, and 

save the private key. 

• Create a standard security group. 

• Deploy the backend-service application into an EC2 instance, configure the 

instance to spin up the application at start-up via the ‘user-data’ script. 

• Create an image of the EC2 instance, so it can be used by the Auto Scaling group. 

• Create an Auto Scaling group (setup policy as per Table 1). 

• Setup one virtual private cloud (VPC) with the standard accompanying 

configuration (subnets, route tables and network connections). 



16  

• Configure an Elastic Load Balancer 

• Create an AWS Fault Injector Simulator setup to terminate both EC2 instances: 

o Setup the IAM policy for FIS so it has the privilege to terminate instances. 

o Attach the new policy to a role (by either creating a new role or re-using an 

existing one). 

o Assign the role to FIS. 

o Add Action (‘aws:ec2:terminate-instance’ passing in the EC2 instances ID 

parameter). 

 

A Test Plan will be created in Apache JMeter with: 

• One single Thread Group (as this is not a stress-test). 

• HTTP Request Sampler pointing to the Elastic load balancer for Service A. 

• Graph and Table listeners. 

 

Once the above configuration is in place, the JMeter test plan will be started, which will 

continuously test the backend-service API and collect response-times. The AWS FIS setup 

will then be started. Once FIS has been executed and the targeted EC2 instances are 

terminated, an additional five minutes will be added to allow for the Auto Scale policy to 

spin up extra compute instances, then finally the JMeter test plan will be stopped. 

 

Auto Scaling groups allow for different configuration variations, which have effects on 

recovery time of the service, so they will be explored as part of the experiment: 

1. No warm pooling. 

2. Warm pooling with one instance on ‘Stopped’ state. 

3. Warm pooling with one instance on ‘Running’ state. 

4. Warm pooling with one instance on ‘Hibernated’ state. 

 

 

 

1.4 Project Evaluation 

 
JMeter metrics will produce the main outcome of the experiment. The following metrics 

will be provided from the ‘View Results in Table’ listener: 

• Sample#: Identifier of the request in incremental numbers. 

• Start Time: Time in which the request has been started (up to milliseconds). 

• Thread Name: Name of the thread that initiated the request. 
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• Label: Label of the request. 

• Sample Time(ms): Time between the sending of the request and the receiving of 

the response back. 

• Status: HTTP response status code 

• Bytes: Size of the request in bytes 

• Sent Bytes: Size of the response in bytes 

• Latency: Latency of the connection 

• Connect Time(ms): Time required for the handshake between sender and receiver. 

 

The experiment is expected to take no longer than 10 minutes and will be executed eight 

times per warm pool configuration. Any outliers will be examined, noted, and re-executed. 

An experiment execution will be considered an outlier if the time between the last 

successful response and the first successful response after the fault injection has a 50% 

variation from the previous two executions median (except for the first and second 

executions, which will be evaluated against the following two executions). A final report 

will be produced from the compiled results, with the median value per warm pooling 

configuration. If within the four warm pooling configurations, the median ‘Sample Time 

(ms)’ goes over the one-minute SLO, then the hypothesis has been proven. 

 

1.5 Project Scope 

 
The focus of this project is to stress and validate the resilience of a cloud architecture, 

therefore performance metrics will not be collected and are out of scope of this research 

(i.e., API responses latency, API throttling, or how many threads the solution can handle 

simultaneously before degrading). 

 

Securing assets in the cloud is also not the focus of this project. Minimum security 

configuration will be in place for inbound and outbound requests in the load balancer and 

the Linux instances but will by no means be a state-of-the-art security configuration. 

 

The research is also not focused on the quality of the code deployed to the cloud 

architecture, therefore some of the best software development practices (i.e., unit tests, 

integration tests) were omitted. 
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1.6 Thesis Roadmap 

 
Chapter 2 is the Literature Review chapter, it focuses on four main topics: Chaos 

Engineering Technique, Self-Healing and Self-Adaptive Systems, Microservice 

Architecture, and Cloud Infrastructure. 

 

Chapter 3 is the Design Chapter which presents the design of the system and the design of 

the range of experiments that will be undertaken as part of this research. 

 

Chapter 4 is the Development Chapter which presents the development of the system and 

the execution of the range of experiments that were undertaken as part of this research. 

 

Chapter 5 is the Results and Evaluation Chapter which presents the results of each of the 

experiments as well as an analysis and evaluation of these results with respect to each other 

and the relevant literature. 

 

Chapter 6 is the Conclusions and Future Work Chapter which presents the key findings of 

this project, highlighting what aspects of the research went well and what aspects did not 

go well. It also discusses some future directions that the research may take. 
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2 LITERATURE REVIEW 

 
“Research is to see what everybody else has seen, and to think what nobody else has thought.” 

- Arthur Schopenhauer, 1851 Parerga und Paralipomena 

 

2.1 Introduction 

 
This chapter explores the four key areas of the research, to develop the required 

foundation of understanding to begin the design and development on the proposed 

experiment. Those four main areas are as follows: 

• Chaos Engineering Techniques 

• Self-Healing and Self-Adaptive Systems 

• Microservice Architecture 

• Cloud Infrastructure 

 

 

2.2 Chaos Engineering Techniques 

 
Chaos engineering involves conducting systematic experiments on a system to instill 

confidence in its capacity to endure challenging operational conditions (Rosenthal and 

Jones, 2020). In software development, it is common to specify the need for a software 

system to gracefully handle failures while maintaining an acceptable level of service 

quality. This characteristic, often referred to as resilience, is frequently outlined as a 

critical requirement. Unfortunately, many development teams struggle to fulfill this 

requirement, often due to constraints like tight deadlines or limited domain expertise. 

Chaos engineering presents itself as a valuable technique to meet the resilience mandate. 

It serves as a method for enhancing resilience against a range of potential setbacks, 

including infrastructure failures, network disruptions, and application glitches (Jernberg, 

et al., 2020). 

 

Basiri, et al. (2016) describe the concepts and benefits of Chaos Engineering 

(exemplified by its use at Netflix). They also describe Chaos Engineering techniques to 

run experiments to validate the resilience of a software architecture. Their focus was on 

bringing awareness, so practitioners and research communities come to recognize Chaos 

Engineering as its own discipline and continue developing it. 
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Three years later, in 2019, Basiri, et al. published a subsequent paper describing the 

evolution of the Netflix platform for automatically generating and executing chaos 

experiments in their production environment. Netflix has built an in-house orchestration 

system named ChaP (Chaos Automation Platform) which interacts with multiple internal 

Netflix services to carry out chaos engineered experiments via a fault injection system, 

also developed in-house, named FIT. In designing ChaP, an additional service was also 

developed, named Monocle, which has two functions, introspecting services and 

generating experiments: 

 

Figure 2.1. Monocle UI for RPC dependencies within a cluster (Basiri, et al., 2019) 

 

Their paper demonstrates that it is feasible to generate and run chaos experiments in any 

environment, including production, automatically and safely. 

 

Migirditch, et al. (2022) propose a Chaos Engine that stresses agents by intelligently 

searching over ‘scenario chaos factors’ reflecting real-world events. Their approach is 

focused on facilitating resilient strategic military planning. Their chaos engineering 

methodology prioritizes expediting agent training to establish robust policies. This is 

achieved through the introduction of the 'Adversarial Architect', a system that explores 

parametric chaos elements (such as enemy force composition, platform failures, 

weather, communication interference) to identify situations that result in preventable 

failure scenarios. 
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Figure 2.2. Chaos Engine Algorithm (Migirditch, et al., 2022) 

 

 

Zhang, et al. (2021) introduce an innovative framework named PHOEBE, designed for 

injecting faults related to system call invocations. PHOEBE offers several distinctive 

features. 

• It grants developers complete visibility into system call invocations. 

• It creates error models that closely resemble real-world errors occurring in 

production environments. 

• PHOEBE is capable of autonomously conducting experiments to systematically 

evaluate the reliability of applications in the context of system call invocation 

errors during production. 

 

To assess the efficiency and runtime impact of PHOEBE, they conducted evaluations on 

two actual applications within a production setting, both utilizing the Java software stack. 

The results demonstrate that PHOEBE effectively generates realistic error models and 

identifies critical reliability issues associated with system call invocation errors. To the 

best of their knowledge, the concept of "realistic error injection," which involves basing 

fault injection on actual production errors, has not been explored previously. 

 

This section presented an introduction to Chaos Engineering, an approach to software 

development that helps support the graceful degradation of software services in the event 

of failures occurring. It also outlines some state-of-the-art research in the field of Chaos 

Engineering. 
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2.3 Self-Healing and Self-Adaptive Systems 

 
Self-healing systems perform periodic health assessments on various components and 

autonomously initiate corrective actions, such as redeployment, to restore them to their 

intended operational conditions (Ghosh, et al., 2007). At the hardware level, this self- 

healing process involves relocating services from a malfunctioning node to a functioning 

one while also conducting health evaluations on various components. On the other hand, 

self-adaptive architecture can modify itself, e.g., adjust its states or behaviors, to satisfy 

certain objectives (Yang et al., 2013) 

 

Ali Naqvi, et al. (2022) propose CHESS, an approach for systematic evaluation of self- 

adaptive and self-healing systems that builds on Chaos Engineering techniques. An 

exploratory study was conducted to evaluate a self-healing application to evaluate the 

limitations and promises of CHESS. The managed system is injected with faults using 

chaos engineering concepts. The problem detection, fault diagnosis, fault recovery, and 

knowledge modules of the self-healing system are reflected in a feedback loop that 

adheres to the MAPE-K reference model. To capture the status of the system being 

evaluated before, during, and after fault injection for subsequent analysis, the system 

self-monitoring component offers intensive monitoring and data collecting. 

 

Figure 2.3. Overall architecture of CHESS (Ali Naqvi, et al., 2022) 

 

 

Motivated by the growth value of private cloud solutions, Petrenko (2021) conducted a 

thorough comparison between different approaches and technologies that allow for 

building a resilient cyber-stable private cloud based on well-known and proprietary 

artificial immune system (AIS) models and approaches, as well as technologies for 

distributed data processing, container orchestration, logging, security, and others. 
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Petrenko focuses on five layers in his paper: 

• Client application, 

• Data Services (Cassandra Postgresql, Ingnite, Kafka, Elasticsearch), 

• Core Services (Ubuntu Linux, Kubernetes, Ceph), 

• Hardware (Compute node, Storage Node, Network), 

• Management (Console, Monitoring, Logging). 

 

 

Dashofy, et al. (2002) present an approach and vision for developing self-healing 

systems, focusing primarily on an event-based developed infrastructure to support the 

creation and execution of repair strategies. 

They have built a substantial infrastructure to support their vision based on: 

• xADL 2.0, an extensible architecture description language, describes software 

architectures and their alterations. 

• c2.fw, a flexible framework for constructing event-based systems, is used to 

instantiate and manage software systems. 

• ArchStudio 3 development environment, which is also built on c2.fw, maintains 

and manages the mapping between architectural descriptions and running 

systems, as well as hosting design critics, which may be used to examine 

architecture descriptions or the impact of a change before it is implemented. 

Their long-term strategy can be seen as a refinement of the preceding approach, focusing 

on tools and approaches that enable more flexibility or dependability in system 

reconfiguration in general than was previously used. 

 

In their paper, Frincu, et al. (2011) presented a proposal for a multi agent task scheduling 

system enhanced with self-healing capabilities. To deliver a distributed, self-healing 

scheduling platform, they addressed the following issues: 

1. Provide fully distributed storage and communication mechanisms by using 

distributed underlying platforms. 

2. Since agents must be fault tolerant and self-adaptive, they implement agents as 

modular smart control loops. 

3. Maintain independence among multiple providers and easy switch scheduling 

policies by using an inference engine for policy execution. 

4. Facilitate flexibility in changing negotiation policy according to specific needs by 

adding a “negotiator” as an easy-to-integrate plug-in module. 
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Simulated tests were conducted to minimize, but not reduce, the number of agents 

involved in cross-service scheduling, and finally, their RMS was tested on a real-world 

environment to evaluate its healing capabilities. Their tests have demonstrated that the 

platform’s recovery times are within acceptable limits. Their next step is to integrate and 

test the platform using the future, cloud-based API provided by mOSAIC. 

 

Pedro Dias, et al. (2020) present and discuss a set of patterns for self-healing IoT systems 

that bring improvements in reliability, by providing error detection, recovery, and 

health-check mechanisms. In their paper they present a collection of 27 patterns, as well 

as a pattern language, that can enhance the robustness of IoT systems by enabling them 

to heal themselves. These patterns are grouped into two main categories: Error Detection 

(Probes) and Recovery & Maintenance of Health. These patterns are mostly derived from 

previous work on related fields such as: Cloud computing, Space systems engineering 

and Critical and industrial systems. These patterns are not new, but their 

contextualization to IoT systems is introducing new concepts, both in terms of fault- 

tolerance and self-healing. 

 

Seeger, et al. (2019) tackle the challenge of optimally self-healing IoT edge systems 

with a combination of two key concepts: 

• a policy-enabled failure detector that enables adaptable failure detection, and 

• an allocation component for the efficient selection of failure mitigation actions. 

In their paper, they introduce a system aimed at facilitating the autonomous recovery of 

IoT choreographies. This system is primarily comprised of two key components: 

1. A pioneering failure detection concept that offers extensive flexibility in 

configuring parameters tailored to specific applications and policies. They also 

provide recommendations on parameter selection. 

2. They have devised an Integer Linear Programming (ILP) formulation to achieve 

optimal task allocation, taking into consideration energy efficiency. Furthermore, 

they have developed a heuristic approach that allows for real-time allocation 

computation. 

They have conducted evaluations for both the PE-FD failure detector and the 

performance of the allocation algorithm. 

 

Rios, et al. (2017) produced a paper that introduces a novel modeling language and an 

accompanying tool designed to cater to the specific requirements of multi-cloud 
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application modeling. 

This solution addresses the limitations of current modeling approaches by simplifying 

two critical aspects: 

1. It streamlines the computation of Composite Security Service Level Agreements 

(SLAs) that encompass security and privacy considerations. 

2. It enhances risk analysis and service matchmaking by considering not only the 

functional and business aspects of cloud services but also their security aspects. 

 

The language and tool discussed in their paper were developed within the scope of the 

MUSA EU-funded project. These enhancements build upon the existing CAMEL 

language, which already provided comprehensive meta-models for Requirements, 

Deployment, Scalability, and Security, covering many requirements for specifying 

multi-cloud applications. However, the MUSA project identified additional needs for 

more detailed deployment and security specifications, risk analysis, and the composition 

of Security SLAs. Consequently, extensions to the CAMEL language were developed to 

fulfill these requirements. The modeling tool that supports this extended CAMEL meta- 

model, known as the MUSA Modeller, has been seamlessly integrated with the MUSA 

framework and is accessible on the MUSA website at www.musa-project.eu. 

 

Figure 2.4. MUSA Overall Process (Rios, et al., 2017) 

 

 

 

Mendonca, et al. (2018) investigate several representative self-adaptation solutions that 

have been proposed recently from the perspective of generality and reusability, and 

propose directions for the following challenges: 

http://www.musa-project.eu/
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1. New Adaptation Mechanisms 

2. New Control Lopp Deployment Structures 

3. New Continuous Delivery Strategies 

4. New Testing Approaches 

5. New Migration Strategies to Microservices 

 

 

Colombo, et al. (2022) address the challenges of accurately and efficiently monitor Fog 

environments. They introduced ‘AdaptiveMon’, an adaptive P2P monitoring solution 

that leverages a knowledge base constantly updated with monitoring information to 

dynamically modify the system behavior by triggering countermeasures. The 

experimental results demonstrate that adaptive behaviors improve monitoring accuracy 

while optimizing the utilization of available resources compared to a non-adaptive 

solution. 

 

Mendonca, et al. (2019) identify key challenges for the development of microservice 

applications development, delivery, and operations from multiple self-adaptation 

perspectives. They present the following contributions in their work: 

1. We provide a detailed description of a cloud-based intelligent video surveillance 

application, serving as an illustrative example of a self-adaptive microservice 

system. 

2. In the context of this example application, we highlight and explain various 

challenges that arise during microservice development, delivery, and operations, 

considering multiple aspects of self-adaptation. 

3. We explore potential avenues for addressing the primary challenges encountered 

in the development of self-adaptive microservice systems. This exploration 

involves drawing upon existing microservice practices and technologies to 

propose new directions for improvement. 

 

A 2021 paper, written by Filho, et al. conducted a systematic mapping in which multiple 

studies on “self-adaptation techniques and mechanisms in microservice-based systems” 

were analyzed considering quantitative and qualitative research questions. 
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Figure 2.5. Self-Adaptation Techniques Research Questions (Filho, et al, 2021) 

 

 

The findings indicate that the majority of research efforts center around the "Monitor" 

phase, accounting for 28.57% of the adaptation control loop. Additionally, a significant 

emphasis is placed on achieving the self-healing property (23.81%), employing a 

reactive adaptation strategy (80.95%), primarily at the system infrastructure level 

(47.62%), and adopting a centralized approach (38.10%). 

 

This section presented an introduction to Self-Healing systems, which are systems that 

perform regular checks on the key components, and to autonomously initiate corrective 

actions. It also outlines some state-of-the-art research in the field of Self-Healing 

systems. 

 

2.4 Microservice Architecture 

 
Microservices, which is also referred to as the microservice architecture, is an 

architectural approach that organizes an application into a set of services characterized 

by the following attributes: 

1. Capable of independent deployment. 

2. Loosely interconnected. 

3. Aligned with specific business functionalities. 

4. Managed by small, dedicated teams. 

This architectural style empowers an organization to deliver large, intricate applications 

efficiently and consistently with speed and reliability. 
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Jindal, et al. (2019) address the challenge of identifying a Microservice Capacity (MSC) 

for a single microservice within a multiple microservice ecosystem. Such challenge was 

overcome by sandboxing a microservice and creating a performance model via the 

‘Terminus’ tool. The tool assesses a microservice's capability under various deployment 

setups by executing a concise set of load tests and then applying a suitable regression 

model to the gathered performance data. The assessment of these microservice 

performance models across four different applications has yielded highly accurate 

predictions, with a mean absolute percentage error (MAPE) consistently below 10%. 

These outcomes from the suggested performance modeling of individual microservices 

serve as a crucial input for the broader microservice application performance modeling. 

 

Figure 2.6. Microservice Capacity Identification (Jindal, et al., 2019) 

 

Zhang, et al. (2019) investigated the gap between Academia’s ideal vision and real 

industry’s practices on microservices. A series of industrial interviews was undertaken, 

encompassing thirteen diverse types of companies. Following this, they systematically 

structured and coded the acquired data according to prescribed qualitative methods. 

From the interviews, they validated both the advantages of implementing microservices, 

which can be gained through practical experience, and the potential challenges that may 

require additional investment based on their own experiences. Additionally, some of 

these identified challenges, such as organizational transformation, decomposition, 

distributed monitoring, and bug localization, could serve as valuable inspiration for 

researchers to pursue further investigations. 
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Stubbs, et al. (2015) reviewed container technology and introduced Serfnode, a non- 

intrusive Docker image, as a solution to service discovery challenges. Serfnode also has 

a self-healing and monitoring mechanism based on Supervisor for resiliency. 

Microservices architecture has emerged as a popular approach for organizations looking 

to modernize their legacy applications. However, there is a significant gap in 

understanding the key principles required for successfully implementing a microservices 

architecture. Velepucha, et al. (2023) wrote a paper which aims to fill this void by 

conducting a comprehensive survey of existing literature that delves into the 

foundational principles of the object-oriented approach and how these concepts relate to 

both monolithic and microservices architectures. 

Furthermore, their investigation covers not only monolithic architectures but also 

microservices, including an exploration of the design patterns and principles commonly 

applied in microservices development. Their contribution includes the compilation of a 

list of patterns commonly used in microservices architecture. They also compare the 

principles advocated by experts such as Martin Fowler and Sam Neuman in the 

decomposition of microservices architectures with the pioneering Principle of 

Information Hiding put forth by David Parnas. Parnas discusses modularization to 

enhance system flexibility and comprehension. 

Additionally, they provide a concise summary of the advantages and disadvantages of 

both monolithic and microservices architectures, as gleaned from the literature review. 

The summary in their paper can serve as a valuable reference for researchers in academia 

and industry, shedding light on the current trends in microservices architecture. 

This section presented an introduction to Microservice architectures, an approach to 

software architecture that organizes an application into a set of services. It also outlines 

some state-of-the-art research in the field of Microservice architectures. 

 

 

2.5 Cloud Infrastructure 

Cloud infrastructure refers to the essential elements required for cloud computing, 

encompassing hardware, abstracted resources, storage, and networking components. 

Consider cloud infrastructure as the foundational building blocks necessary for 

constructing a cloud environment. To accommodate services and applications within the 
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cloud, the presence of cloud infrastructure is imperative (Qian, et al, 2009). 

 

Kotas, et al. (2018) evaluates compute-oriented instances from Amazon Web Services 

and Microsoft Azure cloud platforms in multiple high-performance computing 

benchmarks (HPCC and HPCG). Their experiment investigates the performance of 

various HPC benchmarks on both the AWS and Azure cloud platforms, with a specific 

focus on the compute-centric c4.8xlarge and H16r instance types. Nevertheless, 

determining which cloud platform offers the most cost-effective solution for a particular 

use case hinges on the computational and communication patterns of the application. In 

the context of the tests conducted at the time of this study, the AWS c4.8xlarge 

demonstrated a cost advantage in terms of raw computing power, whereas Azure's H16r 

excelled in providing cost-effective bandwidth. Consequently, applications that heavily 

rely on communication may find Azure's H16r with its faster network and larger RAM 

to be a more economical choice, resulting in an overall cost-saving solution. It is worth 

noting that cloud service providers consistently enhance their offerings. Therefore, the 

most reliable method for determining an application's performance in the current cloud 

environment is to conduct testing on the prospective system. 

Yussupov, et al. (2020) propose a model-driven and pattern-based approach (MICO) for 

composing microservices, which helps with the transition from architectural models to 

running deployments. Central to their approach is the MICO meta-model, which 

harmonizes architectural and deployment considerations, simplifying the transition from 

integration models to active deployments. In addition to modeling interface-based 

service integration, the MICO Model empowers the utilization of integration services 

for modeling messaging-based service interactions. These integration services rely on 

the implementations of well-known enterprise integration patterns. They promote 

loosely coupled integration of microservices while abstracting away the technical 

intricacies linked to the underlying infrastructure deployment prerequisites. To 

substantiate the validity of their approach, they have conducted a prototypical 

implementation of the system architecture. This implementation utilized Kubernetes for 

container orchestration, Apache Kafka as a message-oriented middleware, and Open 

FaaS for managing the service integration logic. Subsequently, they executed a concrete 

case study based on a third-party application. 
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Figure 2.7. A Prototypical Implementation of the MICO system (Yussupov, et al., 2020) 

 

Schleier-Smith, et al. (2021) discuss the evolution of cloud computing and the benefits 

of Serverless Architecture in terms of lowering costs and simplifying system 

administration. They conclude their paper with five predictions for serverless 

computing: 

1. The present categories of FaaS and BaaS are anticipated to evolve into a broader 

spectrum of abstractions, which we classify into two categories: general-purpose 

serverless computing and application-specific serverless computing. While 

serverful cloud computing will not vanish, its relative usage within the cloud 

ecosystem is expected to diminish as serverless computing continues to address 

its current limitations. 

2. Anticipated developments in general-purpose serverless abstractions aim to 

encompass nearly any conceivable use case. These abstractions will encompass 

state management and offer optimization possibilities—either user-driven or 

automatically inferred—resulting in efficiencies that rival, or potentially surpass, 

those of serverful computing. 

3. There is no inherent reason for serverless computing to be more costly than 

serverful computing. We predict that as serverless technology advances and 

gains popularity, nearly all applications, whether small or large-scale, will cost 

no more—and perhaps even less—when utilizing serverless computing. 

4. Machine learning is poised to assume a pivotal role in serverless 

implementations, enabling cloud providers to enhance the execution of extensive 
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distributed systems while furnishing a user-friendly programming interface. 

 

5. The hardware landscape for serverless computing is expected to exhibit a 

significantly greater degree of heterogeneity compared to the prevailing x86 

servers that currently underpin it. 

Blinowski, et al. (2022) evaluate the performance and scalability of monolithic versus 

microservice architecture by running controlled experiments in three different 

deployment environments (local, Azure App Service and Azure Spring Cloud) using two 

different implementation technologies (Java versus C# .NET). Their findings are as 

follows: 

1. In terms of performance on a single machine, a monolithic system outperforms its 

microservices-based counterpart. 

2. When dealing with computation-intensive services, the Java platform 

demonstrates superior utilization of robust hardware, whereas this platform effect 

is reversed when non-computationally intensive services run on hardware with 

limited computational capacity. 

3. In the Azure cloud environment, vertical scaling proves to be a more economically 

efficient choice than horizontal scaling. 

4. Extending scaling beyond a specific number of instances leads to a decline in 

application performance. 

5. The choice of implementation technology does not significantly affect the 

scalability performance. 

Sen and Skrobot (2021) demonstrate and discuss the process of deployment and 

provisioning of microservices utilizing DevOps principles and practices in industry 

standard, more specifically AWS Elastic Container Service (ECS). They concluded that 

throughout the transition from testing to production phases, AWS ECS serves various 

environments, offering a substantial reduction in the time and labor required for 

deploying microservices. This eliminates the need for manual server deployment and 

configuration. Additionally, AWS ensures a high level of security and reliability without 

necessitating additional efforts. AWS also seamlessly integrates ECS with its other 
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services, including Elastic Load Balancer and Identity Access Management, simplifying 

the deployment of intricate multi-component applications in the AWS Cloud. 

This section presented an introduction to Cloud infrastructure, looking at all the parts of 

a cloud environment, including software, hardware, and networking components. It also 

outlines some state-of-the-art research in the field of Cloud infrastructure. 

 

2.6 Conclusions 

This chapter began by dividing the research area of this dissertation into four separate 

topics, and then discussed multiple papers to provide the necessary background to proceed 

into the preparation of the proposed experiment. 

As mentioned in this chapter, although much has already been extensively studied, the 

author has not encountered any recent/relevant paper exploring chaos engineering 

techniques on a self-healing Microservice Cloud Architecture. 
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3 DESIGN AND METHODOLOGY 

 
“Cloud is about how you do computing, not where you do computing.” 

– Paul Maritz, CEO of VMware 

 

3.1 Introduction 

 
In this chapter, the framework and procedures used to collect and analyze data for study 

will be outlined. An experiment based on self-healing cloud architecture will be designed 

to host a microservice application. Then, chaos engineered faults will be injected into 

such architecture to measure how resilient it is. 

First, an infrastructure cloud provider will be selected based on its relevance in the 

current industry, then a microservice application will be developed. Following that, an 

architecture within the selected cloud provider will be defined and created to host the 

microservice application. To collect health-check data from the architecture 

independently, an API testing tool will be chosen. A chaos engineered fault injection 

tool will be selected to challenge the architecture. Finally, the experiment will be 

conducted. 

Replicability of the experiment will also be facilitated by a detailed experiment user 

guide in Appendix B. 

Research Question: Can Chaos Engineering techniques implemented via AWS Fault 

Injector Simulator (FIS) degrade an ‘Industry standard Self-healing Cloud-based 

microservice architecture’ beyond a sixty-second self-healing SLO? 

 

Figure 3.1. High-level Overall experiment (Author) 
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3.2 Ethical Considerations 

This study is not motivated to, and will not, promote nor demote any specific technology 

or cloud provider. The focus is on, given a specific set of parameters, quantitatively 

assess how resilient a cloud architecture can be. For this research, the AWS platform 

will be used for the reasons outlined in Section 3.3. Nonetheless, that rationale does not 

encourage, nor discourage, the choice of using other cloud providers in industry or in 

the academia. 

Regarding data controls and residency, AWS claims that the customer can manage their 

data effectively through the utilization of robust AWS services and tools. These tools 

empower the user to specify the data's storage location, implement security measures, 

and regulate access permissions. For example, AWS Identity and Access Management 

(IAM) ensures secure control over access to AWS services and resources. Additionally, 

services like AWS CloudTrail and Amazon Macie aid in compliance, detection, and 

auditing, while AWS CloudHSM and AWS Key Management Service (KMS) enable 

the secure creation and management of encryption keys. To further enhance data 

governance and residency, AWS Control Tower provides the necessary governance and 

control mechanisms. 

Regarding data privacy, AWS claims to consistently enhance privacy protection 

measures by offering services and features that empower users to establish their own 

privacy controls, encompassing advanced access, encryption, and logging 

functionalities. They simplify the process of encrypting data during transit and at rest, 

allowing users to choose between keys managed by AWS or those they manage entirely 

on their own. The user can also integrate externally generated and managed keys. Their 

privacy management procedures are uniformly structured and scalable, governing data 

collection, utilization, access, storage, and deletion. To assist users in safeguarding their 

data, AWS provides an extensive array of best practice resources, training, and guidance, 

including the Security Pillar of the AWS Well-Architected Framework. 

AWS claims to only handle customer data, which refers to any personal data the user 

uploads to their AWS account, following their documented instructions. AWS claims to 

not access, employ, or disclose user data without their explicit consent, except when 

necessary to prevent fraud and abuse or to comply with legal requirements, as outlined 

in the AWS Customer Agreement and AWS GDPR Data Processing Addendum. Many 
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customers subject to GDPR, PCI, and HIPAA regulations rely on AWS services for such 

workloads. AWS has attained multiple globally recognized certifications and 

accreditations, showcasing compliance with rigorous international standards, including 

ISO 27017 for cloud security, ISO 27701 for privacy information management, and ISO 

27018 for cloud privacy. 

Regarding AWS billing, AWS has created a User Guide console to be transparent with 

any charges incurred. The AWS Billing console offers functionalities for settling user 

AWS invoices and tracking AWS expenses and usage. If the user is part of AWS 

Organizations, they can also employ the AWS Billing console to oversee their 

consolidated billing. When registering for an AWS account, Amazon Web Services will 

automatically bill the credit card supplied. The user has the flexibility to view or modify 

their credit card details at their convenience, including the option to assign a different 

credit card for AWS charges. These adjustments can be made through the Payment 

Methods page within the Billing console. 

The author would also like to highlight that no information present in this research 

regarding chaos engineering techniques can be readily used to deliberately harm/degrade 

cloud infrastructures. 

 

 

3.3 Cloud Provider Selection 

 
When deciding regarding a public cloud provider, there are several factors to consider: 

• Required Services: Ensure that the provider offers the essential services that are 

needed, including computing, storage, networking, and databases. 

• Feature Set and Capabilities: Evaluate the provider's features and functionalities 

that align with the specific requirements, encompassing scalability, security, and 

performance. 

• Cost Structure: Verify that the pricing is competitive and that there is a clear 

understanding of the associated terms and conditions. 

• Support Services: Confirm that the provider delivers effective support services, 

enabling users to access assistance whenever necessary. 

 

Presently, AWS stands as the foremost cloud provider, with a global user base in the 

millions and commanding a market share exceeding 30 percent. Introduced by Amazon 
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in 2006, it has since evolved into one of the most widely adopted cloud service providers, 

supported by a wide community of engaged users and developers. Covering 245 

countries and territories, AWS operates within 102 availability zones spanning across 

32 geographic regions (as of December 2023). Its comprehensive offering encompasses 

more than 200 fully featured services encompassing compute, storage, networking, 

databases, analytics, and machine learning. Moreover, AWS regularly introduces new 

features to meet evolving demands. 

AWS includes robust security measures, with over 140 security standards and 

certifications that cater to the compliance requirements of customers around the world. 

Microsoft Azure, Google Cloud Platform, Alibaba Cloud, IBM Cloud, Oracle Cloud 

Infrastructure, Tencent Cloud, DigitalOcean, UpCloud, Akamai, amongst many other 

cloud providers have grown over the years, but in this research the experiment will be 

undertaken based on AWS. 

 

Figure 3.2. Cloud service providers per market share (DGTL Ingra website3) 

 

 

3.4 Microservice Application Development 

 
In this experiment, the Java programing language will be used to develop the 

microservice application that will be deployed in AWS. The Java programming language 

is characterized by its high-level nature, object-oriented approach, and a deliberate 

 

3 Top 10 Cloud Service Providers Globally in 2023 - Dgtl Infra 

https://dgtlinfra.com/top-cloud-service-providers/
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emphasis on minimizing implementation dependencies. It is a versatile language 

designed to enable the "write once, run anywhere" (WORA) principle, signifying that 

compiled Java code can function on any platform that supports Java without requiring 

recompilation. Typically, Java applications are compiled into bytecode, which is 

executable on any Java virtual machine (JVM), irrespective of the underlying computer 

architecture. 

 

While Java's syntax bears some resemblance to C and C++, it offers fewer low-level 

capabilities compared to both. The Java runtime environment provides dynamic 

functionalities, such as reflection and runtime code modification, which are typically 

absent in traditional compiled languages. 

 

In this paper, the Java application will utilize the Spring framework to spin-up an in- 

memory H2 database containing one table with two columns, inject ten random entries 

into the table and then expose the entries in JSON format through a REST API via the 

Spring Web module. 

 

Based on the AWS microservice definition4, the Java application proposed in this paper 

fits the description of being a microservice, as it has a well-defined interface using a 

lightweight API, it is autonomous, specialized, it can independently run, be updated, 

deployed and scaled. 

 

3.5 Self-healing Architecture Design 

 
In this research, the design of the cloud architecture is based on the AWS Well- 

Architected framework, which is widely accepted in the industry. However, given the 

nature of the experiment, a bigger focus was given to the Reliability Pillar, which states: 

“The reliability pillar focuses on workloads performing their intended functions and how 

to recover quickly from failure to meet demands. Key topics include distributed system 

design, recovery planning, and adapting to changing requirements.5”). 

 

It is also worth mentioning that most of the architectural design choices were focused on 

the free-tier services, which are offered by AWS to accounts created within the past 12 

 

4 https://aws.amazon.com/microservices/ 
5 https://aws.amazon.com/architecture/well-architected 

https://aws.amazon.com/microservices/
https://aws.amazon.com/architecture/well-architected
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months. There are three main components to this self-healing architecture: 

1. EC2 instances: These are the computational power, machines where the Java 

application will be deployed and executed. In this experiment two instances will be 

created, due to AWS EC2 instances committing to 99.99% availability SLA (Service 

Level Agreement) per EC2 Region, therefore two instances present eight 9’s. 

availability, which corresponds to 3.15 seconds of downtime per year. 

2. Auto Scaling Groups: An Auto Scaling group comprises a set of EC2 instances that 

are organized as a cohesive entity, serving the purpose of automated scaling and 

administration. Additionally, an Auto Scaling group facilitates the utilization of 

Amazon EC2 Auto Scaling capabilities, including health check substitutions and 

scaling policies. The central functions of the Amazon EC2 Auto Scaling service 

encompass both the management of instance quantities within an Auto Scaling group 

and the automatic scaling process. For this experiment, the Auto Scaling group will 

be set to contain a minimum of two instances and a maximum of four. 

3. Elastic Load Balancers: Elastic Load Balancing (ELB) autonomously disperses 

incoming application traffic among numerous targets and virtual appliances situated 

in one or multiple Availability Zones (AZs). 

 

However, these components are dependent on the lower-level services listed below: 

• VPC (Virtual Private Cloud): Amazon Virtual Private Cloud (VPC) empowers 

the user to deploy AWS resources within a logically segregated virtual network 

that have been personally configured. This virtual network mirrors the structure 

of a conventional network the user might manage in their private data center 

while leveraging the advantages of AWS's scalable infrastructure. 
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Figure 3.3. VPC example (Amazon VPC6) 

 

 

• Key-Pair: A key pair, comprising both a public key and a private key, represents 

a pair of security credentials employed for verifying the users’ identity when 

establishing a connection to an Amazon EC2 instance. In this setup, Amazon 

EC2 retains the public key on the users’ instance, while they retain control over 

the private key. In the context of Linux instances, this private key serves as the 

secure means for SSH access to their instance. Alternatively, in lieu of key pairs, 

they have the option to utilize AWS Systems Manager Session Manager for 

connecting to their instance. This method provides an interactive, one-click, 

browser-based shell, or integration with the AWS Command Line Interface 

(AWS CLI). 

• AMI: An Amazon Machine Image (AMI) is a meticulously curated and managed 

image made available by AWS, containing all the essential data needed to initiate 

an instance. When launching an instance, specifying an AMI is a mandatory step. 

If the user needs multiple instances with identical configurations, they can 

initiate several instances from a single AMI. Conversely, when they need 

instances with varying configurations, they can utilize distinct AMIs for 

launching those instances. 

• Launch Template: It is possible to generate a launch template, which 

encapsulates the setup details needed for initiating an instance. Launch templates 

offer a convenient way to store launch parameters, eliminating the need to 

 

6  https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html 

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
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repeatedly specify them when launching instances. For instance, a launch 

template might include essential information like the AMI ID, instance type, and 

customary network settings employed for launching instances. When users 

launch an instance through the Amazon EC2 console, an AWS SDK, or a 

command line tool, they have the option to designate the specific launch template 

to employ. 

• Security Groups: A security group governs the traffic that is permitted to enter 

and exit the resources it is linked to. For instance, once users associate a security 

group with an EC2 instance, it takes charge of managing both incoming and 

outgoing traffic for that instance. It’s worth noting that they can only associate a 

security group with resources located within the same VPC where the security 

group was established. Upon creating a VPC, a default security group is 

automatically provided. If needed, they have the flexibility to generate extra 

security groups for each VPC in their account. 

 

 
Figure 3.4: Security groups example (Amazon Security Basics7) 

 

 

3.6 API Testing Tool 

 
APIs are pivotal for enabling smooth communication among different applications and 

services. Given their fundamental role in contemporary software, rigorous testing 

becomes crucial to ensure their dependability, scalability, and security. This is where the 

significance of API testing tools becomes apparent. 

 

 

7  https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html#security-group-basics 

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html#security-group-basics
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API testing is a procedure used by developers to evaluate the functionality, efficacy, and 

security of APIs. Before releasing their software, the results of this procedure will inform 

developers if an API requires problem fixes and patches. 

 

The Apache JMeter software is an open-source, entirely Java-based application from the 

Apache Software Foundation that is designed to assess performance and stress-test 

functional behavior. While its initial purpose was testing web applications, it has since 

evolved to encompass a broader range of testing functions. Apache JMeter may be used 

to test performance both on static and dynamic resources, Web dynamic applications. 

 

Some of the important characteristics of JMeter to this experiment are as follows: 

• It is available freely as open-source software. 

• Featuring a user-friendly and intuitive graphical user interface (GUI). 

• JMeter is versatile, capable of conducting load and performance tests on various 

server types, including Web (HTTP, HTTPS), SOAP, Database (via JDBC), 

LDAP, JMS, Mail (POP3), and more. 

• It is a tool that operates seamlessly across different platforms. On Linux/Unix 

systems, users can initiate JMeter by executing the JMeter shell script, while on 

Windows, it can be launched by running the jmeter.bat file. 

• JMeter offers robust support for Swing and lightweight components 

(precompiled JAR utilizes javax.swing.* packages). 

• Test plans in JMeter are stored in XML format, facilitating the creation and 

modification of test plans using a simple text editor. 

• With its comprehensive multi-threading framework, JMeter enables concurrent 

sampling by multiple threads and simultaneous sampling of various functions 

through separate thread groups. 

• The extensibility of JMeter allows for the integration of additional functionalities 

and plugins. 

• Beyond load and performance testing, JMeter can also be employed for 

automated and functional testing of applications. 
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Figure 3.5: JMeter architecture (JMeter Tutorial8) 

 

 

 

 

 

3.7 Fault Injector 

 
As the name suggests, fault injection is a technique for deliberately introducing stress or 

failure into a system to see how the system responds. Runtime fault injection gained 

significant traction, particularly within organizations overseeing extensive, intricate, and 

distributed systems. In 2011, Netflix introduced Chaos Monkey, a tool that intentionally 

halted compute instances operating in their cloud infrastructure. Chaos Monkey assisted 

Netflix in confirming the resilience of their workloads to abrupt and unanticipated 

failures through the random termination of running systems. In 2014, Netflix further 

advanced this concept with the introduction of their Failure Injection Testing (FIT) 

platform, which provided a more advanced solution for orchestrating widespread failure 

scenarios involving multiple teams. These pioneering tools established the foundational 

principles of modern-day Chaos Engineering. 

AWS Fault Injection Simulator (FIS) is a completely managed service that facilitates the 

execution of fault injection experiments aimed at enhancing an application’s 

performance, visibility, and robustness. FIS streamlines the setup and execution of 

deliberate fault injection tests spanning various AWS services, enabling teams to gain 

trust in their application’s behavior. 

 

 

8 https://www.javatpoint.com/jmeter-tutorial 

https://www.javatpoint.com/jmeter-tutorial
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Figure 3.6: FIS explained (Amazon FIS9) 

 

 

It is important to highlight the lack of freely available chaos engineered tools at the time 

of writing this dissertation. Given the nature of the research and the fault injection 

requirements, AWS FIS was the only free tool available that could interact with AWS 

resources in the necessary way (i.e., terminating computing instances to simulate an 

unexpected fault). 

 

3.8 Expert Interview Design 

 
Three interviews will be conducted with Industry experts in the field of software 

engineering and cloud infrastructure. The interviews will be conducted separately, so 

interviewees cannot influence each other and/or steer each other’s train of thought in a 

specific direction. The interviewees will be asked not to speak to each other about this 

project until after all the interviews are conducted. 

The interview process will be as follows, the interviewees will each be presented with 

an outline of the experiment, and the key results obtained. This will be in a neutral 

manner. The interviewees will then be asked to comment on the experiment, in terms 

of how it was designed, how it was implemented, and on the results. And specifically, 

they will be asked to share their interpretation of the outcomes of the experiment. 

 

The interviewees can be described as follows: 
 

# Description 

I1 Interviewee 1 has over 25 years of experience in the Software 

Engineering industry, including FinTech, medical systems and the public 

 

9 https://aws.amazon.com/fis/ 

https://aws.amazon.com/fis/
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 sector. They have also spent over 10 years working directly with cloud 

infrastructure, including AWS, OpenShift, PCF and Azure. 

I2 Interviewee 2 has 8 years of experience in the Software Engineering 

industry, including FinTech and public sector. They have spent over 3 

years working directly with cloud infrastructure, including AWS and 

OpenShift. 

I3 Interviewee 3 has over 10 years of experience in the Software 

Engineering industry, including banking and public sectors. They have 

spent over 6 years working directly with cloud infrastructure, including 

AWS, Azure and OpenShift. 

 
These interviews allowed for reflection and validation of the experiment design, metrics 

extraction and drawn conclusions from an external perspective, as well as bringing ideas 

and inspiration for future work. The interviews will be described in detail in chapter 5.8. 

Zhang, et al. (2021) in their paper on ‘Microservice architecture in reality: An industrial 

inquiry’, conducted a series of interviews with industry experts, therefore this paper found 

inspiration in their work when planning the interviews. The full presentation used in the 

interviews and questionnaire can be found in Appendix C, or in Power Point format at 

https://github.com/brunorfranco/masterThesis/blob/main/mastersInterviewPresentation.p 

ptx. 

 

3.9 Experiment Design 

 
This section will explore the conception of the experiment's design, detailing the 

encountered challenges throughout the process and culminating in its final state. 

 

3.1.1.  Design Challenge 

 

 

During the implementation of the experiment, multiple challenges were faced, and they 

will be explored in this section. 

Initially, the research intended to use a ‘black box’ AWS service named Elastic 

Beanstalk, which is a platform designed for the deployment and expansion of web 

applications and services. By uploading application code, Elastic Beanstalk would 

seamlessly manage the deployment process, encompassing tasks like capacity 

provisioning, load balancing, auto scaling, and continuous monitoring of application 

https://github.com/brunorfranco/masterThesis/blob/main/mastersInterviewPresentation.pptx
https://github.com/brunorfranco/masterThesis/blob/main/mastersInterviewPresentation.pptx
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health. However, Elastic Beanstalk does not offer fine-grained configuration, including 

the Auto Scaling configuration required for the ideal experiment, so it could not be 

utilized in this research. More specifically, Elastic Beanstalk only allows for the 

minimum and maximum number of instances setup, while the envisioned experiment 

requires the setup for ‘desired capacity’ and ‘maximum prepared capacity’: 

 

Figure 3.7: Elastic Beanstalk Auto scaling group configuration (Author) 

 

 

On the applications implementation plan, initially the Author envisioned creating an 

‘Industry level standard’ architecture, including a highly resilient and available database 

in AWS, a Multi AZ RDS MySQL database with an extra read-only replica, but after 

further consideration, it came to light that for the purpose of this research, this database 

setup would not help validate nor disprove the hypothesis, and it would incur extra costs 

on the AWS billing. 

 

A similar scenario was also faced in terms of the application setup. Initially, it was 

envisioned that two Java applications would be created, a ‘frontend-application’, and a 

‘backend-application’, but after further consideration, it was realized that when injecting 
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faults into instances for the same service, it would not matter having two different 

services, so the author has elected to proceed with only the ‘backend-application’. 

 

Both applications codes can be found at: brunorfranco/masterThesis: Folder to hold all 

the necessary code and configuration for my personal Masters thesis (github.com) 

 

Figure 3.8. Initial Design (Author) 

 

The initial research design had scope that the AWS environment cannot satisfy. 

A study by Portent (https://www.portent.com/blog/analytics/research-site-speed- 

hurting-everyones-revenue.htm) discovered that the average website load time in 2023 

is 2.5 seconds, therefore the initial research design visioned for AWS to upkeep a self- 

healing SLO of two seconds. However, after the preliminary test, it became clear that 

two seconds was too ambitious, so the time expectation was modified to sixty seconds, 

which was inspired by Frincu, et al. (2011), where recovery time findings were around 

60s for 10 modules using on-demand deployment. 

https://github.com/brunorfranco/masterThesis
https://github.com/brunorfranco/masterThesis
https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm
https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm
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Figure 3.9. Recovery time vs. number of failed modules (Frincu, et al., 2011) 

 

 

 

3.9.1 Final Design 

 

 

Given Elastic Beanstalk limitations and the advice from experts in the field, the overall 

cloud architecture will manually be created as follows: 

 

Figure 3.10. Final Design (Author) 

 

 

For this experiment, a Test Plan will be created in Apache JMeter containing: 

• One single Thread Group (as this is not a stress-test), 

• HTTP Request Sampler pointing to the Elastic load balancer for the backend- 
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service, 

• Graph and Table listeners. 

• Constant Timer with 1000 milliseconds Thread Delay 
 

Figure 3.11. JMeter Test Plan Configured (Author) 

 

 

An AWS Fault Injector setup will also be created to disable both EC2 instances running 

the backend-service application, and the JMeter Test Plan will then collect information 

during the fault injection. 

 

The JMeter will collect the time of the last successful request to the API before the fault 

injection, and the first successful request after the fault injection. The delta of the two 

will be used as the time that the cloud architecture needed to heal itself. 

 

Figure 3.12. JMeter Result in Table view (Author) 

 

 

Once the FIS setup is completed and the targeted EC2 instances are terminated, an extra 

five minutes will be allowed for the Auto Scale policy to spin up extra compute 

instances, then the JMeter test plan will be stopped. 

 

Following Ali Naqvi, et al. (2022) experiment, their experiment was executed in two 

phases, eight times each, our experiment will be executed in four different phases 
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(differentiated by auto-scaling configurations), eight times each as well: 

5. No warm pooling. 

6. Warm pooling with one instance on ‘Stopped’ state. 

7. Warm pooling with one instance on ‘Running’ state. 

8. Warm pooling with one instance on ‘Hibernated’ state. 

 

 

Therefore, in total, the experiment will be executed thirty-two times, and any outliers 

will be investigated carefully and re-executed. An experiment execution will be 

considered an outlier if the cloud healing time has a 50% variation from the previous 

two executions median (except for the first and second executions, which will be 

evaluated against the following two executions). A final report will be produced from 

the thirty-two results, separated by the four configuration variations. 

 

3.10 Conclusions 

 
This chapter has discussed the main technologies and steps necessary to conduct the 

proposed experiment, collect the data and evaluate it. 

 

The results should produce data to either support or contradict the notion that chaos 

engineered techniques will degrade the proposed microservice architecture beyond a 

sixty-seconds self-healing time, as well as compare results between various auto scaling 

configurations. 

 

Collecting data with an independent tool (JMeter), from outside of the AWS ecosystem, 

will remove any bias regarding reliability of the results. 

 

A fault injection tool from outside of the AWS ecosystem would have been preferred. 

However, no free tool that could interact with AWS resources was found, therefore AWS 

FIS was chosen as the only feasible tool. 
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4 DEVELOPMENT PROCESS 

“Creating new paths requires moving old obstacles.” 

– Anthony D. Williams, Inside the Divine Pattern 

 

4.1 Introduction 

 
In this chapter, the implementation of the microservice application, the cloud 

architecture, the fault injection setup, and the API testing will be discussed. These are 

all based on the designs outlined in Chapter 3. Following this implementation process, 

four variations of the experiment are executed eight times each. The results these 

experiments generate will be used for resiliency evaluation purposes. Finally, the 

difference in results from the four experiment variations will be analyzed. Any problems 

encountered during the development will be discussed and the technologies used will be 

judged on their effectiveness during implementation. All of the code written for this 

dissertation, as well as any generated configuration (user-data file, JMeter test plan, FIS 

template, etc.) can be found at the following Github location: 

https://github.com/brunorfranco/masterThesis. 

 

The diagram below shows all the necessary steps in the correct sequence to achieve the 

final state within the AWS platform to proceed with the experiment. 

 

Figure 4.1. AWS Diagram with all steps (Author) 

https://github.com/brunorfranco/masterThesis
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4.2 Java Micro-service Implementation 

 
The ‘backend-service’ Java application was developed and compiled in JavaSE-17, in 

the Eclipse IDE version 2023-09 (4.29.0). It was built with maven, Spring Boot 3.1.2, 

Spring Boot Starter Data JPA, Spring boot Starter Web and H2 database. It contains a 

single model called RandomEntry, which maps to a database table named 

‘RandomEntryTable’, with two columns, ‘id’ and ‘randomValue’. The application also 

exposes a Rest API under port 8082, URL ‘/api/entries’ which returns all the rows of the 

RandomEntryTable in JSON format. When the application starts up, it executes a 

command to insert ten random rows into the in-memory database. Once the application 

is running, the database can be interacted with from the ‘/h2-ui’ URL. The application 

can be executed by running the ‘BackendServiceApplication.java’ class. The 

application’s code can be found in its entirety at: 

https://github.com/brunorfranco/masterThesis/tree/main/backend-service. 

 

4.3 AWS Cloud Architecture implementation 

This section will explore the steps to create the self-healing cloud architecture that will be 

challenged by the fault injection tool of choice and note if such architecture will be able to 

heal itself within sixty seconds. The main goal in this section is to configure the necessary 

components mentioned in the diagram below: 

 

Figure 4.2. AWS Cloud Architecture Designed (Author) 

 

For more details on how to setup any of steps described from section 4.3.1 to 4.3.10, please 

refer to Appendix B, section 2. 

https://github.com/brunorfranco/masterThesis/tree/main/backend-service
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4.3.1 VPC Creation 

The objective of this step is to set up a virtual private cloud (VPC), so that other cloud 

components can be created safely within it. 

Once logged into the AWS console, the ‘Create VPC’ wizard steps were followed: 
 

Figure 4.3. AWS Console – VPC (Author) 

 

 

 

4.3.2 Key Pair Creation 

The objective of this step is to create an AWS Key Pair, so that it can be used for users to 

safely use the Secure Shell Protocol (SSH) to connect into compute instances. A key Pair 

is a set of security credentials, consisting of a public key and a private key, and it is used 

to verify users' identities when they connect to an Amazon EC2 instance. To proceed with 

the setup, a key pair needs to be created. Once logged into the AWS console, navigate to 

the ‘Key Pair’ section, and follow the ‘Create key pair’ wizard. 

 

Figure 4.4. AWS Console – Key pairs (Author) 

 

 

 

4.3.3 (Windows users) Install Putty 

The objective of this step is to download and install Putty, so that it is possible to SSH 

into compute instances remotely to run the Java application. If the format file in the 

download was .pem, then Puttygen can be used to convert it to .ppk. 

 

 

4.3.4 EC2 Creation 

The objective of this step is to create EC2 (Elastic Cloud Compute) instances, so that they 

can be used to deploy and execute the Java Application 
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From the EC2 dashboard, the ‘Launch Instance’ button was clicked and instructions within 

the wizard were followed to launch an ‘Amazon Machine Image’: 

 

Figure 4.5. AWS Console – EC2 Launch (Author) 

 

This will spin up an Amazon Linx 2023 x86_64 HVM kernel-6.1. The key pair created on 

step 4.3.2 was selected under the ‘Key pair (login)’ section. Under the ‘Network settings’, 

the ‘Create security group’ option was selected to simplify the configuration, given that 

comes with SSH traffic allowed by default. The tick-box to ‘Allow HTTP traffic from the 

internet’ was also selected, as a Rest API endpoint will be exposed by the Java application. 

Finally, the instance was launched. 
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4.3.5 Adding Java Application file into the EC2 instance. 

The objective of this step is to copy the Java application .jar file into the EC2 instance, so 

that it be deployed. To add the .jar file into the EC2 instance, the WinSCP tool was used, 

version 6.1.2, build 13797 2023-09-19. For details on how to configure the use of a .ppk 

key file into WinSCP and SSH into the EC2 instance from the previous step, please refer 

to Appendix B, section 2.5. The backend-service-0.0.1-SNAPSHOT.jar file from the Java 

application ‘target’ folder was then copied and pasted into the EC2 instance, under the 

‘/home/ec2-user/’ folder: 

 

 

Figure 4.6. WinSCP Console (Author) 

 

4.3.6 Connecting into EC2 through Putty and running the application. 

The objective of this step is to connect to the EC2 instance via the command line interface, 

so that the Java application can be executed. Once the .jar file was loaded into the EC2 

instance, then it was time to SSH into the instance through the Putty command line and 

run it. To achieve that, Putty version 0.79 was used. To open a new session from Putty, the 

Public IPv4 address from the instance in the AWS console was captured, then inserted into 

the Putty Host Name with the port 22. Under ‘Connection’, the author opened ‘SSH’, then 

‘Auth’, then ‘Credentials’, then browsed and selected the .ppk key file that was generated 

on step 4.3.2. The SSH connection was established then: 
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Figure 4.7. Putty Console – Login (Author) 

 

If the connection times out, please refer to Appendix B, section 6 for troubleshooting 

advice. Once in, it was verified that the .jar file is in place and accessible by executing an 

‘ls -l’ command: 

 

Figure 4.8. Putty Console – Jar File (Author) 

 

After that was confirmed, the application was started by executing “java -jar /home/ec2- 

user/backend-service-0.0.1-SNAPSHOT.jar &”. 

 

 

4.3.7 AMI Extraction 

The objective of this step is to create a Machine Image, so that the image can be used 

further on as part of the Auto Scaling group. That way, the Auto Scaling group will be able 

create pre-configured instances from this AMI when spinning up new on-demand 

instances. 
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That was achieved from the ‘EC2 Dashboard’ in the AWS console, by selecting the healthy 

EC2 instance, then selecting ‘Actions’, then ‘Image and templates’, then ‘Create image’ 

and following the wizard: 

 

Figure 4.9. AWS Console – Creating Image (Author) 

 

 

4.3.8 Launch template 

The objective of this step is to create a Launch Template, so that it can hold the necessary 

configuration for the Auto Scaling group. A Launch Template can be created from the EC2 

dashboard, then ‘Auto Scaling’, then ‘Auto Scaling Groups’, then the ‘Launch Templates’ 

option: 

 

Figure 4.10. AWS Console – Launch Templates (Author) 

 

 

 

4.3.9 Auto Scaling group and Elastic Load Balancer 

The objective of this step is to create an Auto Scaling group and Elastic Load Balancer, so 

that AWS can create compute instances on-demand and route incoming traffic from the 

Load Balancer into said instances. With the Launch template in place, then the Auto 

Scaling group can be created through the EC2 dashboard, ‘Auto Scaling’, ‘Auto Scaling 

Groups’, ‘Create Auto Scaling group’ wizard: 
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Figure 4.11. AWS Console – Auto Scaling group (Author) 

 

 

 

4.3.10 Warm Pooling 

 

The objective of this step is to set up warm pools within the Auto Scaling group, so that 

higher resilience is achieved. 

 

As mentioned previously, Auto Scaling groups allow for different configuration variations, 

which have effects on recovery time of the service, so they will be explored as part of the 

experiment: 

 

1. No warm pooling. 

2. Warm pooling with one instance on ‘Stopped’ state. 

3. Warm pooling with one instance on ‘Running’ state. 

4. Warm pooling with one instance on ‘Hibernated’ state. 

 

They can be configured under the ‘Auto Scaling Group’ section in the EC2 dashboard, 

under the ‘Instance management’ tab. The details of each warm pooling setup will be 

discussed under section 4.6 “Experiment Execution”. 
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4.4 JMeter Test Plan Implementation 

 
For this experiment, a Test Plan was created in Apache JMeter version 5.6.2 

 

Figure 4.12. JMeter Logo (Author) 

 

This tool is maintained by the Apache Software Foundation and is free and open source. 

At the time of this writing, the tool can be downloaded from 

https://jmeter.apache.org/download_jmeter.cgi 

The creation and configuration of the Test Plan can be seen on Appendix B, section 3. 

The full configuration can be found in .jmx format for ease of importing at 

https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx 

 

4.5 AWS Fault Injection Simulator (FIS) Creation 

The author has opted to utilize the AWS FIS as the chaos engineering tool of choice. The 

tool can be accessed through the AWS FIS console: 

Figure 4.13. AWS FIS Menu option (Author) 

https://jmeter.apache.org/download_jmeter.cgi
https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx
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The creation of a FIS experiment template was done through the ‘Create experiment 

template’ wizard: 

 

Figure 4.14. AWS FIS Console (Author) 

 

The details of the FIS setup can be found at Appendix B, section 4. 

 

The command line configuration can be found at the following link to facilitate the creation 

of the FIS experiment: 

https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate 

 

4.6 Experiment Execution 

 
As mentioned earlier, each warm pooling configuration was executed eight times each. 

Before any experiment executions, it was verified that there were two healthy EC2 

instances running and serving requests through the Load Balancer. A timer was initiated. 

As soon as the timer reached thirty seconds, the JMeter Test Plan was initiated to start 

collecting metrics: 

 

Figure 4.15. JMeter View Results (Author) 

 

 

Once the timer reached one minute, the FIS experiment was initiated to shut down 

running EC2 instances: 

https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate
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Figure 4.16. AWS FIS – Starting experiment (Author) 

 

 

 

The JMeter Test Plan would soon (~15 minutes after the FIS startup) indicate that the 

requests were no longer responding successfully, so the author took note up to the 

millisecond of the last time a request was successful before starting to fail, via the ‘View 

Result in Table’ in JMeter. 

 

Figure 4.17. JMeter – Last success before fault (Author) 

 

 

AWS auto scaling realized that it did not have the minimum required number of 

instances as part of its group, so it spun up a healthy instance, then subsequently a second 

one separately (as a mechanism to avoid spinning up extra unnecessary instances). 
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As soon as the new instances were assigned to the Load Balancer and the JMeter Test 

Plan stopped failing and started receiving successful responses back again, then the 

author also took note of the time up to milliseconds of the first successful response after 

the fault injection: 

 

Figure 4.18. JMeter – First success after fault (Author) 

 

 

With both entries noted, the simple following subtraction was used to calculate the time 

it took for AWS to self-heal its system: 

 

 

4.6.1 No Warm Pooling Configuration 

 

Before starting the execution of the experiment, the warm pooling configuration was verified 

under the EC2 console, Auto Scaling section, Instance management tab: 

 

Figure 4.19. AWS Warm Pool Console (Author) 

 

No warm pooling required no extra steps, given that it is the default setup for a newly created 

Self-Heal Time = Time of the first successful request after fault injection – 

Time of the last successful request before fault injection 
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Auto Scaling group. 

 

 

4.6.2. Stopped Warm Pooling Configuration 

 

From the Instance management tab, the ‘Create Warm Pool’ was clicked, and configured as 

follows: 

 

Figure 4.20. AWS Stopped Warm Pool Window (Author) 

 

After a few minutes, the new instances that were part of the warm pool could be verified under 

the ‘Warm pool instances’ section: 

 

Figure 4.21. AWS Stopped Warm Pool Instances (Author) 

 

 

4.6.3 Running Warm Pooling Configuration 

 

From the Instance management tab, the ‘Create Warm Pool’ button was clicked, and 
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configured as follows: 
 

Figure 4.22. AWS Running Warm Pool Console (Author) 

 

After a few minutes, the new instances that were part of the warm pool could be verified under 

the ‘Warm pool instances’ section: 

 

Figure 4.23. AWS Running Warm Pool Instances (Author) 

 

 

4.6.4 Hibernated Warm Pooling Configuration 

 

Hibernated Warm Pooling was introduced in February 2022, and it required extra security 

configuration10. 

The AMI behind the auto scaling group is required to have its block storage (ELB) encrypted 

for it to be able to be added to a hibernated warm pool: 

 

 
Figure 4.24. EBS Encryption (Amazon Blog Posting11) 

 

10  https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/hibernating-prerequisites.html 
11 Amazon EBS encryption - Amazon Elastic Compute Cloud 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/hibernating-prerequisites.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
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It was initially decided to create an independent symmetric key under the KMS console (Key 

Management Service): 

 

Figure 4.25. AWS Console – Key Creation (Author) 

 

 

 

From the AMIs console, the existing AMI that was used throughout the other experiments was 

selected, then ‘Actions’, then ‘Copy’: 

 

Figure 4.26. AWS Console – AMI Creation (Author) 

 

On the setup page, the ‘Encrypt EBS snapshot of AMI copy’ was then selected and under the 

KMS key field, the newly created symmetric key was selected: 
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Figure 4.27. AMI Creation Details (Author) 

 

Once the AMI was created, the Launch Template was updated to use the newly created 

encrypted AMI: 

 

Figure 4.28. AWS Console – Creating new Launch Template (Author) 
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Figure 4.29. AWS Console – New Launch Template details (Author) 

 

With that in place, the auto scaling started launching unhealthy instances that would terminate 

as soon as they start up. 

 

Figure 4.30. AWS Console – EC2 listing (Author) 

 

The logs were verified so problem could be better understood, to no avail: 
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Figure 4.31. AWS Console – EC2 error logs (Author) 

 

 

 

Unfortunately, the provided information did not have enough details, apart from ‘Client error 

on launch’. The author suspects that the new symmetric key needed to be loaded as part of the 

launch template, or the auto scaling group, or maybe there were privilege issues on the IAM, or 

the security group and they were not able to access the new key when trying to mount the block 

storage as part of the auto scaling group. Instead of continuing with the investigation of the 

issue, instead it was decided to not progress with the independent KMS key, but rather use the 

one provided and managed by AWS when encrypting the AMI. 
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Figure 4.32. AWS Console – AMI Creation with default key (Author) 

 

That one change to the configuration allowed for the Auto Scaling group to be healthy and 

launching working instances again: 
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Figure 4.33. AWS Console – EC2 Successful listing (Author) 

 

 

Finally, the Hibernated Warm Pool was created with the following configuration: 
 

Figure 4.34. AWS Hibernated Warm Pool Window (Author) 

 

4.7 Conclusions 

In conclusion, the development process embarked upon in this research has been a 

critical phase in realizing the objectives set forth in our exploration of chaos engineering 
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techniques within a self-healing cloud-native microservice architecture. The systematic 

approach employed throughout the development lifecycle aimed at creating a robust, 

scalable, and resilient system capable of withstanding the rigors of chaos engineered 

fault injections. 

By leveraging state-of-the-art technologies and methodologies tailored to the unique 

demands of cloud-native microservices, we successfully translated theoretical concepts 

into a tangible and functional solution. 

The incorporation of chaos engineering techniques into the cloud-based microservice 

architecture played a pivotal role in assessing the system's ability to withstand 

unforeseen challenges. Noteworthy findings indicate that while auto-scaling warm 

pools, a commonly advocated approach, may not be the silver bullet on aiding the 

architecture's recovery from chaos engineered fault injections. This insight prompts a 

reevaluation of existing assumptions and highlights the need for a more nuanced 

understanding of resilience in the context of cloud-native microservices. 

AWS Well Architected Framework played a crucial role in the decisions taken when 

creating this self-healing architecture, ensuring that the resulting solution aligns closely 

with industry best practices. 

In subsequent chapters, the focus will shift towards the evaluation and analysis of the 

developed solution. Rigorous testing and experimentation will be employed to validate 

the effectiveness of the chaos engineering techniques and to measure the system's 

performance under diverse conditions. The insights garnered from this development 

process not only contribute to the academic discourse surrounding self-healing 

microservice architectures but also offer practical implications for industry professionals 

seeking to enhance the resilience of their cloud-native applications. 
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5 RESULTS AND EVALUATION 

 
“Research is formalized curiosity. It is poking and prying with a purpose.” 

– Zora Neale Hurston. 

 

5.1 Introduction 

The culmination of the exploration into chaos engineering techniques in a self-healing 

cloud-native microservice architecture brings this analysis to the pivotal stage of results, 

evaluation, and discussion. This section represents the synthesis of theoretical insights, 

practical implementations, and empirical observations, providing a comprehensive 

understanding of the implications and outcomes of this research endeavor. 

Throughout the preceding chapters, a discussion of the intricacies of designing and 

implementing a resilient microservices architecture capable of withstanding chaos 

engineered fault injections was presented. The development process, as detailed in 

Chapter 4, laid the foundation for the investigation, leading to a tangible manifestation 

of the theoretical principles governing self-healing systems in cloud-native 

environments. 

In this section, the outcome of the research is presented, employing a multifaceted 

approach that encompasses quantitative metrics, qualitative assessments, and a thorough 

exploration of the implications derived from the chaos engineering experiments based 

on the various types of warm pooling configurations. The evaluation of the self-healing 

microservices architecture will be underpinned by rigorous testing scenarios, allowing 

for a scrutiny of its responsiveness, fault tolerance, and adaptability in the face of 

orchestrated disruptions. 

As the results are presented, the broader implications of the findings will be discussed 

in the context of contemporary cloud-native application development. The discussion 

will go beyond the immediate scope of the experiments, weaving in theoretical 

perspectives, industry best practices, and the evolving landscape of cloud technologies. 

Moreover, this section serves as a platform for critical reflection, offering insights into 

the limitations of the approach used in this research, potential areas for further research, 

and the applicability of the findings in real-world scenarios. Through a balanced and 
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comprehensive analysis, the aim is to contribute not only to the academic discourse on 

chaos engineering and self-healing architectures but also to provide practical guidance 

for professionals seeking to enhance the resilience and reliability of their cloud-native 

microservices. 

This chapter will evaluate the results of this exploration, present a thorough evaluation 

of the developed solution, and engage in a nuanced discussion that contextualizes the 

findings within the broader spectrum of cloud-native application development and chaos 

engineering practices. 

 

5.2 Calibration - Results and Evaluation 

 
Throughout the experiment, the utilized broadband speeds were verified by testing it 

eight times to ensure it was consistent and would not interfere with the results. 

 

No. Download 
(MB) 

Upload 
(MB) 

Ping 
Latency (secs) 

Download 
Latency (secs) 

Upload 
Latency (secs) 

1 405 50 7 51 235 

2 450 51 9 48 272 

3 448 50 8 46 62 

4 428 50 8 38 60 

5 410 51 9 46 128 

6 424 51 8 39 90 

7 423 48 8 56 152 

8 455 51 7 83 246 

Avg. 430 50 8 51 156 

Table 5.1. Broadband Details (Author) 

 

The results above were recorded and the full details of these results can be found at: 

https://github.com/brunorfranco/masterThesis/tree/main/experiments- 

results/BroadbandSpeed 

 

Timing each experiment step for the four different warm pooling variations was also 

consistent, where a timer was utilized to initialize the JMeter test plan, and then the FIS 

experiment with 30 seconds apart from each other. It was noted that across all the 32 

executions of the experiment, it took an average of 13.68 seconds for the Fault Injector 

to disable the application from responding to the JMeter requests. In the tables below 

“TtU” is “Time to Unresponsiveness” in seconds. 

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results/BroadbandSpeed
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results/BroadbandSpeed


74  

 

 

 

 

Experiments 1-16:            

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  

TtU 14 14 15 9 15 9 16 16 17 14 14 15 15 9 16 14  

Experiments 17-32: 
           

No. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  

TtU 14 10 13 14 15 9 16 12 15 15 14 15 15 9 15 15  

Average Time to Unresponsiveness: 
           

 Over 32 experiments: 13.68 seconds 
. 

 

Table 5.2. Time to Unresponsiveness metrics (Author) 

 

The numbers above were extracted from the experiments executions, by subtracting 

thirty seconds from the last successful row’s ‘Sample #’ column in the JMeter View 

Results in Table after the Fault Injection. 

The results above were recorded and can be found at: masterThesis/experiments-results- 

screenies at main · brunorfranco/masterThesis · GitHub 

The next four upcoming sections will present the results of the executed experiments per 

warm pooling configuration. 

 

5.3 No Warm pooling Experiment 

 
During the execution of the experiment while the Auto Scaling group had no warm pooling 

setup, the results were as follows: 

 

No. Last successful request 

after fault 

First successful request 

after recovery 

Elapsed time 

1 16:29:28.433 16:32:07.260 02:38.827 

2 16:37:21.088 16:39:59.916 02:38.828 

3 16:44:46.607 16:46:14.237 01:27.630 

4 16:51:41.303 16:54:01.630 02:20.327 

5 16:58:59.813 17:00:30.580 01:30.767 

6 17:05:48.506 17:08:27.393 02:38.887 

7 17:13:14.345 17:16:11.756 02:57.411 

8 17:20:24.474 17:22:16.195 01:51.721 

Average 02:15.549 

                 

                 

 

                 

                 

 

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies
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Table 5.3. No Warm Pooling Details (Author) 

 

Below is a bar graph to facilitate the visualization of the results: 
 

Figure 5.1. No Warm Pooling Results Graph (Author) 

 

The Delta between the slowest and fastest experiments was 89 seconds. It is worth noting 

that after the first healthy instance started serving successful responses back to JMeter, 

AWS took an extra minute to spin up a second instance (this is an expected mechanism 

implemented by AWS to avoid creating unnecessary instances). It was noteworthy that 

during the addition of the second instance to the Elastic Load Balancer, some of the 

requests returned failures: 

 

Figure 5.2. JMeter Intermittent Failures (Author) 
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This behavior would only present itself for a short time (~10 seconds), and the second 

instance would soon serve successful responses. Given that the detailed algorithm for 

adding instances into AWS Elastic Load Balancers is not publicly available, it has been 

theorized that the second instance would pass the health check validation once the 

computing instance is available, but the microservice application is not yet up and 

running. Based on this theory, the first instance added to the Load Balancer is also 

susceptible to this behavior, but unnoticeable, given that all requests were failing up to 

the point where the first microservice application is up and running. 

 

 

5.4 Stopped Warm Pooling Experiment 

During the execution of the experiment while the Auto Scaling group had a stopped 

warm pooling setup, the results were as follows: 

 

No. Last successful request 

after fault 

First successful request 

after recovery 

Elapsed time 

1 12:21:14.040 12:23:53.779 02:39.739 

2 14:18:39.652 14:20:16.130 01:36.47 

3 14:27:41.048 14:30:02.658 02:21.610 

4 14:36:24.950 14:38:00.258 01:35.308 

5 14:44:04.283 14:46:00.484 01:56.201 

6 14:51:21.225 14:54:21.301 03:00.076 

7 15:01:16.763 15:04:03.782 02:47.019 

8 15:09:03.961 15:12:19.420 03:15.459 

Average 02:23.986 

Table 5.4. Stopped Warm Pooling Details (Author) 

 

Below is a bar graph to facilitate the visualization of the results: 

 

Figure 5.3. Stopped Warm Pooling Results Graph (Author) 
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The Delta between the slowest and fastest experiments was 100 seconds. Regarding the 

issue discussed in section 5.3 where the second computing instance added to the load 

balancer fails for around 8 seconds, this behavior can also be noticed when using stopped 

warm pools. 
 

Figure 5.4. Stopped Warm Pooling JMeter failures (Author) 

 

 

5.5 Hibernated Warm Pooling Experiment 

 
During the execution of the experiment while the Auto Scaling group had a hibernated warm 

pooling setup, the results were as follows: 

 

No. Last successful request 

after fault 

First successful request 

after recovery 

Elapsed time 

1 18:08:25.344 18:09:48.567 01:23.223 

2 18:15:08.020 18:17:42.913 02:34.893 

3 18:22:12.935 18:23:47.238 01:34.303 

4 18:29:12.944 18:31:43.360 02:30.416 

5 18:39:44.713 18:41:51.029 02:06.316 

6 18:46:36.257 18:48:14.913 01:38.656 

7 18:54:54.811 18:55:57.026 01:02.215 

8 19:01:58.829 19:03:51.875 01:53.046 

Average 01:50.383 

Table 5.5. Hibernated Warm Pooling Details (Author) 
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Below is a bar graph to facilitate the visualization of the results: 

 

Figure 5.5. Hibernated Warm Pooling Results Graph (Author) 

 

The Delta between the slowest and fastest experiments was 93 seconds. Hibernated warm 

pools would not present failed responses when adding instances into the load balancer. 

This is likely due to the nature of hibernated instances. When the instance is started again, 

the root volume is restored to its previous state and the RAM contents are reloaded, 

therefore the application will be up and running as soon as the instance is pulled from the 

pool. 

 

5.6 Running Warm Pooling Experiment 

 
During the execution of the experiment while the Auto Scaling group had a running warm 

pooling setup, the results were as follows: 

 

No. Last successful request 

after fault 

First successful request 

after recovery 

Elapsed time 

1 17:37:44.065 17:39:35.936 01:51.871 

2 17:45:18.922 17:47:34.990 02:16.068 

3 17:52:46.518 17:53:48.744 01:02.226 

4 18:02:41.585 18:03:43.793 01:02.208 

5 18:10:01.389 18:11:29.012 01:27.62 

6 18:16:43.552 18:17:45.765 01:02.213 

7 18:30:05.661 18:31:34.408 01:28.747 

8 18:37:05.916 18:38:08.136 01:02.220 

Average 01:24.147 

Table 5.6. Running Warm Pooling Details (Author) 

 

Below is a bar graph to facilitate the visualization of the results: 
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Figure 5.6. Running Warm Pooling Results Graph (Author) 

 

 

 

The Delta between the slowest and fastest experiments was 74 seconds. As expected, 

running warm pools would also not present failed responses when adding instances into 

the load balancer, given that the instance is already running, therefore the application is 

already up. 

 

During the execution of this part of the experiment, one outlier was observed (screenshots 

can be found at masterThesis/experiments-results-screenies/RunningWarmPool/7-outlier 

at main · brunorfranco/masterThesis · GitHub). 

Even though the overall time to recover was 1 minute and 35 seconds (slightly above the 

average but still within range of acceptance), an unusual behavior was observed after the 

3 minutes mark into the experiment. The first successful request after the fault injection 

was followed by a failure that held the thread for an average of 10 seconds. This ‘success- 

into-10-seconds-failure’ pattern repeated itself three times in total, and after that, all 

requests started succeeding again: 

 

Figure 5.7. JMeter Running Warm Pool Outlier (Author) 

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies/RunningWarmPool/7-outlier
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies/RunningWarmPool/7-outlier
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It appears that the issue occurred when adding the second instance into the load balancer 

(as observed for the experiments with no warm pooling and stopped warm pooling). 

However, this should not have happened for running warm pooling, given that the 

instances are supposed to be already running when pulling from the warm pool, and what 

makes it more interesting is that this is the first and only time in all the 32 executions of 

the experiment that the response took ten seconds before returning with a failure. 

The explanation for such an event can be vague, given the error logs are limited at best. It 

could had been an issue with the network connection for that specific EC2 instance, or 

possibly the load balancer recruited the instance at the same time that the instance was 

commissioned and prepared, and was sent to the warm pool itself causing a recruiting 

conflict between the warm pool and the load balancer, or it could simply that the instance 

misbehaved due to unexpected issues in hardware/software but was healed in around 30 

seconds. 

 

5.7 Conclusions 

This chapter presented the outcomes of the research, using a multifaceted approach that 

encompasses quantitative metrics, qualitative assessments, and a thorough exploration 

of the implications derived from the chaos engineering experiments based on the various 

types of warm pooling configurations. The evaluation of the self-healing microservices 

architecture is be underpinned by rigorous testing scenarios, allowing for a scrutiny of 

its responsiveness, fault tolerance, and adaptability in the face of orchestrated 

disruptions. All the data presented in chapter 5 can be verified from the screenshots 

presented at: https://github.com/brunorfranco/masterThesis/tree/main/experiments- 

results-screenies. 

 

Four separate experiments were undertaken (eight times each), and the average time for 

each type of experiment was: 

# Experiment Type Average Time 

1 No warm pooling recovery time 02:15.549 

2 Stopped warm pooling recovery time 02:23.986 

3 Hibernated warm pooling recovery time 01:50.383 

4 Running warm pooling recovery time 01:24.147 

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies
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Given that the average metrics were collected in the ‘mm:ss.mmm’ format, they were 

converted to seconds to facilitate comparisons. 

No. No Pool Stopped Hibernated Running 

1 159 160 83 112 

2 159 96 155 136 

3 88 142 94 62 

4 140 95 150 62 

5 91 116 126 88 

6 159 180 99 62 

7 177 167 62 89 

8 112 195 113 62 

Avg. 136 144 110 84 

Table 5.7. Result Conversion to Seconds (Author) 

 

The following vertical bar graph compares the recovery time in seconds per warm 

polling configuration: 

 

Figure 5.8. Recovery Time Comparison Graph (Author) 

 

 

When visualizing the data through a pie chart, this is the outcome: 
 

 

Figure 5.9. Recovery Time Comparison Chart (Author) 
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The following table presents the warm pooling recovery time comparison between one 

another: 

 
No WP Stopped Hibernated Running 

No WP  +5.88% -23.64% -61.9% 

Stopped   
-30.91% -71.43% 

Hibernated    
-30.95% 

Running     

Table 5.8. Warm Pooling Performance Comparison (Author) 

 

Unexpectedly, the results show that having no warm pools was 5.88% faster than setting 

up Stopped Warm pools, contrary to popular belief. This could have been caused by the 

effects of the overhead created in the Auto Scaling group when the computing instances 

are small sized machines (t2.micro – one of the smallest machine offered by AWS at the 

time of this writing) and the start-up time of the application is also minimal (averaging 

3.47 seconds). 

 

The remaining results are in accordance with what was expected by this paper and the 

AWS documentation12, where running warm pools should outperform all of the other’s 

options, and hibernated warm pools should outperform stopped warm pools and having 

no warm pools. 

 

As mentioned in section 4.6, it is important to note that only the hibernated and running 

warm pooling configurations did not present failed responses when adding the second 

instance into the Load Balancer. That can be explained by the fact that hibernated 

instances pre-initialize the entire EC2 instance state, not just the disk state, therefore 

when they are requested from the pool, they already have the Java application in running 

state, and running warm pool, as the name suggests, already has the instances fully 

running, so they are ready to serve incoming requests. That concludes that when 

prioritizing availability over performance, it is best to use hibernated or running warm 

pools to avoid intermittent failed responses when requesting instances from the warm 

pool. 

 

12  https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-warm-pools.html 

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-warm-pools.html
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The delta between fastest and slowest recovery times for the four experiments also 

conclude that Stopped Warm Pooling is the most irregular of the four, with 100 seconds 

of delta, while Running Warm Pooling only has 74 seconds, therefore is has a more 

stable behavior. 

 

When comparing the experiment findings with Frincu, et al. (2011), the AWS 

architecture self-healed slower than Frincu’s multi agent system for inter-provider task 

scheduling enhanced with self-healing capabilities. 

 

Figure 5.10. AWS Recovery Time compared to Frincu and friends (Author) 

 

 

It is worth mentioning that each pooling configuration has different financial costs, and 

requires different levels of expertise to configure: 

Configuration 
Type 

Financial 

Costs 

Configuration 
Complexity 

No WP None None 

Stopped Low – EBS Volume Low (simple UI wizard) 

Hibernated Medium – EBS Volume (including RAM) High (requires encrypted AMI) 

Running High – EBS and compute time Low (simple UI wizard) 

Table 5.9. Warm Pooling Cost/Complexity Comparison (Author) 
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Given the nature of each warm pooling option, some conclusions can be drawn. Warm 

pooling in general is known to help decrease latency for application with long boot times, 

based on the AWS Warm Pooling documentation. Given that the current experiment had 

an application with an average time of 3.47 seconds, a separate experiment with a longer 

boot time application will likely wield different results. 

 

It is also important to note that the running warm pool option is not financially advised. 

If one is already willing to pay for a compute instance and its corresponding block 

storage, it would be best to simply add such instance to the load balancer and use it, 

rather than keep it in warm pool running and incurring costs. 

 

When looking back into the research question, the results presented in this paper confirm 

that AWS could not self-heal its microservice architecture within the defined timeframe 

of sixty seconds. By utilizing auto scaling group with running warm pools, the AWS 

platform came close to achieving it, but it missed the mark by extra 24 seconds, totaling 

84 seconds to get back to a healthy state. 

 

5.8 Expert Interviews Conclusions 

 
Three interviews were undertaken with industry experts specializing in Cloud-based 

Software Engineering. The forthcoming subsections will comprehensively outline and 

expound upon the feedback provided by these experts. 

 

5.8.1. First Interview 

 

I1 has suggested for the experiment to be conducted again with the Elastic Load Balancer 

reconfigured with a shorter time-out (which is defaulted to 60 seconds). They concluded 

that the default time-out could cause performance issues by overloading instances with 

throttled requests while the Auto Scaling group works to spin up more instances. 

 

I1 has wondered how AWS would cope with a scenario where the deployed application 

holds the requests for 5 seconds but JMeter continues to fire requests every second, so 

that there will always be a growing queue of unattended requests. 

 

I1 agreed with the paper when concluding that if the experiment had used larger compute 
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instances, the warm pooling results would have been vastly different, likely much better 

than no warm pooling. 

 

I1 has also stated that in many industries segments, the 2 minutes, and 16 seconds 

necessary for AWS to self-heal itself without any warm pooling is acceptable and the 

return in investment for setting up and maintaining warm pooling might not be justified. 

Overall, I3 was satisfied with how the experiment was conducted and the tools/platforms 

chosen. 

 

5.8.2. Second Interview 

 

I2 have challenged the paper’s choice of having 60 seconds SLO as part of the Research 

Question, given that Frincu, et al. (2011) experiment has many different aspects from 

this paper (i.e., optimal number of agents and number of idle clones). 

 

They also suggested that instead of utilizing the FIS tool, a different approach where the 

Java application itself would cause the error and bring the instance down with it. 

 

During the experiment, when the Auto Scaling group is spinning up the first and second 

instances after the fault injection, I2 has queried what is the average time between the 

instantiation of the first and second instances, which unfortunately was a metric that was 

not collected during the experiment execution. 

 

I2 suggested for the experiment to be executed more times with variations on the start- 

up time of the Java application, to correlate the start-up time with the warm pooling 

results and infer if the relation between the two is linear or exponential. 

 

I2 agreed that the findings of the experiment where no warm pooling outperformed 

stopped warm pooling are interesting and valuable. They have stated that it is likely that 

many companies have implemented Stopped Warm Pooling without knowing that this 

is worsening their resilience rather than helping them. 

 

I2 has approved the design the of experiment and the chosen tools and platforms, 

however, they have said they would ensure JMeter is accurately recording the findings, 

by having a second tool (for example Postman or Karate API testing) to compare it with. 
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I2 was satisfied with how the metrics were calculated, but they have stated that given 

the human interactions when clicking buttons to start JMeter and the FIS tool, as well as 

the JMeter one second delay per request, there will be a margin of error in the results. 

 

The interviewee would have liked to have the experiment executed with more variables, 

for example more instances in the auto scaling group, or more instances in the warm 

pool, to understand better if the resilience would grow linearly or exponentially with 

more instances. 

 

They have also suggested that the paper could present the delta between the slowest and 

fastest recovery times for each warm pooling configuration. This suggestion was heard 

and implemented. 

 

I2 has concluded that they would recommend the use of Hibernated warm pools for most 

cases, given that it has substantial performance gains over no warm pools, and it is 

budget friendly (cheaper than running warm pool). 

 

Overall, I2 was satisfied with how the experiment was conducted and the tools/platforms 

chosen. 

 

5.8.3. Third Interview 

 

I3 has reviewed the experiment design and suggested that more than one AWS region 

should be used to achieve higher resilience. 

 

I3 expected AWS to recover in less time than the experiment has shown. They have also 

agreed that if the Auto scaling group had more frequent health checks, the recovery time 

would decrease significantly. 

 

I3 also agrees that if the application start-up time was longer or the compute instances 

were larger, warm pools would have performed better than no warm pools. 

 

Overall, I3 was satisfied with how the experiment was conducted and the tools/platforms 

chosen. 
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6 CONCLUSIONS AND FUTURE WORK 

 
“If we knew what we were doing, it would not be called research, would it?” 

– Albert Einstein. 

 

 

6.1 Introduction 

 
Within the ever-evolving landscape of cloud-native microservice architectures, this MSc 

thesis has embarked on a pioneering expedition, delving deep into the realm of chaos 

engineering techniques and their application in fostering resilience within self-healing 

systems. As this comprehensive exploration nears its denouement, this conclusion serves 

as a compass, directing attention towards the cardinal discoveries, implications, and 

future trajectories illuminated throughout this odyssey. 

 

Throughout the preceding chapters, a meticulous examination of chaos engineering 

techniques has unfolded, strategically applied to the intricate web of a self-healing cloud- 

native microservice architecture. This pursuit has not only unraveled the intricate 

interplay between chaos and resilience but has also underscored the significance of 

proactive measures in fortifying systems against unforeseen adversities. 

 

In the crucible of this investigation, the synthesis of empirical data, the evaluation of 

resilience patterns, and the validation of chaos engineering methodologies have all 

converged to unveil a tapestry of insights. Moreover, this conclusion serves as the nexus 

where the synergistic amalgamation of theoretical frameworks and practical applications 

within the realm of self-healing architectures is encapsulated. 

 

As the thesis approaches its crescendo, the far-reaching implications of this exploration 

within the broader context of cloud-native ecosystems are elucidated. The ramifications 

extend beyond theoretical frameworks, transcending into the realm of real-world 

implementation, where the principles elucidated herein hold the potential to redefine 

practices, guide strategic decision-making, and reshape the paradigms of system 

reliability and robustness. 

 

This conclusion, however, does not signify an endpoint but rather a pivotal juncture. It 
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beckons a contemplation of the expedition thus far—a testament to the rigor, innovation, 

and resilience inherent in the pursuit of advancing technological frontiers. Furthermore, 

it propels the discourse forward, inviting continued investigation, refinement, and 

application of chaos engineering techniques within the ever-evolving tapestry of cloud- 

native microservice architectures. 

 

6.2 Conclusions 

 
6.2.1. Experiment Design 

 

The experimental design conducted in this exploration of Chaos Engineering techniques 

within a self-healing Cloud Native Microservice Architecture has yielded profound 

insights into the resilience and adaptability of complex systems. 

 

Through a meticulously structured methodology, deliberate faults were injected into the 

system to understand its response under stress. This experimentation revealed invaluable 

information about the system's behavior, vulnerabilities, and the efficacy of its self- 

healing mechanisms. The findings not only validated the importance of Chaos 

Engineering but also highlighted its pivotal role in fortifying system robustness against 

unforeseen disruptions. 

The fault injections provided unique perspectives on system resilience, aiding in the 

identification of weaknesses and the enhancement of recovery strategies. This granular 

understanding forms a cornerstone for refining existing practices and forging innovative 

approaches to bolster Cloud Native Microservice Architectures. 

 

Moreover, the experiments underscored the dynamic nature of system resilience. The 

adaptive nature of self-healing mechanisms was observed, showcasing their ability to 

learn from and adapt to disruptions, further strengthening the architecture's overall 

robustness. 

 

The insights gleaned from this experiment design offer a roadmap for future endeavors 

in Chaos Engineering. They emphasize the need for continual exploration and evolution, 

advocating for a proactive stance towards system reliability within modern architectures. 

As technology progresses, the lessons learned here provide a solid foundation for 
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advancing the field and ensuring the resilience and dependability of Cloud Native 

Microservice Architectures in an ever-changing landscape. 

 

In conclusion, the experiment design undertaken in this exploration has not only 

validated the importance of Chaos Engineering but has also illuminated its potential in 

fortifying the resilience of Cloud Native Microservice Architectures. The findings serve 

as a catalyst for future research, shaping a more robust and adaptive technological 

landscape through the application of proactive Chaos Engineering techniques in Self- 

healing architectures. 

 

6.2.2. Tools and Platforms 

 

This paper discussed in detail the options for conducting the experiment, from the cloud 

provider to the application, the architectural design, the API testing tool, and the fault 

injection tool. The chosen tools and platforms were proven to be fit for purpose, 

delivering on their promises, and facilitating the realization of the experiment. 

The key findings for chapter 3 were: 

• The JMeter API testing tool proved itself to be highly configurable, facilitating 

the setup of HTTP requests waiting times, delay per request, number of active 

threads, and multiple options for visualizing collected data. 

• The AWS FIS service offers a variety of options to inject faults into multiple 

AWS services. For this experiment, only the EC2 termination action was used, 

but other options could had been leveraged. 

• The choice of AWS as the cloud provider allowed for low level configuration 

on compute instances, auto scaling groups, warm pools, and load balancers. 

 

6.2.3. Experiment Execution 

 

The choices made for the experiment execution had either strong reasonings or were 

inspired by other papers in the field. The number of executions (inspired by Ali Naqvi, 

et al. (2022)) summed up to 32 in total, which gives high confidence in the results. They 

were conducted in a controlled environment, started each time from a stable state, timed 

accordingly and recorded in details (masterThesis/experiments-results-screenies at main 

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies
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·  brunorfranco/masterThesis · GitHub). 

 

 

 

 

The key findings were: 

• The timing system applied to the experiment helped infer more data than initially 

envisioned (i.e., time to unresponsiveness from the start of the fault injection) 

• Broadband variation was negligible, given that the fault injection occurred within 

the AWS network. 

• The choice to terminate instances via instance ID in AWS FIS proved to be time 

consuming and manual, given that the FIS template needed to be updated with 

new IDs for each experiment execution. The author regrets not having used 

‘tags’. 

• The number of executions was satisfactory for high confidence in the results. 

 

6.2.4. Results Evaluation 

 

The results presented in this paper confirm that AWS could not self-heal its microservice 

architecture within the defined timeframe of sixty seconds. Some specific configurations 

in the auto scaling groups performed better than others, but none reached the pre-defined 

time window SLO. 

 

AWS presented its best results by utilizing running warm pools, missing the SLO mark 

by 24 seconds, totaling 84 seconds to self-heal. 

 

Also, the results show that having no warm pools was 5.88% faster than setting up 

Stopped Warm pools, contrary to expectations. 

 

It is worth noting that for this experiment, JMeter was configured to submit one request 

per second, therefore there is a small margin of error for each experiment (i.e., AWS 

could had healed itself just after a request went off and waited close to 1000 milliseconds 

for the subsequent request to arrive and return successfully). 

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies
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When evaluating the delta between fastest and slowest recovery times for the four 

experiments, it can be concluded that Stopped Warm Pooling is the most unpredictable 

of the four, with 100 seconds of delta, while Running Warm Pooling is the most 

predictable, with a variation of 74 seconds. 

 

As mentioned in section 4.6, it is important to note that only the hibernated and running 

warm pooling configurations did not present failed responses when adding the second 

instance into the Load Balancer. Therefore, when prioritizing availability, it is best to 

use hibernated or running warm pools to avoid intermittent failed responses. 

 

It is worth reiterating that when comparing the experiment findings with Frincu, et al. 

(2011), the AWS’s best results self-healed 40% slower than Frincu’s multi agent system 

for inter-provider task scheduling enhanced with self-healing capabilities, which 

averaged 60 seconds. 

 

Warm pooling in general is known to help decrease latency for application with long 

start-up times. Given that the current experiment had an application with an average 

start-up time of 3.47 seconds, a separate experiment with a longer start-up time 

application will likely wield different results. 

 

It is also important to note that it is not financially advised to configure running warm 

pools. If one is already willing to pay for a compute instance and its corresponding block 

storage, it would be best to simply add such instance to the load balancer and use it, 

rather than keep it in warm pool running and incurring costs. 

 

6.2.4.  Experts Interviews Summary 

 

The validity of the experiment and the accuracy of the selected tools and platforms were 

affirmed by the three interviewees. However, I2 highlighted certain inherent fluctuations 

in the collected metrics, indicating a variance of a few seconds. This was attributed to 

JMeter's triggering of requests every second, potential request throttling due to timeouts, 

and observed fluctuations in broadband performance on different days during the 

experiments. 
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All interviewees expressed a desire for the experiment to incorporate more variations, 

enabling a broader range of conclusions. For instance, I1 proposed varying the Load 

Balancer timeout configuration, I2 suggested altering the cluster size and warm pool 

dimensions, while I3 recommended varying the number of AWS regions. Regrettably, 

implementing these suggestions would significantly expand the paper's scope and 

require substantial time and effort to set up the proposed experiments. 

 

A consensus was reached among the interviewees regarding a bottleneck in AWS's 

time to recover, which is the time window in which the Auto Scaling group runs health-

checks against instances. Both I1 and I3 acknowledged the unalterable nature of this 

configuration at the time of writing. However, I2 expressed uncertainty about the 

feasibility of changing the health-check time window and opted to refrain from 

providing a definitive response. 

 

Despite the wealth of suggestions and insights offered during the interviews, the experts 

expressed satisfaction with the experiment's execution and the credibility of the obtained 

results. 

 

6.3 Contributions and Impact 

 
The research project incorporates contributions that augment the existing body of work, 

encompassing: 

 

• The research explored the various options provided by the AWS platform when 

it comes to auto scaling groups warm pooling configuration. 

• The research compared how warm pooling options compare with one another 

when under stress. 

• The research investigated various tools and technologies to implement a 

successful chaos engineered experiment against a cloud-based architecture. 

• The study highlights both the advantages and limitations of utilizing auto scaling 

groups and elastic load balancers. 

• The research described in detail how to create a highly available architecture in 

AWS by following the Well Architected Framework. 

• The research examined how resilient and available the AWS platform can be 
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when under chaos engineered fault injections. 

 

6.4 Future Work 

 
Upon concluding this research project, numerous prospects for future research emerged. 

 

 

6.4.1 Long Start-up time applications 

 

Further work on executing a similar experiment, with an application that requires longer 

start-up time than the 3.47 seconds used in this research, could be carried out. 

Based on the AWS documentation, warm pools would be more beneficial in such 

scenarios. Therefore, the results should vary substantially from the results in this paper. 

If a similar Java/Spring application were used in this scenario, then the longer start-up 

time could be accomplished by adding a Thread.sleep() in the main method, or in a 

CommandLineRunner ‘run’ method. 

Here is an example that could be used, with a ‘three minutes delay’: 
 

Figure 6.1. Java Thread Sleep Example (Author) 

 

 

It would be beneficial to verify if there is a linear or exponential correlation between 

start-up time and self-healing capabilities when using warm pools. 

 

6.4.2 AWS Tag-Based Resources 

 

When creating compute instances in AWS, the use of ‘tags’ could have been leveraged. 
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That way, the AWS FIS tool would be able to randomize the termination of instances by 

tag, allowing for a wider variation of experiments, instead of the chosen path in this 

paper, where the FIS experiment had to be updated with each instance ID for every 

execution. 

Tags can be added when creating resources in AWS, including EC2 instances: 
 

Figure 6.2. AWS EC2 Console – Name and tags (Author) 

 

 

During the experiment creation in AWS FIS, such tags can be referenced to define 

targets in the fault injection: 
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Figure 6.3. AWS FIS Console – Tagging targets (Author) 

 

 

6.4.3 Compute-Size Instance Variation 

 

Further work could also be carried out by executing a variation of this experiment, by 

changing the compute size of the instance from a t2.micro to a larger instance (i.e., 

t2.2xlarge or higher). 

That can be accomplished by choosing the desired instance size during the EC2 Launch 

setup: 
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Figure 6.4. AWS EC2 Creation – Compute options (Author) 

 

 

It can be theorized that larger instances will benefit more from warm pools, as they take 

longer to be commissioned. Therefore, the results will differ from this paper. 

 

6.4.4 Cloud Provider Variation 
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Future work could be done by executing similar experiments within other cloud 

providers (i.e., Microsoft Azure and Google Cloud) to compare the results and challenge 

the providers claims. 

The scope of the research would be much broader, given that an initial mapping of 

corresponding services between cloud providers would need to be carried out, to ensure 

the comparisons are reasonable and fair. 

The research would be more technically challenging, as it would require in-dept 

knowledge in various cloud providers to successfully set up the experiments. 

 

6.4.5 Multiple Microservices Variation 

 

The current experiment had one microservice application running when injecting faults. 

Future work where multiple services interact with each other when faults are injected 

could be carried on. That would elucidate how to implement lowly coupled services to 

promote high availability when under stress. 

 

 
Figure 6.5. Microservice Architecture example (MongoDB website13) 

 

 

6.4.6 Performance-based Research 

 

Performance was not covered in this paper, therefore future work could explore how 

cloud-based infrastructure would behave when under stress load (i.e., heavy number of 

 

 

13 https://www.mongodb.com/databases/what-are-microservices 

https://www.mongodb.com/databases/what-are-microservices
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users that exceed the system’s breaking point). 

For instance, similar research could be carried out where the AWS Auto Scaling group 

is created with an ‘Average CPU Utilization’ Target tracking scaling policy: 

 

Figure 6.6. Auto Scaling – CPU utilization (Author) 

 

 

Then the JMeter Test Plan would perform load testing with hundreds of simultaneous 

threads and verify how fast AWS can scale up. 

 

6.4.7 Application Internal Faul Injection 

 

Further work on executing a similar experiment, where the difference lies on how the 

Chaos Engineered fault is injected, could be conducted. Rather than using AWS FIS, the 

fault would come from the deployed application itself. For example, the following 
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Java/Spring code could be used to bring down a compute instance after a pre-defined 

number of minutes after the application was deployed: 

 

Figure 6.7. Java/Spring Example – Shutting down instances (Author) 

 

 

6.4.8 Future Work Conclusions 

 

In conclusion, while this dissertation has made significant contributions to the 

understanding of self-healing systems, there exist several unexplored paths and 

opportunities for future researchers to continue building upon this work, advancing the 

fields of chaos engineering, microservice paradigm, cloud providers and self-healing 

architecture. 
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APPENDIX A: MY JOURNEY 

 
I would like to take the time to describe my personal journey, and what led me to the 

decision of writing this dissertation. 

I graduated in Software Engineering in 2014, but my career as a programmer started in 

2011, when got my first job as an intern programmer at a small IT company 

developing software for advocacy agencies. 

Since then, I’ve come a long way, certifying myself in many different programming 

languages, cloud platforms, agile methodologies, IT services standardizations, as well 

as getting exposure to different companies, different business domains, and different 

organizational cultures. I’m currently a Lead Software Engineer at a major FinTech 

company. 

I’ve started this master’s course back in 2017 and finished all the credits except for the 

dissertation by 2019, however, due to personal issues I was not able to submit the 

dissertation’s proposal in 2019 and had to take a study break. 

Once my personal life got back on track, in late February of 2023 I’ve made the decision 

to finish the masters. 

At the time, I was very interested in cloud architecture and microservices and would 

love to have my thesis in this field, so I have decided to recertify myself as an AWS 

Architect, to make sure I was up to date with the latest services, options, and 

configurations offered by AWS. 

I already had previously certified myself in 2017 as an AWS Associate Solutions 

Architect, as well as an AWS Associate Developer, however these certifications expire 

every 3 years, so I saw it as the perfect opportunity to get recertified. 

I have covered the ‘A Cloud Guru – AWS Certified Solutions Architect – Associate 

(SAA-CO3)’ course, read through the recommended AWS whitepapers, covered 

multiple mock exams from ‘Tutorials Dojo, sat the exam and passed: 
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With that out of the way, I’ve started my literature review in June 2023 to look for 

inspiration on what type of pioneering research I could conduct in the cloud space. 

That’s when I came across the academic concepts of self-adaptive and self-healing, as 

well as Chaos Engineering, and I thought that together, these concepts had a lot of 

potential for research. 

It was challenging to find a Chaos engineering tool freely available, especially one that 

could interact with AWS resources. That’s when I came across the AWS FIS service. 

I’ve enrolled myself on the course ‘Hands-On Chaos engineering with AWS Fault 

Injection Simulator’ by A Cloud Guru, and by the end of the course I had a clear idea on 

how to use this tool to help me with the research. 

Given my previous years of experiences as a Software Engineer, I naturally selected 

JMeter for the task of independently health-check the Elastic Load Balancer. Therefore, 

my review of JMeter was less structured. I’ve found a few good tutorials on YouTube, 

did a couple of exploratory tests with it, ensured it would be fit for purpose and settled 

for it. In hindsight, I could have used two separate tools to ensure the metrics collected 

in the experiment were validated by another independent tool (this idea was also brought 

up by an expert in the field during the interviews). 

I’ve also written all the necessary Java code for the experiment in August 2023, in 

preparation for the dissertation, so I could hit the ground running when the time came 

for the experiment execution and the dissertation writing. 

That can be confirmed by the dates shown in the contribution activities in my GitHub, 



105  

where I stored all the material for this dissertation: 

 

As can be seen, the initial code was pushed on the 13th of August. 

 

 

Once the dissertation proposal was approved in September, I already had a clear path to 

follow. I knew that the experiment design was feasible, and the chosen tools were fit for 

purpose, so I only had minor challenges when implementing the experiment and 

collecting data. 

 

APPENDIX B: EXPERIMENT USER GUIDE 

 
Please note that this user guide was revised, reedited, and reviewed when a complete 

redevelopment of the system infrastructure was undertaken to assess the effectiveness 

of these instructions. 

 

1. Java Micro-service Implementation 

 
The ‘backend-service’ Java application was developed and compiled in JavaSE-17, in 

the Eclipse IDE version 2023-09 (4.29.0). It was built with maven, Spring Boot 3.1.2, 

Spring Boot Starter Data JPA, Spring boot Starter Web and H2 database. 
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It contains a single model called RandomEntry, which maps to a database table named 

‘RandomEntryTable’, with two columns, ‘id’ and ‘randomValue’. The application also 

exposes a Rest API under port 8082, URL ‘/api/entries’ which returns all the rows of 

the RandomEntryTable in JSON format. When the application starts up, it executes a 

command to insert ten random rows into the in-memory database. Once the application 

is running, the database can be interacted with from the ‘/h2-ui’ URL: 
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Login details can be found at the ‘application.properties’ file: 
 

The application can be executed by running the ‘BackendServiceApplication.java’ class: 
 

 

The application’s code can be found in its entirety at 

https://github.com/brunorfranco/masterThesis/tree/main/backend-service. 

 

2. AWS Cloud Architecture implementation 

2.1 VPC Creation 

https://github.com/brunorfranco/masterThesis/tree/main/backend-service
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The first step towards creating the cloud architecture is setting up a virtual private cloud. 

Once logged into the AWS console, open the VPC section, click on ‘Create VPC’: 

 

 

When doing it through the UI wizard, select ‘VPC and more’, by default that will create 

four subnets (one public and one private for two separate availability zones). It will also 

create three route tables (one public and two private), as well as two network connections: 

 

 

Also provide the IPv4 CIDR, enter ’10.0.0.0/24’. The default values for the other fields are 

sufficient to proceed with the setup: 
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2.2 Key Pair Creation 

 

Once logged into the AWS console, navigate to the ‘Key Pair’ section, click ‘Create key 

pair’. 

 

Once logged into the AWS console, navigate to the ‘Key Pair’ section, click ‘Create key 

pair’. Type a unique name, leave the default options for RSA and .ppk format, and click 

on ‘Create Key pair’: 
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That will automatically trigger a download, save this file in a secure location as this cannot 

be found anywhere else. 

2.3 (Windows users) Install Putty 

 

To prepare for the next steps, the download and installation of Putty to be able to SSH into 

remote machines is necessary. If users have downloaded in .pem format file, then use 

Puttygen to convert it to .ppk. 

2.4 EC2 Creation 

 

Navigate to the EC2 dashboard, click on ‘Launch Instance’, enter a name, quick select the 

Amazon Linux AWS option under ‘Amazon Machine Image’: 
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This will spin up an Amazon Linx 2023 x86_64 HVM kernel-6.1. 

 

Select the key pair created on step 2 under the ‘Key pair (login)’ section: 
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Under ‘VPC – required’, select the VPC created in step 2.1 and select one of the subnets 

created with it: 

 

 

 

 

Under the ‘Network settings’, select ‘Create security group’, this will simplify the setup 

steps as it will be created with SSH traffic already allowed. Also tick the box to ‘Allow 

HTTP traffic from the internet’, as a Rest API endpoint will be exposed by the Java 

application: 
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Make sure that the ‘Auto-assign public IP’ option is enabled so that is assigned to the 

primary network interface of the instance. 

Launch Instance: 
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2.5 Adding Java Application file into the EC2 instance 

 

To add the .jar file into the EC2 instance, use the WinSCP tool, version 6.1.2, build 13797 

2023-09-19: 
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Once in WinSCP, click ‘New Tab’ to start a new connection, then provide the EC2 IPv4 

address (found in the EC2 details as per image below) into the Host name field, port 22. 

The default username is ‘ec2-user’. 

 

 

Before trying to connect, the .ppk key file generated on step 2 needs to be referenced, so 

go to ‘Advanced…’, then ‘Advanced…’ again: 
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Under ‘SSH’, ‘Authentication’, provide the location of the private key under the field 

‘Private key file’: 
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Once this is in place, continue to click ‘Login’ and the connection will be established. 

 

Copy the backend-service-0.0.1-SNAPSHOT.jar file from the Java application ‘target’ 

folder, and paste it inside the EC2 instance, under the ‘/home/ec2-user/’ folder: 

 



118  

2.6 Connecting into EC2 through Putty and running the application 

 

Once the .jar file is loaded into the EC2 instance, then it is time to SSH into the instance 

through the Putty command line and run it. 

To achieve that, use Putty version 0.79: 

 

 

To open a new session from Putty, go back to the AWS console and get the Public IPv4 

address from the instance, then insert it into the Putty Host Name and use port 22. 

Under ‘Connection’, open ‘SSH’, then ‘Auth’, then ‘Credentials’, then browse and select 

the .ppk key file that was generated on step 2. 
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Go back to the ‘Session’ section, select a unique name and save the session, that way this 

configuration can be reused in the future. Click ‘Open’ and the SSH connection will be 

established: 
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If the connection times out, go back to the EC2 console, go to ‘Security’, and click on the 

‘Security groups’ link: 
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Make sure there is an inbound rule for SSH, with Source 0.0.0.0/0 (Anywhere). 

 

This is not a safe approach, as anyone holding the private key could connect to the instance, 

so the key should be kept in a safe place. 

Once in, ensure that the .jar file is indeed there and accessible by executing an ‘ls -l’ 

command: 
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These Linux instances do not come with Java pre-installed, therefore please execute the 

commands in this order: 

1. sudo su 

 

2. yum update -y 

 

3. sudo yum install java-17-amazon-corretto-headless 

 

 

After that, then the application can be started by executing “java -jar /home/ec2- 

user/backend-service-0.0.1-SNAPSHOT.jar &”: 
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Once the application is up and running, then verify that the Rest endpoint is available 

through a browser via {IPADDRESS}:8082/api/entries: 

 

 

If the response is unavailable, check the security group assigned to the EC2 instance and 

make sure the following inbound rules exist: 
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2.7 AMI Extraction 

 

With a healthy EC2 instance fully setup, then it is time to create an Amazon Machine 

Image (AMI), so that other instances can be spun up from the same setup. 

From the ‘EC2 Dashboard’ in the AWS console, select the healthy EC2 instance, then 

select ‘Actions’, then ‘Image and templates’, then ‘Create image’: 

 

 

A name for the image needs to be selected, the click the ‘Create Image’ button: 
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2.8 Launch template: 

 

To create a Launch template, go into the EC2 dashboard, then ‘Auto Scaling’, then ‘Auto 

Scaling Groups’. 
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From there, then click on ‘Launch Templates’: 

 

 

Then ‘Create Launch Templates’: 

 

 

A name must be specified, then the ‘Auto Scaling guidance’ checkbox must be selected: 
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Under the ‘Launch template contents’, go into ‘My AMIs’, and select the AMI created on 

step 7. 
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Under ‘Network Settings’, select the security group created previously, then under 

‘Advanced network configuration’, select ‘Auto-assign public IP’ as ‘Enable’: 
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All the other fields can be left with the default values, except for one. Under ‘Advanced 

details’, the ‘User data’ field must be provided so that the java executable runs every time 

a new instance is created, restarted or rebooted. 

The required script to be added is as follows: 

 

 

It can be also found at: https://github.com/brunorfranco/masterThesis/blob/main/user- 

https://github.com/brunorfranco/masterThesis/blob/main/user-data%20file.txt
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data%20file.txt 

 

Once this is in place, then click the ‘Create launch template’ button: 

 

 

2.9 Security Group configuration 

 

Go to the Security Group tab under the EC2 dashboard and make sure you include inbound 

and outbound rules for the port 8080, as well as 8082 into the newly created security group: 

 

https://github.com/brunorfranco/masterThesis/blob/main/user-data%20file.txt
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That is a very important step to allow for the Elastic Load balancer to be able to connect 

to the instances. 

2.10 Auto Scaling group and Elastic Load Balancer 

 

With the Launch template in place, then it was time to create the Auto Scaling group. That 

was achieved through the EC2 dashboard, ‘Auto Scaling’, ‘Auto Scaling Groups’, ‘Create 

Auto Scaling group’ button: 

 

 

Once there, provide a name for the Auto scaling group, and select the Launch template 

defined on step 8: 
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Tick the boxes for no minimum nor maximum vCPUs and Memory (GiB): 
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Click ‘Next’, and select two different Availability Zones and subnets, to ensure higher 

availability of the solution: 
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After clicking ‘Next’, select ‘Attach a new load balancer’, then selected ‘Application Load 

Balancer (HTTP, HTTPS), selected a name for the load balancer, selected ‘Internet-facing: 
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Under ‘Health checks’, select ‘Turn on Elastic Load Balancing health checks’ and left the 

health check grace period at the 300 seconds’ default. 

Under ‘Listeners and routing, in the dropdown ‘Default routing (forward to)’, select 

‘Create a target group: 

 



136  

Click ‘Next’ once again, then it is time to setup the Group sizing with two desired capacity, 

two minimum capacity and four maximum capacities: 

 

 

Review all the details provided and created the Auto Scaling group: 



137  

 

 

With that in place, double check if the Auto scaling group and the load balancer were 

created appropriately and are healthy: 

 

 



138  

Once that is verified, get the Elastic Load Balancer DNS and access it by adding 

“/api/entries” and that should return a successful response: 

 

 

Add Listeners and Rules to the newly created Elastic Load Balancer for port 80 and 8082 

from the ‘Load Balancers’ tab: 

 

 

 

2.11 Warm Pooling 

As mentioned previously, auto Scaling groups allow for different configuration variations, 

which have effects on recovery time of the service, so they will be explored as part of the 

experiment: 

5. No warm pooling. 

6. Warm pooling with one instance on ‘Stopped’ state. 

7. Warm pooling with one instance on ‘Running’ state. 

8. Warm pooling with one instance on ‘Hibernated’ state. 

 

They can be configured under the ‘Auto Scaling Group’ section in the EC2 dashboard, 

under the ‘Instance management’ tab: 
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2.12 Setup Diagram 

 

 

 

3. JMeter Test Plan Implementation 

 
For this experiment, create a Test Plan in Apache JMeter version 5.6.2 
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This tool is maintained by the Apache Software Foundation and is free and open source. 

At the time of this writing, the tool can be downloaded from 

https://jmeter.apache.org/download_jmeter.cgi 

 

To create a test plan, click on ‘File’, then ‘New’: 
 

Then create a Thread Group by right-clicking the Test Plan, then going into ‘Add’, 

‘Threads (Users)’, then selecting ‘Thread Group’: 

https://jmeter.apache.org/download_jmeter.cgi
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The default configuration for the Thread Group is enough for the purpose of this 

experiment, given that a single Thread will be used to check the health of the service 

running in AWS. 

Add a HTTP Request into the Thread Group by right-clicking the Thread Group, then 

selecting ‘Add’, ‘Sampler’, ‘HTTP Request’: 

 

The HTTP Request needs to be configured to point to the Elastic Load Balancer address, 

therefore the Protocol, Server Name, HTTP Request and Path need to be configured as 

per the image below: 

 

Given that by default JMeter’s requests are fired every 300 milliseconds, that would 
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generate excessive entries in the result set, therefore configure a ‘Constant Timer’ so 

only a single request was fired per second, facilitating the result’s readings. 

That can be achieved by right-clicking on the Thread Group, then going into ‘Add’, 

‘Timer’, ‘Constant Timer’: 

 

The Constant Timer Thread Delay needs to be set to 1000 milliseconds: 
 

To view the results of the requests, two different listeners need to be created: 

6.4.8.1 View Results Tree 

6.4.8.2 View Results in Table 

Listeners can be added by right-clicking ‘Thread Group’, then navigating to ‘Add’, then 

‘Listeners’: 
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The full configuration can be found in .jmx format for ease of importing at 

https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx 

 

4. AWS Fault Injection Simulator (FIS) Creation 

 
The author has opted to utilize the AWS FIS as the chaos engineering tool of choice. 

The tool can be access through the AWS FIS console: 

 

The first step is to create an experiment template: 

https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx
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Provide a Description, then add an action of ‘Action type’ of ALL, and 

‘aws:ec2:terminate-instances’: 

 

Targets also need to be setup, so click on ‘Edit’ under the ‘Targets’ section, keep the 

Resource type as ‘aws:ec2:instance’, also keep the Target method as ‘Resource IDs’, 

then select the Resource IDs of the EC2 instances currently running: 
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The Resource IDs can be double checked by going back to the EC2 console, then 

accessing the Instances (running): 
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Select the ‘Create a new role for the experiment template’ option under ‘Service access’, 

so an IAM role can be automatically created with correct permissions to conduct the 

experiments: 

 

Click on ‘Create experiment template’. 

 

 

The command line configuration can be found at the following link to facilitate the 

creation of the FIS experiment: 

https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate 

 

5. Experiment Execution 

 
Ensure that before any of the experiment executions there are two healthy EC2 instances 

running and serving requests through the Load Balancer. 

Initiate a timer. As soon as the timer reaches thirty seconds, initiate the JMeter Test Plan to 

start collecting metrics: 

https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate
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Once the timer reaches one minute, initiate the FIS experiment to shut-down running EC2 

instances: 
 

The JMeter Test Plan would soon (~15 minutes after the FIS startup) indicate that the requests 

were no longer responding successfully, so take note up to the millisecond of the last time a 

request was successful before starting to fail, via the ‘View Result in Table’ in JMeter. 
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AWS auto scaling will realize that it does not have the minimum required number of instances 

as part of its group, so it will spin up a healthy instance, then subsequently a second one 

separately (as a mechanism to avoid spinning up extra unnecessary instances). 
 

As soon as the new instances are assigned to the Load Balancer and the JMeter Test Plan will 

stop failing and start receiving successful responses back again, then take note of the time up 

to milliseconds of the first successful response after the fault injection: 
 

With both entries noted, the simple following subtraction can be used to calculate the time it 

takes for AWS to self-heal its system: 

Time of the first successful request after fault injection – time of the last successful request before fault injection 

 

 

APPENDIX C: INTERVIEW PRESENTATION 
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