An Exploration of Chaos Engineering
Techniques on a Self-Healing Cloud Native
Microservice Architecture

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH

DUBLIN

TECHNOLOGICAL
UNIVERSITY DUBLIN

Bruno Franco

A dissertation submitted in partial fulfilment of the requirements of
Technological University Dublin for the degree of
M.Sc. in Computing (Advanced Software Development)

January 2024



| certify that this dissertation which I now submit for examination for the award of MSc
in Computing (Advanced Software Development), is entirely my own work and has not
been taken from the work of others save and to the extent that such work has been cited

and acknowledged within the test of my work.

This dissertation was prepared according to the regulations for postgraduate study of the
Technological University Dublin and has not been submitted in whole or part for an

award in any other Institute or University.

The work reported in this dissertation conforms to the principles and requirements of the

Institute’s guidelines for ethics in research.

Signed:

Date:



ABSTRACT

This dissertation delves into the realm of cloud-native microservice architectures with a
focus on self-healing mechanisms, investigating their response to chaos engineering
techniques. In an era where cloud-based applications demand resilience and cost-
effectiveness, understanding the behavior of self-healing architectures under chaotic

conditions is of paramount importance.

The primary research objective of this study is to explore how a cost-effective self-
healing cloud-native microservice architecture reacts when subjected to chaos
engineered fault injections. By simulating real-world disruptive scenarios, the key aim is
to provide valuable insights into the architecture's ability to maintain operational

integrity and recover gracefully.

Key findings from our research indicate that while auto-scaling warm pools have been
widely advocated to bolster resilience, their actual impact on aiding a cloud architecture's
recovery from chaos engineered fault injections is less impactful than hitherto claimed.
This study contributes to the ongoing discourse on self-healing microservice
architectures, offering practical implications for architects, developers, and organizations

striving to enhance the robustness and reliability of their cloud-native applications.

The results of this research not only deepen our understanding of self-healing cloud
architectures but also underscore the need for a comprehensive approach to resilience,
encompassing aspects beyond mere scalability. This dissertation serves as a valuable
resource for professionals and researchers engaged in cloud-native system design and
chaos engineering, providing essential insights for building more resilient, cost-effective,

and adaptable systems.

Key words: Chaos Engineering, microservices, cloud services, self-healing system



ACKNOWLEDGEMENTS

I am very grateful to my supervisor Damian Gordon, for his excellent guidance
throughout the production of this dissertation. Damian was extremely friendly,
approachable, helpful, and flexible during our journey together. It was an absolute
pleasure to work with him, and I consider myself very lucky to have had the opportunity

to have him as my supervisor.

I would like to thank my colleagues Anmar Hammadi, M. Sc., Nawaz Zai, M. Sc., and
Flavio Junior Neves, MBA, who helped me review the experiments and validate my tool
choices and the approach for metrics collection and conclusions.

I would also like to thank my wife Ana for her unambiguous support during the late hours
of reading and writing, and the many one-sided babbling tech conversations during our
breakfasts when she pretended to be interested in the nitty gritty details of my design

experiment.

Of course, none of it would have been possible without my mother Alcione, who worked
extremely hard in three shifts for many years, to be able to afford good primary and
secondary education for her children. Without her herculean effort, | wouldn’t be able to

be here, in this very privileged position, in the final steps of concluding a master’s degree.



TABLE OF CONTENTS

Contents
AB ST R A CT e ettt et et e et e b e Re et et e et et e ebeeteereeRe e Rt et e tenrenrearenrean 3
ACKNOWLEDGEMENTS ...ttt ettt et e teaseanaesa e e e tesaesnesnenreas 4
TABLE OF CONTENTS ..ottt ettt et neana s e estenaesnennenreas 5
TABLE OF FIGURES ...ttt ettt sttt na et e testesnesnenne s 8
TABLE OF TABLES ... ..ottt bbbttt bbb nne e 11
1 INTRODUGCTION Lottt bbbttt e bbb bt 12
1.1 Project BackgroUnG.. ... s 12
1.2 ProOJeCt DESCIIPIION . ..cciiiiiie ettt sttt ettt sae e 13
1.3 Project Aims and ODJECLIVES ....cuiiiiiiiic e 15
1.4 Project EVAlULION ..ot 16
1.5 PrOJECT SCOPE ...ttt ettt b et 17
1.6 THheSIS ROAUMAP.....cciiiiiieiie ittt sbe e be et e sraa e nnae e 18
2 LITERATURE REVIEW ..o 19
/28 R 114 0 Yo 0T o o SR 19
2.2 Chaos ENngineering TeCNNIQUES ...cccoiiiiiiiierie e 19
2.3 Self-Healing and Self-Adaptive SYStEMS.......cccciiiiiiiiiiieie e 22
24 MICroServiCe ArFCNITECTUIE ..o 27
2.5 CloUd INTraStrUCTUIE .oviiiicieceee et nne e 29
P ST oY o Tod [V 1S] o] o 1< T OSSPSR 33
3 DESIGN AND METHODOLOGY ..ottt 34
3L INTFOAUCTION ottt bbbttt sbe st b 34
3.2 Ethical ConSIAratioNS......ccciiieiiiieiieieeie e ee et e e e neeenee e 35
3.3 Cloud Provider SEIECTION ... e 36
3.4 Microservice Application DevelopmeNnt........cccooeiiiiiiieie e 37
3.5 Self-healing Architecture DeSign .....ccccceiieiieie e 38
3.6 API TeStING TOO . 41
KT A - U1 A 1 0 1=t (o GOSN 43
3.8 EXPErt INtervieW DeSIQN...cciciiiie ettt ene e 44



3.9 EXPEriment DESIGN ..ocueieiiiiiiiiieeeie et 45
K B oY o [od [V FS] o] o <SSR 50
4 DEVELOPMENT PROGCESS ...ttt ettt 51
A1 INTFOUCTION c.eiiiitiiic ettt b et b bbb 51
4.2 Java Micro-service Implementation .......cccoceeveiiieiiiie i 52
43 AWS Cloud Architecture implementation.........cccocooiiiiiiiniiinicicecccie 52
O Y e O @ =T L1 o SRR 53
4.3.2 KEY PaIl CrEatION .....veiiiiiiiic ettt st ae et ae e be e e nneeanes 53
4.3.3 (WIindows USErS) INStall PULLY ........c.coviiiiieiicic e 53
R 0y O - 11 o] o SRS 53
4.3.5 Adding Java Application file into the EC2 inStance..........c.ccooovvveviveneiiesiese e 55
4.3.6 Connecting into EC2 through Putty and running the application..............c.cccccoenee. 55
4.3.7 AMI EXEFACHION ...cviiiiiiieie sttt bttt nee s 56
4.3.8 LAUNCh tEMPIALE .......oeeiececcece et 57
4.3.9 Auto Scaling group and Elastic Load Balancer..............cccocvevviveiivenieeie s 57
4.3.10 WAIM POOKING ...ttt bbbttt 58
44  JMeter Test Plan Implementation ... 59
45 AWS Fault Injection Simulator (FIS) Creation .......c.cccooveviiiieiieve e 59
46  EXPEriment EXECULION ..ot 60
4.6.1 No Warm Pooling CoNfIQUIALION ..........cccoieiiririniiieiee e 62
4.6.2. Stopped Warm Pooling Configuration ............ccoceeieieeenciescseseeeeee e 63
4.6.3 Running Warm Pooling Configuration ..............ccccevieienienienc e 63
4.6.4 Hibernated Warm Pooling Configuration............cccccvevviieiieie e 64
A o T o] U E] o] - SRRSO 70
5 RESULTS AND EVALUATION ..ottt anne e 72
5.1 INEFOTUCTION ottt bbbttt b bbb 72
5.2 Calibration - Results and Evaluation ... 73
5.3  No Warm pooling EXPErimMeNnt ...t 74
5.4 Stopped Warm Pooling EXPeriment ... 76
55 Hibernated Warm Pooling EXPeriment.......cccccooeiiiiiiiieiiesie e 77
5.6 Running Warm Pooling EXPeriment .......ccccoveeiieieeie e 78
oI A 0 Yo o] [V ES] [0 o 1< 3SR 80
5.8 Expert Interviews CONCIUSTIONS ....cooiiiiiiiiie e 84

Vi



6 CONCLUSIONS AND FUTURE WORK ......cioiiiiiiieieees e 87

O A 1 01 4 0T 0T 1 o o OSSR 87
8.2 CONCIUSTONS ...ttt be et nne s 88
6.3  Contributions and IMPaCT.......ccccceiiiiiie e 92
8.4 FUTUIE WOTK ..ottt ne e nre e 93
BIBLIOGRAPHY oottt sttt et e te e ne st e et et e ntenreane e 100
APPENDIX A: MY JOURNEY ..ottt sttt 103
APPENDIX B: EXPERIMENT USER GUIDE ......ccccoiiiiiiee s 105
1. Java Micro-service Implementation ........ccocooiiiieiiiiciie s 105
2. AWS Cloud Architecture implementation........ccocoeniiininininiiieeeceen 107
3. JMeter Test Plan Implementation ........ccccoooeiiiiiiiiii i 139
4.  AWS Fault Injection Simulator (FIS) Creation .......cccoccvivevviieiieece e, 143
5. EXPEriment EXECULION ..occvccui ettt nne e 146
APPENDIX C: INTERVIEW PRESENTATION ..ottt 148

vii



TABLE OF FIGURES

FIGURE 1.1 RESILIENCE / AWS ARCHITECTURE BLOG ......cccoiiiiiiiiieieiene s 12
FIGURE 1.2 FIS— AWS FAULT INJECTION SIMULATOR ....ccviverieriseeieressesseseesesseseeensennes 14
FIGURE 2.1 MONOCLE Ul FOR RPC DEPENDENCIES WITHIN A CLUSTER.....cveviveiereniennns 20
FIGURE 2.2 CHAOS ENGINE ALGORITHM . ...ccuutiitiiatiesiieaieesiieasieesssesssessssesssessssesnsessneeenns 21
FIGURE 2.3 OVERALL ARCHITECTURE OF CHESS ........coooiiiii e 22
FIGURE 2.4 MUSA OVERALL PROCESS........coviiiiiisiisieieisesiesie s siess e s seessssasnes 25
FIGURE 2.5 SELF-ADAPTATION TECHNIQUES RESEARCH QUESTIONS ....ccvovevrrveierearennns 27
FIGURE 2.6 MICROSERVICE CAPACITY IDENTIFICATION....ccuuiiitieiiiieiiesineesiee e esiee e 28
FIGURE 2.7 APROTOTYPICAL IMPLEMENTATION OF THE MICO SYSTEM ......ceevvvennnne 31
FIGURE 3.1 HIGH-LEVEL OVERALL EXPERIMENT ......cctiietiitiierieieseesieseesesseseesessessesassesens 34
FIGURE 3.2 CLOUD SERVICE PROVIDERS PER MARKET SHARE ........ceiteieresiesiarenieseeeasenens 37
FIGURE 3.3 VPC EXAMPLE .....ooiiiieitie ittt siee ettt ettt et e nteesstaenaeesnaeebeesnne e 40
FIGURE 3.4 SECURITY GROUPS EXAMPLE ......ccciuititiariieaieesieeasieesiseassessinaesseesssesssessnneenns 41
FIGURE 3.5 JMETER ARCHITECTURE ......cueutetiteierestestestasessessessessssessessssessessasessessessssesses 43
FIGURE 3.6 FISEXPLAINED ...c.ccvtivirietietiiieieesie ettt sttt s enesnesaenasse e 44
FIGURE 3.7 ELASTIC BEANSTALK AUTO SCALING GROUP CONFIGURATION ......cccceerueenne. 46
FIGURE 3.8 INITIAL DESIGN .....oitiiiiiiiiiiiiie ettt sttt st 47
FIGURE 3.9 RECOVERY TIME VS. NUMBER OF FAILED MODULES ........coveerieiaresierieaanenns 47
FIGURE 3.10 FINAL DESIGN .....coviuiiiiiiiiiiieesesiee sttt ie ettt st ene e 48
FIGURE 3.11 JMETER TEST PLAN CONFIGURED ......coiutiiieiiieiieesieeaiessseeesiessseeensesssneenns 48
FIGURE 3.12 JIMETER RESULT IN TABLE VIEW ....couviiiiiiiiiesiieeiee sttt 49
FIGURE 4.1 AWS CLOUD ARCHITECTURE DESIGNED .......ccoiviieiiieieisesiesieesiesieaasannes 52
FIGURE 4.2 AWS CONSOLE — VPC ...ttt 52
FIGURE 4.3 AWS CONSOLE — KEY PAIRS. ......cciiiiiiiesiieaieesiieasieesiiesnsessseeessessssesnsessnneenes 53
FIGURE 4.4 AWS CONSOLE —ECZ2 LAUNCH .....uutitiiiiieeiee e 54
FIGURE 4.5 WINSCP CONSOLE .....cviviitiiiirietisiesiesestestessese st seesae e ssessesasse s ssesessessessesesnes 55
FIGURE 4.6 PUTTY CONSOLE — LOGIN .....couviiiiiiieiisiesieieie st 56
FIGURE 4.7 PUTTY CONSOLE —JAR FILE......ctiiiiiisiiiieietiste et 56
FIGURE 4.8 AWS CONSOLE — CREATING IMAGE ......ccuiieiiiiiieinisieniees e 57
FIGURE 4.9 AWS CONSOLE —LAUNCH TEMPLATES .....ooitiiiiiiaiiesiieeieesineesiee e niee e 57

viii



FIGURE 4.10 AWS CONSOLE —AUTO SCALING GROUP. .....uiitieeeeeeeeteieeeeeeeeeeneeesseeeeseeens 58

FIGURE 4.11 AWS DIAGRAM WITH ALL STEPS ....ciutiiitiiaieesieeaieesieeastessieessiesssnesssessnneennes 59
FIGURE 4.12 IMETER LOGO ....coitiiiiiiiiiesiie ettt 59
FIGURE 4.13 AWS FIS MENU OPTION ...c.vouiitiiisietisiesieeste sttt sne e 60
FIGURE 4.14 AWS FIS CONSOLE .......cosssivvvisiesiiesessiissssssisss s sssssssssssssssssssssssssesses 60
FIGURE 4.15 JMETER VIEW RESULTS....c.vtiiiiiiiieiesienieesie sttt 61
FIGURE 4.16 AWS FIS — STARTING EXPERIMENT ....coitiiiiiesiiiaieesineseessieeesiesssneensessseeenees 61
FIGURE 4.17 JMETER — LAST SUCCESS BEFORE FAULT ...ccoitviiiiiieiiriesireesieee e 62
FIGURE 4.18 IMETER — FIRST SUCCESS AFTER FAULT ....cevtiieteriestesiesteeseeseeseeseessessessensens 62
FIGURE 4.19 AWS WARM POOL CONSOLE .....coveuiiiiieriaiesieierestesieieessesessessessessssessesens 63
FIGURE 4.20 AWS STOPPED WARM POOL WINDOW.......ccciviiiriiierieriaiesieiesesieseeeesesse e 63
FIGURE 4.21 AWS STOPPED WARM POOL INSTANCES ......cuoriitiiiiieiaiesienieresieseeeese e 64
FIGURE 4.22 AWS RUNNING WARM POOL CONSOLE........cccieiiiaiieniieeiee e siee e 64
FIGURE 4.23 AWS RUNNING WARM POOL INSTANCES .....ooveviiesiiniesiesreereeeesiesieseesnennens 64
FIGURE 4.24 EBS ENCRYPTION ...uouiiiiiieiieiete ettt 65
FIGURE 4.25 AWS CONSOLE — KEY CREATION .....cviuieiiiieieristesieseasestesiesesseseesessessesensens 65
FIGURE 4.26 AWS CONSOLE — AMI CREATION .....viieiiiieierisiesieesiesieseesesseseesessessesennenns 65
FIGURE 4.27 AMI CREATION DETAILS ..ccvvtiiiiiiieeitie sttt st 66
FIGURE 4.28 AWS CONSOLE — CREATING NEW LAUNCH TEMPLATE.......cccoeeiieaiienieeene 66
FIGURE 4.29 AWS CONSOLE — NEW LAUNCH TEMPLATE DETAILS ...cvvovevierieieieieresieeens 67
FIGURE 4.30 AWS CONSOLE —EC2 LISTING ....oveuiiiiierieiesieieestesieeeasie e seesesessesens 67
FIGURE 4.31 AWS CONSOLE —EC2 ERROR LOGS .....evveviviniaresteniesensesteseesesseseeessessesensenns 68
FIGURE 4.32 AWS CONSOLE — AMI CREATION WITH DEFAULT KEY ..ccvviiiieniieeiee e 69
FIGURE 4.33 AWS CONSOLE —EC2 SUCCESSFUL LISTING ...cvevveivrireaieareerieseeseesieseessensens 70
FIGURE 4.34 AWS HIBERNATED WARM POOL WINDOW .......coviviriirieiiiiisinrisiesieiernsseneans 70
FIGURE 5.1 NO WARM POOLING RESULTS GRAPH .....ccvvitiierinienieisiesie st 75



FIGURE 5.2 JMETER RUNNING WARM POOL OQUTLIER ....vvuiee et e eeeeeeeeeeeeeeeeeeeeeeeeeeaaneens 76

FIGURE 5.3 STOPPED WARM POOLING RESULTS GRAPH .......cciviiiiiiiiieiiesiieeniee e 77
FIGURE 5.4 STOPPED WARM POOLING JMETER FAILURES......c.c.ccvvuiiariiiesieisiesieseesesseneans 78
FIGURE 5.5 HIBERNATED WARM POOLING RESULTS GRAPH ......ooveiiiiieieiinienieneeie e 79
FIGURE 5.6 RUNNING WARM POOLING RESULTS GRAPH .......ccuiuiieiinienieiarisieneeneeieseenis 80
FIGURE 5.7 JMETER CONTINUED INTERMITTENT FAILURES ......coiiiiiiiiiiieiie e 81
FIGURE 5.8 RECOVERY TIME COMPARISON GRAPH.......ceotitiarierierieiesiesiessesseeseeseeeeneens 82
FIGURE 5.9 RECOVERY TIME COMPARISON CHART ....ccviiitiiiiieiniiesieietesiesieessesieseenens 82
FIGURE 5.10 AWS RECOVERY TIME COMPARED TO FRINCU, ET AL. (2011) .......cocvenvee. 84



TABLE OF TABLES

TABLE 1.1 CONFIGURED TO FACILITATE WARM POOLING.......ccoviiiieieisienieesiesieseennns 13
TABLE 5.1 BROADBAND DETAILS ....cuvetiiiiiteietisiesieseste st e st e e sseesse st ssesessessesessasses 73
TABLE 5.2 TIME TO UNRESPONSIVENESS METRICS .....vcuvirietisieieresteseesessesieseesesseseesessesens 74
TABLE 5.3NO WARM POOLING DETAILS .....ccuiiiiiiiiiiiiiesiie sttt neee s 75
TABLE 5.4 STOPPED WARM POOLING DETAILS.......cvitiiiietisiesiesstesieee s 77
TABLE 5.5 HIBERNATED WARM POOLING DETAILS ....oovviviiiieiiiieieesiesieee s 78
TABLE 5.6 RUNNING WARM POOLING DETAILS .....cvitiiinieiiiieiieie st 79
TABLE 5.7 RESULT CONVERSION TO SECONDS......uviiteetiairesiiesiessresieesiesnesieessessnesseenneas 82
TABLE 5.8 WARM POOLING PERFORMANCE COMPARISON......ccuuiiiieriieaieesineanieesneenieens 83
TABLE 5.9 WARM POOLING COST/COMPLEXITY COMPARISON ......ccvevereireriarnaresieneasnnes 84

Xi



1

INTRODUCTION

“In all chaos there is a cosmos, in all disorder a secret order.”
- Carl Jung, The Archetypes and The Collective Unconscious

1.1 Project Background

Over the past decades, microservice architecture has become the de-facto pattern in the

Software Engineering industry (P. Jamshidi, et al. 2018). Microservice architecture is

widely accepted as being a fine-grained, loosely coupled collection of independent

services

communicating through lightweight protocols. When in combination with cloud-

provided infrastructure, microservices become easier to provision and scale (either

horizontally or vertically). Machines can be provisioned in minutes and billing plans are

varied and flexible. Furthermore, cloud providers also offer out-of-the-box highly

available and fault tolerant services, facilitating the creation of self-healing architectures,

which refers to the ability of systems to detect and remediate issues without human

intervention. At the time of this writing AWS is the biggest cloud provider in the market,

leading by a large margin (Borge and Poonia, 2020).

.

CloudFront

(oY)
15
S3 multi-Region
access point
Application Lpad Balancer Application Lbad Balancer

S3 CRA @
\

S3 Bucket 15

Containers

Transit Gateway
Peering

o)

Transit

ateway

Figure 1.1: Resilience / AWS Architecture Blog (Amazon Blog Posting')

Chaos engineering is a discipline within software engineering and system reliability

engineering that focuses on proactively testing the resilience and robustness of complex

systems

by intentionally introducing controlled disruptions or failures into them.

1 https://aws.amazon.com/blogs/architecture/creating-a-multi-region-application-with-aws-services-part-

2-data-and-replication/

12


https://aws.amazon.com/blogs/architecture/creating-a-multi-region-application-with-aws-services-part-2-data-and-replication/
https://aws.amazon.com/blogs/architecture/creating-a-multi-region-application-with-aws-services-part-2-data-and-replication/

The primary objective of chaos engineering is to uncover vulnerabilities, weaknesses, or
unforeseen behaviors in systems before they cause significant outages or failures in real-
world scenarios.

By intentionally introducing chaos or disruptions in a controlled environment, chaos
engineering aims to build confidence in the system's ability to withstand unexpected
failures, improve its resilience, and enhance overall reliability. It has gained prominence
in modern cloud-native architectures, distributed systems, and microservices where
complexity and interdependencies between components make systems more susceptible

to failures.

1.2 Project Description

This research will explore the use of Chaos Engineered AWS Fault Injector Simulator
(FIS) against a Self-Healing Microservice Architecture deployed in AWS. One outcome
will be to explore that given reasonable Service Level Objectives (SLO), when
configured appropriately, AWS can be a cost-effective, resilient, and reliable cloud
provider. This research will assume an SLO of one minute for AWS to self-heal during
fault injections, which will be referred to as ‘self-healing SLO’ throughout this paper.
Cloud providers, such as AWS, claim to offer highly available and fault tolerant services,
but it raises the question, how fault tolerant? If financial resources are not a limitation nor
concern, then a company or individual could build a software architecture unnecessarily
redundant in multiple availability zones and regions, and be extremely resilient, but when
it comes to a cost-effective architecture, how fault tolerant can it be? To answer this
question, the author proposes an experiment. Inspired by AWS best practices (Amazon
Web Services, 2023), in this research, a self-healing cost-effective microservice
architecture will consist of:
e A microservice application serving HTTP GET requests (backend-service app).
The service will be running on two general purpose t2.micro instances, for
redundancy. An Auto Scaling group with the policy described in Table 1.1 below

will also be provisioned.

Desired Capacity | Maximum Capacity Minimum Capacity
2 4 2
Table 1.1: Configured to facilitate Warm Pooling

Also, an ELB (Elastic Load Balancer) will be configured to redirect incoming requests to

13



healthy instances. It was decided to run two instances instead of a single instance due to
AWS EC2 instances committing to 99.99% availability SLA (Service Level Agreement)
per EC2 Region, therefore two instances present eight 9’s availability, which corresponds
to 3.15 seconds of downtime per year. To challenge the resilience of the architecture
described above, faults will be injected via Chaos Engineered AWS Fault Injector
Simulator (FIS). A FIS experiment template will be created which will define fault

actions against EC2 instances.

] /" Amazon
[+ AmazonEQ ~Q CloudWatch

Ral A% Amazon
8] Amazon ROS Loy EventBridge
B Fault injected Monitoring
AWS Fault Injection resources
Simulator
A fully managed fault
injection service Create an experiment Start the experiment Stop the experiment View results
template FIS injects fault actions into AWS See how experiments stop  View the experiment results
Define fault injected actions, resources, and metrics are automatically if all actions to identify performance,
and control which affected monitored via CloudWatch or arecomplete oranalarmor  observability, or resilience
targets and safequards EventBridge event is triggered weaknesses
should run during the

|
t
|
|

experiment

Figure 1.2: FIS — AWS Fault Injection Simulator (Amazon Fault Services?)

Metrics will be monitored via a JMeter test plan, which will test the health of the

application every second and produce metrics and visual reports.

Key Research Question
Can Chaos Engineering techniques implemented via AWS Fault Injector Simulator (FIS)

degrade an ‘Industry standard Self-healing Cloud-based microservice architecture’

beyond a one-minute self-healing SLO?

Key Hypothesis
AWS is widely known for its fault tolerance and high availability. However, when

running a cost- effective architecture, chaos engineering techniques can still bring down

services and disrupt agreed SLOs.
e Ha: On a microservice architecture running redundant instances under an Elastic
Load Balancer and Auto Scaling group with warm pooling, AWS Fault Injector

2 https://aws.amazon.com/fis/

14


https://aws.amazon.com/fis/

Service can inject enough faults so that the public facing service cannot respond to

requests within a one-minute window.

e Ho: The use of ELBs and Auto Scaling groups configured with Warm Pooling over
redundant EC2 instances is widely accepted as highly resilient and can cope with
multiple failures while still maintaining high availability and response-times within

the one-minute window.

1.3 Project Aims and Objectives

Project Objective: To explore how a cost-effective self-healing cloud microservice

architecture will react to chaos engineered fault injections.

To achieve the objective, an experiment will be executed on the Amazon Web Services
platform. The experiment will require the creation of a microservice (backend-service)
connected to an in-memory database. This will be implemented using the Java
programming language and the Spring Boot framework. An Elastic Load Balancer will
be configured to route requests to the microservice, exposing an API that will be the
point of external testing later in the experiment. Internally, the backend-service will run a
select statement, retrieve data, and expose the data in JSSON format in the response.
Crucially, the computational logic of the applications is not relevant in the context of this
experiment, given that the experiment is focused on self-healing capabilities, and not

performance.

To run this architecture, the author will setup the following components in the AWS
platform:
e Onthe AWS console, navigate to ‘Key Pairs’, create a key pair, download, and
save the private key.
e Create a standard security group.
e Deploy the backend-service application into an EC2 instance, configure the
instance to spin up the application at start-up via the ‘user-data’ script.
e Create an image of the EC2 instance, so it can be used by the Auto Scaling group.
e Create an Auto Scaling group (setup policy as per Table 1).
e Setup one virtual private cloud (VPC) with the standard accompanying
configuration (subnets, route tables and network connections).
15



e Configure an Elastic Load Balancer
e Create an AWS Fault Injector Simulator setup to terminate both EC2 instances:

o Setup the IAM policy for FIS so it has the privilege to terminate instances.

o Attach the new policy to a role (by either creating a new role or re-using an
existing one).

o Assign the role to FIS.

o Add Action (‘aws:ec2:terminate-instance’ passing in the EC2 instances 1D
parameter).

A Test Plan will be created in Apache JMeter with:
e One single Thread Group (as this is not a stress-test).
e HTTP Request Sampler pointing to the Elastic load balancer for Service A.

e Graph and Table listeners.

Once the above configuration is in place, the JMeter test plan will be started, which will
continuously test the backend-service API and collect response-times. The AWS FIS setup
will then be started. Once FIS has been executed and the targeted EC2 instances are
terminated, an additional five minutes will be added to allow for the Auto Scale policy to

spin up extra compute instances, then finally the JMeter test plan will be stopped.

Auto Scaling groups allow for different configuration variations, which have effects on
recovery time of the service, so they will be explored as part of the experiment:

1. No warm pooling.

2. Warm pooling with one instance on ‘Stopped’ state.
3. Warm pooling with one instance on ‘Running’ state.
4

. Warm pooling with one instance on ‘Hibernated’ state.

1.4 Project Evaluation

JMeter metrics will produce the main outcome of the experiment. The following metrics
will be provided from the ‘View Results in Table’ listener:

e Sample#: Identifier of the request in incremental numbers.

e Start Time: Time in which the request has been started (up to milliseconds).

e Thread Name: Name of the thread that initiated the request.

16



e Label: Label of the request.
e Sample Time(ms): Time between the sending of the request and the receiving of

the response back.
e Status: HTTP response status code
e Bytes: Size of the request in bytes
e Sent Bytes: Size of the response in bytes
e Latency: Latency of the connection

e Connect Time(ms): Time required for the handshake between sender and receiver.

The experiment is expected to take no longer than 10 minutes and will be executed eight
times per warm pool configuration. Any outliers will be examined, noted, and re-executed.
An experiment execution will be considered an outlier if the time between the last
successful response and the first successful response after the fault injection has a 50%
variation from the previous two executions median (except for the first and second
executions, which will be evaluated against the following two executions). A final report
will be produced from the compiled results, with the median value per warm pooling
configuration. If within the four warm pooling configurations, the median ‘Sample Time

(ms)’ goes over the one-minute SLO, then the hypothesis has been proven.

1.5 Project Scope

The focus of this project is to stress and validate the resilience of a cloud architecture,
therefore performance metrics will not be collected and are out of scope of this research
(i.e., API responses latency, API throttling, or how many threads the solution can handle

simultaneously before degrading).

Securing assets in the cloud is also not the focus of this project. Minimum security
configuration will be in place for inbound and outbound requests in the load balancer and

the Linux instances but will by no means be a state-of-the-art security configuration.
The research is also not focused on the quality of the code deployed to the cloud

architecture, therefore some of the best software development practices (i.e., unit tests,

integration tests) were omitted.

17



1.6 Thesis Roadmap

Chapter 2 is the Literature Review chapter, it focuses on four main topics: Chaos
Engineering Technique, Self-Healing and Self-Adaptive Systems, Microservice

Architecture, and Cloud Infrastructure.

Chapter 3 is the Design Chapter which presents the design of the system and the design of

the range of experiments that will be undertaken as part of this research.

Chapter 4 is the Development Chapter which presents the development of the system and

the execution of the range of experiments that were undertaken as part of this research.

Chapter 5 is the Results and Evaluation Chapter which presents the results of each of the
experiments as well as an analysis and evaluation of these results with respect to each other

and the relevant literature.
Chapter 6 is the Conclusions and Future Work Chapter which presents the key findings of

this project, highlighting what aspects of the research went well and what aspects did not

go well. It also discusses some future directions that the research may take.

18



2 LITERATURE REVIEW

“Research is to see what everybody else has seen, and to think what nobody else has thought.”
- Arthur Schopenhauer, 1851 Parerga und Paralipomena

2.1 Introduction

This chapter explores the four key areas of the research, to develop the required
foundation of understanding to begin the design and development on the proposed
experiment. Those four main areas are as follows:

o Chaos Engineering Techniques

o Self-Healing and Self-Adaptive Systems

o Microservice Architecture

° Cloud Infrastructure

2.2 Chaos Engineering Techniques

Chaos engineering involves conducting systematic experiments on a system to instill
confidence in its capacity to endure challenging operational conditions (Rosenthal and
Jones, 2020). In software development, it is common to specify the need for a software
system to gracefully handle failures while maintaining an acceptable level of service
quality. This characteristic, often referred to as resilience, is frequently outlined as a
critical requirement. Unfortunately, many development teams struggle to fulfill this
requirement, often due to constraints like tight deadlines or limited domain expertise.
Chaos engineering presents itself as a valuable technique to meet the resilience mandate.
It serves as a method for enhancing resilience against a range of potential setbacks,
including infrastructure failures, network disruptions, and application glitches (Jernberg,
et al., 2020).

Basiri, et al. (2016) describe the concepts and benefits of Chaos Engineering
(exemplified by its use at Netflix). They also describe Chaos Engineering techniques to
run experiments to validate the resilience of a software architecture. Their focus was on
bringing awareness, so practitioners and research communities come to recognize Chaos

Engineering as its own discipline and continue developing it.

19



Three years later, in 2019, Basiri, et al. published a subsequent paper describing the
evolution of the Netflix platform for automatically generating and executing chaos
experiments in their production environment. Netflix has built an in-house orchestration
system named ChaP (Chaos Automation Platform) which interacts with multiple internal
Netflix services to carry out chaos engineered experiments via a fault injection system,
also developed in-house, named FIT. In designing ChaP, an additional service was also
developed, named Monocle, which has two functions, introspecting services and

generating experiments:

Monocle: fake (fake-prod) config

P e)

xxxxx

uuuuu

Keown  Timewt  MaxAuo Retries

Figure 2.1. Monocle Ul for RPC dependencies within a cluster (Basiri, et al., 2019)

Their paper demonstrates that it is feasible to generate and run chaos experiments in any

environment, including production, automatically and safely.

Migirditch, et al. (2022) propose a Chaos Engine that stresses agents by intelligently
searching over ‘scenario chaos factors’ reflecting real-world events. Their approach is
focused on facilitating resilient strategic military planning. Their chaos engineering
methodology prioritizes expediting agent training to establish robust policies. This is
achieved through the introduction of the 'Adversarial Architect’, a system that explores
parametric chaos elements (such as enemy force composition, platform failures,
weather, communication interference) to identify situations that result in preventable

failure scenarios.

20



Algorithm 1: Chaos Engine

Input :  Learning Agent m;, Adversary 1,4, Environment
E, Performance Function P.

Output : Chaos Factors 6, Item Response Model M

Stepl : 0 « Initial Chaos Factors

Step2 : M <« Randomly initialized item response model.

Step3 : while M is not converged do

Step4 Fitnessg, « P(ms,Eq,) — P(m,,Eg,)

StepS Fitnessg, « Fitness Sharing(0)

Step6 0 « Selection(Fitnessg)

Step7 0 « Mutation(0)

Step8  : M « Update(8,P(n,, Ep))

Step9 : return 6, M

Figure 2.2. Chaos Engine Algorithm (Migirditch, et al., 2022)

Zhang, et al. (2021) introduce an innovative framework named PHOEBE, designed for
injecting faults related to system call invocations. PHOEBE offers several distinctive
features.
e It grants developers complete visibility into system call invocations.
e It creates error models that closely resemble real-world errors occurring in
production environments.
e PHOEBE is capable of autonomously conducting experiments to systematically
evaluate the reliability of applications in the context of system call invocation

errors during production.

To assess the efficiency and runtime impact of PHOEBE, they conducted evaluations on
two actual applications within a production setting, both utilizing the Java software stack.
The results demonstrate that PHOEBE effectively generates realistic error models and
identifies critical reliability issues associated with system call invocation errors. To the
best of their knowledge, the concept of "realistic error injection,” which involves basing

fault injection on actual production errors, has not been explored previously.

This section presented an introduction to Chaos Engineering, an approach to software
development that helps support the graceful degradation of software services in the event
of failures occurring. It also outlines some state-of-the-art research in the field of Chaos

Engineering.

21



2.3 Self-Healing and Self-Adaptive Systems

Self-healing systems perform periodic health assessments on various components and
autonomously initiate corrective actions, such as redeployment, to restore them to their
intended operational conditions (Ghosh, et al., 2007). At the hardware level, this self-
healing process involves relocating services from a malfunctioning node to a functioning
one while also conducting health evaluations on various components. On the other hand,
self-adaptive architecture can modify itself, e.g., adjust its states or behaviors, to satisfy

certain objectives (Yang et al., 2013)

Ali Nagvi, et al. (2022) propose CHESS, an approach for systematic evaluation of self-
adaptive and self-healing systems that builds on Chaos Engineering techniques. An
exploratory study was conducted to evaluate a self-healing application to evaluate the
limitations and promises of CHESS. The managed system is injected with faults using
chaos engineering concepts. The problem detection, fault diagnosis, fault recovery, and
knowledge modules of the self-healing system are reflected in a feedback loop that
adheres to the MAPE-K reference model. To capture the status of the system being
evaluated before, during, and after fault injection for subsequent analysis, the system

self-monitoring component offers intensive monitoring and data collecting.

e e -
Fault Diagnosis
Faul Detection Fault Recovery
Monitor Exseuls
S L

I

I

I

I

I

| Kol edge

I

| Managed Sysiem

Sell-Haaking System

System B Fault Injection
Salf-Monitoring Chaos Experiments I

Figure 2.3. Overall architecture of CHESS (Ali Naqvi, et al., 2022)

Motivated by the growth value of private cloud solutions, Petrenko (2021) conducted a
thorough comparison between different approaches and technologies that allow for
building a resilient cyber-stable private cloud based on well-known and proprietary
artificial immune system (AIS) models and approaches, as well as technologies for
distributed data processing, container orchestration, logging, security, and others.

22



Petrenko focuses on five layers in his paper:
« Client application,
« Data Services (Cassandra Postgresql, Ingnite, Kafka, Elasticsearch),
» Core Services (Ubuntu Linux, Kubernetes, Ceph),
 Hardware (Compute node, Storage Node, Network),

» Management (Console, Monitoring, Logging).

Dashofy, et al. (2002) present an approach and vision for developing self-healing
systems, focusing primarily on an event-based developed infrastructure to support the
creation and execution of repair strategies.

They have built a substantial infrastructure to support their vision based on:

o XADL 2.0, an extensible architecture description language, describes software
architectures and their alterations.

o c2.fw, a flexible framework for constructing event-based systems, is used to
instantiate and manage software systems.

o ArchStudio 3 development environment, which is also built on c2.fw, maintains
and manages the mapping between architectural descriptions and running
systems, as well as hosting design critics, which may be used to examine
architecture descriptions or the impact of a change before it is implemented.

Their long-term strategy can be seen as a refinement of the preceding approach, focusing

on tools and approaches that enable more flexibility or dependability in system

reconfiguration in general than was previously used.

In their paper, Frincu, et al. (2011) presented a proposal for a multi agent task scheduling

system enhanced with self-healing capabilities. To deliver a distributed, self-healing

scheduling platform, they addressed the following issues:

1. Provide fully distributed storage and communication mechanisms by using
distributed underlying platforms.

2. Since agents must be fault tolerant and self-adaptive, they implement agents as
modular smart control loops.

3. Maintain independence among multiple providers and easy switch scheduling
policies by using an inference engine for policy execution.

4. Facilitate flexibility in changing negotiation policy according to specific needs by

adding a “negotiator” as an easy-to-integrate plug-in module.

23



Simulated tests were conducted to minimize, but not reduce, the number of agents
involved in cross-service scheduling, and finally, their RMS was tested on a real-world
environment to evaluate its healing capabilities. Their tests have demonstrated that the
platform’s recovery times are within acceptable limits. Their next step is to integrate and
test the platform using the future, cloud-based API provided by mOSAIC.

Pedro Dias, et al. (2020) present and discuss a set of patterns for self-healing 10T systems
that bring improvements in reliability, by providing error detection, recovery, and
health-check mechanisms. In their paper they present a collection of 27 patterns, as well
as a pattern language, that can enhance the robustness of 10T systems by enabling them
to heal themselves. These patterns are grouped into two main categories: Error Detection
(Probes) and Recovery & Maintenance of Health. These patterns are mostly derived from
previous work on related fields such as: Cloud computing, Space systems engineering
and Critical and industrial systems. These patterns are not new, but their
contextualization to 10T systems is introducing new concepts, both in terms of fault-

tolerance and self-healing.

Seeger, et al. (2019) tackle the challenge of optimally self-healing 10T edge systems
with a combination of two key concepts:

e apolicy-enabled failure detector that enables adaptable failure detection, and

¢ an allocation component for the efficient selection of failure mitigation actions.
In their paper, they introduce a system aimed at facilitating the autonomous recovery of
0T choreographies. This system is primarily comprised of two key components:

1. A pioneering failure detection concept that offers extensive flexibility in
configuring parameters tailored to specific applications and policies. They also
provide recommendations on parameter selection.

2. They have devised an Integer Linear Programming (ILP) formulation to achieve
optimal task allocation, taking into consideration energy efficiency. Furthermore,
they have developed a heuristic approach that allows for real-time allocation
computation.

They have conducted evaluations for both the PE-FD failure detector and the

performance of the allocation algorithm.

Rios, et al. (2017) produced a paper that introduces a novel modeling language and an

accompanying tool designed to cater to the specific requirements of multi-cloud
24



application modeling.
This solution addresses the limitations of current modeling approaches by simplifying

two critical aspects:

1. It streamlines the computation of Composite Security Service Level Agreements
(SLASs) that encompass security and privacy considerations.
2. It enhances risk analysis and service matchmaking by considering not only the

functional and business aspects of cloud services but also their security aspects.

The language and tool discussed in their paper were developed within the scope of the
MUSA EU-funded project. These enhancements build upon the existing CAMEL
language, which already provided comprehensive meta-models for Requirements,
Deployment, Scalability, and Security, covering many requirements for specifying
multi-cloud applications. However, the MUSA project identified additional needs for
more detailed deployment and security specifications, risk analysis, and the composition
of Security SLAs. Consequently, extensions to the CAMEL language were developed to
fulfill these requirements. The modeling tool that supports this extended CAMEL meta-
model, known as the MUSA Modeller, has been seamlessly integrated with the MUSA

framework and is accessible on the MUSA website at www.musa-project.eu.

P e e Ty L e 1 P e e e e |
com Security Ccs : Implementation  Composed 1
requirements Combination ! Plan SLA :
» ’ ¥ 1 3 ! A | X ' |
| |
1 Y ! § " Y 1 v | v 4
e b .~ 15 . allon o - \ r \ 2 1
\ T ree | CSSelecion) SLA | | penioyment\ s Composed | Deploymen,
Modeling 1 mll‘_l ") Decision | ) Templata | ) planning ) ) SLA ) | and
cmy | o | [ Suportt / [ Generation / [ [ Generation/ | Exscution
i 4 v\ ' |
Riskprofile | S'-A _________ No
(Security reqs. Template )}
metncs and SLOs) AN H NS
Yes 7 Update N Yes _“Unsatisfied |
“Risk profile?~" “Security reqs2”
o g BN NN
Yes ~SUA fulfilment~.
~vidiation?
<

Figure 2.4. MUSA Overall Process (Rios, et al., 2017)

Mendonca, et al. (2018) investigate several representative self-adaptation solutions that
have been proposed recently from the perspective of generality and reusability, and

propose directions for the following challenges:
25


http://www.musa-project.eu/

New Adaptation Mechanisms

New Control Lopp Deployment Structures
New Continuous Delivery Strategies

New Testing Approaches

S A

New Migration Strategies to Microservices

Colombo, et al. (2022) address the challenges of accurately and efficiently monitor Fog
environments. They introduced ‘AdaptiveMon’, an adaptive P2P monitoring solution
that leverages a knowledge base constantly updated with monitoring information to
dynamically modify the system behavior by triggering countermeasures. The
experimental results demonstrate that adaptive behaviors improve monitoring accuracy
while optimizing the utilization of available resources compared to a non-adaptive

solution.

Mendonca, et al. (2019) identify key challenges for the development of microservice
applications development, delivery, and operations from multiple self-adaptation
perspectives. They present the following contributions in their work:

1. We provide a detailed description of a cloud-based intelligent video surveillance
application, serving as an illustrative example of a self-adaptive microservice
system.

2. In the context of this example application, we highlight and explain various
challenges that arise during microservice development, delivery, and operations,
considering multiple aspects of self-adaptation.

3. We explore potential avenues for addressing the primary challenges encountered
in the development of self-adaptive microservice systems. This exploration
involves drawing upon existing microservice practices and technologies to

propose new directions for improvement.
A 2021 paper, written by Filho, et al. conducted a systematic mapping in which multiple

studies on “self-adaptation techniques and mechanisms in microservice-based systems”

were analyzed considering quantitative and qualitative research questions.

26



1D Research Question

RQI How has self-adaptation been applied in the context of
microservices?

RQ2 What types of research and contribution have been pre-
sented?

RQ3 Which phase of a self-adaptation control loop is the focus
of the studies?

RQ4 What self-* properties have been addressed?

RQ5 What self-adaptation strategies have been used?

RQ6 What quality requirements have been addressed by the
approaches?

RQ7 In which microservice architecture layer were the adap-
tations applied?

RQS What self-adaptation control logic has been addressed?

RQ9 What technologies have been addressed?

RQ10 Has an empirical evaluation been conducted?

RQ10.1  What strategy was used to validate the research?

Figure 2.5. Self-Adaptation Techniques Research Questions (Filho, et al, 2021)

The findings indicate that the majority of research efforts center around the "Monitor"
phase, accounting for 28.57% of the adaptation control loop. Additionally, a significant
emphasis is placed on achieving the self-healing property (23.81%), employing a
reactive adaptation strategy (80.95%), primarily at the system infrastructure level
(47.62%), and adopting a centralized approach (38.10%).

This section presented an introduction to Self-Healing systems, which are systems that
perform regular checks on the key components, and to autonomously initiate corrective
actions. It also outlines some state-of-the-art research in the field of Self-Healing

systems.

24 Microservice Architecture

Microservices, which is also referred to as the microservice architecture, is an
architectural approach that organizes an application into a set of services characterized
by the following attributes:

1. Capable of independent deployment.

2. Loosely interconnected.

3. Aligned with specific business functionalities.

4. Managed by small, dedicated teams.
This architectural style empowers an organization to deliver large, intricate applications

efficiently and consistently with speed and reliability.

27



Jindal, et al. (2019) address the challenge of identifying a Microservice Capacity (MSC)
for a single microservice within a multiple microservice ecosystem. Such challenge was
overcome by sandboxing a microservice and creating a performance model via the
‘Terminus’ tool. The tool assesses a microservice's capability under various deployment
setups by executing a concise set of load tests and then applying a suitable regression
model to the gathered performance data. The assessment of these microservice
performance models across four different applications has yielded highly accurate
predictions, with a mean absolute percentage error (MAPE) consistently below 10%.
These outcomes from the suggested performance modeling of individual microservices

serve as a crucial input for the broader microservice application performance modeling.

CPU Utilization
(=]

MSC ~ 6200/60
=104 RPS

0 2000

- R ————
4000 &00p 8000 10000
Number of requests {per minute)

1500

P90 Response
1250 :

time = 1 sec,
000

Request Success
Rate = 100%

Requests Response Time (in milliseconds)

0 2000 4000 6000 8000 10000
Number of requests (per minute)

Figure 2.6. Microservice Capacity Identification (Jindal, et al., 2019)

Zhang, et al. (2019) investigated the gap between Academia’s ideal vision and real
industry’s practices on microservices. A series of industrial interviews was undertaken,
encompassing thirteen diverse types of companies. Following this, they systematically
structured and coded the acquired data according to prescribed qualitative methods.
From the interviews, they validated both the advantages of implementing microservices,
which can be gained through practical experience, and the potential challenges that may
require additional investment based on their own experiences. Additionally, some of
these identified challenges, such as organizational transformation, decomposition,
distributed monitoring, and bug localization, could serve as valuable inspiration for

researchers to pursue further investigations.

28



Stubbs, et al. (2015) reviewed container technology and introduced Serfnode, a non-
intrusive Docker image, as a solution to service discovery challenges. Serfnode also has

a self-healing and monitoring mechanism based on Supervisor for resiliency.

Microservices architecture has emerged as a popular approach for organizations looking
to modernize their legacy applications. However, there is a significant gap in
understanding the key principles required for successfully implementing a microservices
architecture. Velepucha, et al. (2023) wrote a paper which aims to fill this void by
conducting a comprehensive survey of existing literature that delves into the
foundational principles of the object-oriented approach and how these concepts relate to

both monolithic and microservices architectures.

Furthermore, their investigation covers not only monolithic architectures but also
microservices, including an exploration of the design patterns and principles commonly
applied in microservices development. Their contribution includes the compilation of a
list of patterns commonly used in microservices architecture. They also compare the
principles advocated by experts such as Martin Fowler and Sam Neuman in the
decomposition of microservices architectures with the pioneering Principle of
Information Hiding put forth by David Parnas. Parnas discusses modularization to

enhance system flexibility and comprehension.

Additionally, they provide a concise summary of the advantages and disadvantages of
both monolithic and microservices architectures, as gleaned from the literature review.
The summary in their paper can serve as a valuable reference for researchers in academia

and industry, shedding light on the current trends in microservices architecture.

This section presented an introduction to Microservice architectures, an approach to
software architecture that organizes an application into a set of services. It also outlines

some state-of-the-art research in the field of Microservice architectures.

2.5 Cloud Infrastructure

Cloud infrastructure refers to the essential elements required for cloud computing,
encompassing hardware, abstracted resources, storage, and networking components.
Consider cloud infrastructure as the foundational building blocks necessary for
constructing a cloud environment. To accommodate services and applications within the

29



cloud, the presence of cloud infrastructure is imperative (Qian, et al, 2009).

Kotas, et al. (2018) evaluates compute-oriented instances from Amazon Web Services
and Microsoft Azure cloud platforms in multiple high-performance computing
benchmarks (HPCC and HPCG). Their experiment investigates the performance of
various HPC benchmarks on both the AWS and Azure cloud platforms, with a specific
focus on the compute-centric c4.8xlarge and H16r instance types. Nevertheless,
determining which cloud platform offers the most cost-effective solution for a particular
use case hinges on the computational and communication patterns of the application. In
the context of the tests conducted at the time of this study, the AWS c4.8xlarge
demonstrated a cost advantage in terms of raw computing power, whereas Azure's H16r
excelled in providing cost-effective bandwidth. Consequently, applications that heavily
rely on communication may find Azure's H16r with its faster network and larger RAM
to be a more economical choice, resulting in an overall cost-saving solution. It is worth
noting that cloud service providers consistently enhance their offerings. Therefore, the
most reliable method for determining an application’s performance in the current cloud

environment is to conduct testing on the prospective system.

Yussupov, et al. (2020) propose a model-driven and pattern-based approach (MICO) for
composing microservices, which helps with the transition from architectural models to
running deployments. Central to their approach is the MICO meta-model, which
harmonizes architectural and deployment considerations, simplifying the transition from
integration models to active deployments. In addition to modeling interface-based
service integration, the MICO Model empowers the utilization of integration services
for modeling messaging-based service interactions. These integration services rely on
the implementations of well-known enterprise integration patterns. They promote
loosely coupled integration of microservices while abstracting away the technical
intricacies linked to the underlying infrastructure deployment prerequisites. To
substantiate the validity of their approach, they have conducted a prototypical
implementation of the system architecture. This implementation utilized Kubernetes for
container orchestration, Apache Kafka as a message-oriented middleware, and Open
FaaS for managing the service integration logic. Subsequently, they executed a concrete

case study based on a third-party application.

30



Frontend (Angular)
g | MICO Management Ul J( MICO Graphical Modeling Ul )

Backend {Spring Boot)

MICO ( HTTP REST APl ]
System Q ‘ Image JL Microservice [Integration Pattern [ Application Manager ]
/ Builder Manager Manager Persistence Layer
[ Infrastructure Plugins ]] T(, Neod)
Messaging-based Integration Source-to-Image Builds

Infrastructure [ §€ Apache Kafka J [@ OpenFaa$ J [ﬁ Kaniko][}?}m Tekton Pipelines]
Layer

Kubernetes ]

Figure 2.7. A Prototypical Implementation of the MICO system (Yussupov, et al., 2020)

Schleier-Smith, et al. (2021) discuss the evolution of cloud computing and the benefits
of Serverless Architecture in terms of lowering costs and simplifying system
administration. They conclude their paper with five predictions for serverless

computing:

1. The present categories of FaaS and BaaS are anticipated to evolve into a broader
spectrum of abstractions, which we classify into two categories: general-purpose
serverless computing and application-specific serverless computing. While
serverful cloud computing will not vanish, its relative usage within the cloud
ecosystem is expected to diminish as serverless computing continues to address

its current limitations.

2. Anticipated developments in general-purpose serverless abstractions aim to
encompass nearly any conceivable use case. These abstractions will encompass
state management and offer optimization possibilities—either user-driven or
automatically inferred—resulting in efficiencies that rival, or potentially surpass,

those of serverful computing.

3. There is no inherent reason for serverless computing to be more costly than
serverful computing. We predict that as serverless technology advances and
gains popularity, nearly all applications, whether small or large-scale, will cost

no more—and perhaps even less—when utilizing serverless computing.

4. Machine learning is poised to assume a pivotal role in serverless

implementations, enabling cloud providers to enhance the execution of extensive

31



distributed systems while furnishing a user-friendly programming interface.

5. The hardware landscape for serverless computing is expected to exhibit a
significantly greater degree of heterogeneity compared to the prevailing x86

servers that currently underpin it.

Blinowski, et al. (2022) evaluate the performance and scalability of monolithic versus
microservice architecture by running controlled experiments in three different
deployment environments (local, Azure App Service and Azure Spring Cloud) using two
different implementation technologies (Java versus C# .NET). Their findings are as

follows:

1. Interms of performance on a single machine, a monolithic system outperforms its

microservices-based counterpart.

2. When dealing with computation-intensive services, the Java platform
demonstrates superior utilization of robust hardware, whereas this platform effect
is reversed when non-computationally intensive services run on hardware with

limited computational capacity.

3. Inthe Azure cloud environment, vertical scaling proves to be a more economically

efficient choice than horizontal scaling.

4. Extending scaling beyond a specific number of instances leads to a decline in

application performance.

5. The choice of implementation technology does not significantly affect the

scalability performance.

Sen and Skrobot (2021) demonstrate and discuss the process of deployment and
provisioning of microservices utilizing DevOps principles and practices in industry
standard, more specifically AWS Elastic Container Service (ECS). They concluded that
throughout the transition from testing to production phases, AWS ECS serves various
environments, offering a substantial reduction in the time and labor required for
deploying microservices. This eliminates the need for manual server deployment and
configuration. Additionally, AWS ensures a high level of security and reliability without

necessitating additional efforts. AWS also seamlessly integrates ECS with its other

32



services, including Elastic Load Balancer and Identity Access Management, simplifying

the deployment of intricate multi-component applications in the AWS Cloud.

This section presented an introduction to Cloud infrastructure, looking at all the parts of
a cloud environment, including software, hardware, and networking components. It also

outlines some state-of-the-art research in the field of Cloud infrastructure.

2.6 Conclusions

This chapter began by dividing the research area of this dissertation into four separate
topics, and then discussed multiple papers to provide the necessary background to proceed

into the preparation of the proposed experiment.

As mentioned in this chapter, although much has already been extensively studied, the
author has not encountered any recent/relevant paper exploring chaos engineering

techniques on a self-healing Microservice Cloud Architecture.

33



3 DESIGN AND METHODOLOGY

“Cloud is about how you do computing, not where you do computing.”
— Paul Maritz, CEO of VMware

3.1 Introduction

In this chapter, the framework and procedures used to collect and analyze data for study
will be outlined. An experiment based on self-healing cloud architecture will be designed
to host a microservice application. Then, chaos engineered faults will be injected into

such architecture to measure how resilient it is.

First, an infrastructure cloud provider will be selected based on its relevance in the
current industry, then a microservice application will be developed. Following that, an
architecture within the selected cloud provider will be defined and created to host the
microservice application. To collect health-check data from the architecture
independently, an API testing tool will be chosen. A chaos engineered fault injection
tool will be selected to challenge the architecture. Finally, the experiment will be

conducted.

Replicability of the experiment will also be facilitated by a detailed experiment user
guide in Appendix B.

Research Question: Can Chaos Engineering techniques implemented via AWS Fault
Injector Simulator (FIS) degrade an ‘Industry standard Self-healing Cloud-based

microservice architecture’ beyond a sixty-second self-healing SLO?

I ‘ EREs .

Collects data from the cloud
infrastfucture

A4
Injects Faults
L -
Initiate
event

Figure 3.1. High-level Overall experiment (Author)

34



3.2 Ethical Considerations

This study is not motivated to, and will not, promote nor demote any specific technology
or cloud provider. The focus is on, given a specific set of parameters, quantitatively
assess how resilient a cloud architecture can be. For this research, the AWS platform
will be used for the reasons outlined in Section 3.3. Nonetheless, that rationale does not
encourage, nor discourage, the choice of using other cloud providers in industry or in

the academia.

Regarding data controls and residency, AWS claims that the customer can manage their
data effectively through the utilization of robust AWS services and tools. These tools
empower the user to specify the data's storage location, implement security measures,
and regulate access permissions. For example, AWS Identity and Access Management
(IAM) ensures secure control over access to AWS services and resources. Additionally,
services like AWS CloudTrail and Amazon Macie aid in compliance, detection, and
auditing, while AWS CloudHSM and AWS Key Management Service (KMS) enable
the secure creation and management of encryption keys. To further enhance data
governance and residency, AWS Control Tower provides the necessary governance and

control mechanisms.

Regarding data privacy, AWS claims to consistently enhance privacy protection
measures by offering services and features that empower users to establish their own
privacy controls, encompassing advanced access, encryption, and logging
functionalities. They simplify the process of encrypting data during transit and at rest,
allowing users to choose between keys managed by AWS or those they manage entirely
on their own. The user can also integrate externally generated and managed keys. Their
privacy management procedures are uniformly structured and scalable, governing data
collection, utilization, access, storage, and deletion. To assist users in safeguarding their
data, AWS provides an extensive array of best practice resources, training, and guidance,
including the Security Pillar of the AWS Well-Architected Framework.

AWS claims to only handle customer data, which refers to any personal data the user
uploads to their AWS account, following their documented instructions. AWS claims to
not access, employ, or disclose user data without their explicit consent, except when
necessary to prevent fraud and abuse or to comply with legal requirements, as outlined

in the AWS Customer Agreement and AWS GDPR Data Processing Addendum. Many
35



customers subject to GDPR, PCI, and HIPAA regulations rely on AWS services for such
workloads. AWS has attained multiple globally recognized certifications and
accreditations, showcasing compliance with rigorous international standards, including
ISO 27017 for cloud security, 1ISO 27701 for privacy information management, and ISO
27018 for cloud privacy.

Regarding AWS billing, AWS has created a User Guide console to be transparent with
any charges incurred. The AWS Billing console offers functionalities for settling user
AWS invoices and tracking AWS expenses and usage. If the user is part of AWS
Organizations, they can also employ the AWS Billing console to oversee their
consolidated billing. When registering for an AWS account, Amazon Web Services will
automatically bill the credit card supplied. The user has the flexibility to view or modify
their credit card details at their convenience, including the option to assign a different
credit card for AWS charges. These adjustments can be made through the Payment

Methods page within the Billing console.

The author would also like to highlight that no information present in this research
regarding chaos engineering techniques can be readily used to deliberately harm/degrade

cloud infrastructures.

3.3 Cloud Provider Selection

When deciding regarding a public cloud provider, there are several factors to consider:

e Required Services: Ensure that the provider offers the essential services that are
needed, including computing, storage, networking, and databases.

e Feature Set and Capabilities: Evaluate the provider's features and functionalities
that align with the specific requirements, encompassing scalability, security, and
performance.

e Cost Structure: Verify that the pricing is competitive and that there is a clear
understanding of the associated terms and conditions.

e Support Services: Confirm that the provider delivers effective support services,

enabling users to access assistance whenever necessary.

Presently, AWS stands as the foremost cloud provider, with a global user base in the
millions and commanding a market share exceeding 30 percent. Introduced by Amazon

36



in 2006, it has since evolved into one of the most widely adopted cloud service providers,
supported by a wide community of engaged users and developers. Covering 245
countries and territories, AWS operates within 102 availability zones spanning across
32 geographic regions (as of December 2023). Its comprehensive offering encompasses
more than 200 fully featured services encompassing compute, storage, networking,
databases, analytics, and machine learning. Moreover, AWS regularly introduces new
features to meet evolving demands.

AWS includes robust security measures, with over 140 security standards and
certifications that cater to the compliance requirements of customers around the world.
Microsoft Azure, Google Cloud Platform, Alibaba Cloud, IBM Cloud, Oracle Cloud
Infrastructure, Tencent Cloud, DigitalOcean, UpCloud, Akamai, amongst many other
cloud providers have grown over the years, but in this research the experiment will be
undertaken based on AWS.

# Cloud Service Provider Market Share
1 Amazon Web Services (AWS) 32%
2 Microsoft Azure 22%
3 Google Cloud Platform (GCP) 11%
4 Alibaba Cloud 4%
5 Oracle Cloud 3%
6 IBM Cloud (Kyndryl) 2.5%
7 Tencent Cloud 2%
8 OVHcloud <1%
9 DigitalOcean <1%
10 Linode (Akamai) <1%

Figure 3.2. Cloud service providers per market share (DGTL Ingra website®)

3.4 Microservice Application Development

In this experiment, the Java programing language will be used to develop the
microservice application that will be deployed in AWS. The Java programming language

is characterized by its high-level nature, object-oriented approach, and a deliberate

8 Top 10 Cloud Service Providers Globally in 2023 - Dgtl Infra

37


https://dgtlinfra.com/top-cloud-service-providers/

emphasis on minimizing implementation dependencies. It is a versatile language
designed to enable the "write once, run anywhere” (WORA) principle, signifying that
compiled Java code can function on any platform that supports Java without requiring
recompilation. Typically, Java applications are compiled into bytecode, which is
executable on any Java virtual machine (JVM), irrespective of the underlying computer

architecture.

While Java's syntax bears some resemblance to C and C++, it offers fewer low-level
capabilities compared to both. The Java runtime environment provides dynamic
functionalities, such as reflection and runtime code modification, which are typically

absent in traditional compiled languages.

In this paper, the Java application will utilize the Spring framework to spin-up an in-
memory H2 database containing one table with two columns, inject ten random entries
into the table and then expose the entries in JSON format through a REST API via the
Spring Web module.

Based on the AWS microservice definition*, the Java application proposed in this paper
fits the description of being a microservice, as it has a well-defined interface using a
lightweight API, it is autonomous, specialized, it can independently run, be updated,

deployed and scaled.

3.5 Self-healing Architecture Design

In this research, the design of the cloud architecture is based on the AWS Well-
Architected framework, which is widely accepted in the industry. However, given the
nature of the experiment, a bigger focus was given to the Reliability Pillar, which states:
“The reliability pillar focuses on workloads performing their intended functions and how
to recover quickly from failure to meet demands. Key topics include distributed system
design, recovery planning, and adapting to changing requirements.>”).

It is also worth mentioning that most of the architectural design choices were focused on

the free-tier services, which are offered by AWS to accounts created within the past 12

4 https://aws.amazon.com/microservices/
5 https://aws.amazon.com/architecture/well-architected

38


https://aws.amazon.com/microservices/
https://aws.amazon.com/architecture/well-architected

months. There are three main components to this self-healing architecture:

1. EC2 instances: These are the computational power, machines where the Java

application will be deployed and executed. In this experiment two instances will be
created, due to AWS EC2 instances committing to 99.99% availability SLA (Service
Level Agreement) per EC2 Region, therefore two instances present eight 9’s.

availability, which corresponds to 3.15 seconds of downtime per year.

. Auto Scaling Groups: An Auto Scaling group comprises a set of EC2 instances that

are organized as a cohesive entity, serving the purpose of automated scaling and
administration. Additionally, an Auto Scaling group facilitates the utilization of
Amazon EC2 Auto Scaling capabilities, including health check substitutions and
scaling policies. The central functions of the Amazon EC2 Auto Scaling service
encompass both the management of instance quantities within an Auto Scaling group
and the automatic scaling process. For this experiment, the Auto Scaling group will
be set to contain a minimum of two instances and a maximum of four.

Elastic Load Balancers: Elastic Load Balancing (ELB) autonomously disperses
incoming application traffic among numerous targets and virtual appliances situated

in one or multiple Availability Zones (AZs).

However, these components are dependent on the lower-level services listed below:

VPC (Virtual Private Cloud): Amazon Virtual Private Cloud (VPC) empowers
the user to deploy AWS resources within a logically segregated virtual network
that have been personally configured. This virtual network mirrors the structure
of a conventional network the user might manage in their private data center

while leveraging the advantages of AWS's scalable infrastructure.

39



4D

Internet gateway
o i o i 1o

Instances Instances Instances

Availability Zone E Availability Zone f Availability Zone

Figure 3.3. VPC example (Amazon VPC?)

o Key-Pair: A key pair, comprising both a public key and a private key, represents
a pair of security credentials employed for verifying the users’ identity when
establishing a connection to an Amazon EC2 instance. In this setup, Amazon
EC2 retains the public key on the users’ instance, while they retain control over
the private key. In the context of Linux instances, this private key serves as the
secure means for SSH access to their instance. Alternatively, in lieu of key pairs,
they have the option to utilize AWS Systems Manager Session Manager for
connecting to their instance. This method provides an interactive, one-click,
browser-based shell, or integration with the AWS Command Line Interface
(AWS CLI).

o AMI: An Amazon Machine Image (AMI) is a meticulously curated and managed
image made available by AWS, containing all the essential data needed to initiate
an instance. When launching an instance, specifying an AMI is a mandatory step.
If the user needs multiple instances with identical configurations, they can
initiate several instances from a single AMI. Conversely, when they need
instances with varying configurations, they can utilize distinct AMIs for
launching those instances.

o Launch Template: It is possible to generate a launch template, which
encapsulates the setup details needed for initiating an instance. Launch templates

offer a convenient way to store launch parameters, eliminating the need to

6 https://docs.aws.amazon.com/vpc/latest/userquide/what-is-amazon-vpc.html!

40


https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

repeatedly specify them when launching instances. For instance, a launch
template might include essential information like the AMI ID, instance type, and
customary network settings employed for launching instances. When users
launch an instance through the Amazon EC2 console, an AWS SDK, or a
command line tool, they have the option to designate the specific launch template
to employ.

o Security Groups: A security group governs the traffic that is permitted to enter
and exit the resources it is linked to. For instance, once users associate a security
group with an EC2 instance, it takes charge of managing both incoming and
outgoing traffic for that instance. It’s worth noting that they can only associate a
security group with resources located within the same VPC where the security
group was established. Upon creating a VPC, a default security group is
automatically provided. If needed, they have the flexibility to generate extra

security groups for each VPC in their account.

.
Public subnet Public subnet

Security group ()
Web server Web server
Private subnet Private subnet
Security group

L6 La

Database server Database server

Availability Zone Availability Zone

Figure 3.4: Security groups example (Amazon Security Basics’)

3.6 API Testing Tool

APIs are pivotal for enabling smooth communication among different applications and
services. Given their fundamental role in contemporary software, rigorous testing
becomes crucial to ensure their dependability, scalability, and security. This is where the

significance of API testing tools becomes apparent.

7 https://docs.aws.amazon.com/vpc/latest/userquide/vpc-security-groups.html#security-group-basics

41



https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html#security-group-basics

API testing is a procedure used by developers to evaluate the functionality, efficacy, and
security of APIs. Before releasing their software, the results of this procedure will inform

developers if an API requires problem fixes and patches.

The Apache JMeter software is an open-source, entirely Java-based application from the
Apache Software Foundation that is designed to assess performance and stress-test
functional behavior. While its initial purpose was testing web applications, it has since
evolved to encompass a broader range of testing functions. Apache JMeter may be used

to test performance both on static and dynamic resources, Web dynamic applications.

Some of the important characteristics of JMeter to this experiment are as follows:

e ltisavailable freely as open-source software.

e Featuring a user-friendly and intuitive graphical user interface (GUI).

e JMeter is versatile, capable of conducting load and performance tests on various
server types, including Web (HTTP, HTTPS), SOAP, Database (via JDBC),
LDAP, JMS, Mail (POP3), and more.

e It is atool that operates seamlessly across different platforms. On Linux/Unix
systems, users can initiate JMeter by executing the JMeter shell script, while on
Windows, it can be launched by running the jmeter.bat file.

e JMeter offers robust support for Swing and lightweight components
(precompiled JAR utilizes javax.swing.* packages).

e Test plans in JMeter are stored in XML format, facilitating the creation and
modification of test plans using a simple text editor.

e With its comprehensive multi-threading framework, JMeter enables concurrent
sampling by multiple threads and simultaneous sampling of various functions
through separate thread groups.

e The extensibility of IMeter allows for the integration of additional functionalities
and plugins.

e Beyond load and performance testing, JMeter can also be employed for

automated and functional testing of applications.

42



Figure 3.5: JMeter architecture (JMeter Tutorial®)

3.7 Fault Injector

As the name suggests, fault injection is a technique for deliberately introducing stress or
failure into a system to see how the system responds. Runtime fault injection gained
significant traction, particularly within organizations overseeing extensive, intricate, and
distributed systems. In 2011, Netflix introduced Chaos Monkey, a tool that intentionally
halted compute instances operating in their cloud infrastructure. Chaos Monkey assisted
Netflix in confirming the resilience of their workloads to abrupt and unanticipated
failures through the random termination of running systems. In 2014, Netflix further
advanced this concept with the introduction of their Failure Injection Testing (FIT)
platform, which provided a more advanced solution for orchestrating widespread failure
scenarios involving multiple teams. These pioneering tools established the foundational
principles of modern-day Chaos Engineering.

AWS Fault Injection Simulator (FIS) is a completely managed service that facilitates the
execution of fault injection experiments aimed at enhancing an application’s
performance, visibility, and robustness. FIS streamlines the setup and execution of
deliberate fault injection tests spanning various AWS services, enabling teams to gain

trust in their application’s behavior.

8 https://www.javatpoint.com/jmeter-tutorial

43


https://www.javatpoint.com/jmeter-tutorial

| z Amazon EC2 é\d é{sﬁé‘w.;t(h

AWS Fault Injection
Simulator
A fully managed fault
injection service Create an experiment Start the experiment Stop the experiment View results
template FIS injects fault actions into AWS See how experimentsstop  View the experiment results
Define fault injected actions, resources, and metrics are automatically if all actions to identify performance,
and control which affected monitored via CloudWatch or are complete or analarmor  observability, or resilience
targets and safeguards EventBridge event is triggered weaknesses
should run during the
experiment

[E—
(o == el 3y Amazon 7
(= = 2 €83 Amazon RDS {}g EventBridge e
| Fault injected Monitoring I | ‘

> ! ' resources et

Figure 3.6: FIS explained (Amazon FIS®)

It is important to highlight the lack of freely available chaos engineered tools at the time
of writing this dissertation. Given the nature of the research and the fault injection
requirements, AWS FIS was the only free tool available that could interact with AWS
resources in the necessary way (i.e., terminating computing instances to simulate an

unexpected fault).

3.8 Expert Interview Design

Three interviews will be conducted with Industry experts in the field of software
engineering and cloud infrastructure. The interviews will be conducted separately, so
interviewees cannot influence each other and/or steer each other’s train of thought in a
specific direction. The interviewees will be asked not to speak to each other about this
project until after all the interviews are conducted.

The interview process will be as follows, the interviewees will each be presented with
an outline of the experiment, and the key results obtained. This will be in a neutral
manner. The interviewees will then be asked to comment on the experiment, in terms
of how it was designed, how it was implemented, and on the results. And specifically,

they will be asked to share their interpretation of the outcomes of the experiment.

The interviewees can be described as follows:

# Description

11 Interviewee 1 has over 25 years of experience in the Software

Engineering industry, including FinTech, medical systems and the public

S https://aws.amazon.com/fis/

44


https://aws.amazon.com/fis/

sector. They have also spent over 10 years working directly with cloud
infrastructure, including AWS, OpenShift, PCF and Azure.

12 Interviewee 2 has 8 years of experience in the Software Engineering
industry, including FinTech and public sector. They have spent over 3
years working directly with cloud infrastructure, including AWS and
OpensShift.

13 Interviewee 3 has over 10 years of experience in the Software
Engineering industry, including banking and public sectors. They have
spent over 6 years working directly with cloud infrastructure, including
AWS, Azure and OpenShift.

These interviews allowed for reflection and validation of the experiment design, metrics
extraction and drawn conclusions from an external perspective, as well as bringing ideas
and inspiration for future work. The interviews will be described in detail in chapter 5.8.
Zhang, et al. (2021) in their paper on ‘Microservice architecture in reality: An industrial
inquiry’, conducted a series of interviews with industry experts, therefore this paper found
inspiration in their work when planning the interviews. The full presentation used in the
interviews and questionnaire can be found in Appendix C, or in Power Point format at

https://github.com/brunorfranco/masterThesis/blob/main/mastersinterviewPresentation.p

ptx.

3.9 Experiment Design

This section will explore the conception of the experiment's design, detailing the

encountered challenges throughout the process and culminating in its final state.

3.1.1. Design Challenge

During the implementation of the experiment, multiple challenges were faced, and they
will be explored in this section.

Initially, the research intended to use a ‘black box’ AWS service named Elastic
Beanstalk, which is a platform designed for the deployment and expansion of web
applications and services. By uploading application code, Elastic Beanstalk would
seamlessly manage the deployment process, encompassing tasks like capacity
provisioning, load balancing, auto scaling, and continuous monitoring of application

45


https://github.com/brunorfranco/masterThesis/blob/main/mastersInterviewPresentation.pptx
https://github.com/brunorfranco/masterThesis/blob/main/mastersInterviewPresentation.pptx

health. However, Elastic Beanstalk does not offer fine-grained configuration, including
the Auto Scaling configuration required for the ideal experiment, so it could not be
utilized in this research. More specifically, Elastic Beanstalk only allows for the
minimum and maximum number of instances setup, while the envisioned experiment

requires the setup for ‘desired capacity’ and ‘maximum prepared capacity’:

v Capacity info

Configure the compute capacity of your environment and auto scaling settings to optimize the number of instances used

Auto scaling group

Environment type

Select a single-instance or lo ment. You can develop and test an application in a single-instance environment to save
costs and then upgrade to a pplication is ready for production. Learn more [£}

‘ Load balanced v

Instances

‘ 1 ‘ Min

‘ 1 ‘ Max

Fleet composition
Spot instances are launched at the lowest available price. Learn more B

© On-Demand instances

(O Combine purchase options and instances

Maximum spot price

The maximum pric JSD, that you're willing to pay for a Spot Instance. Setting a custom price limits your chances to
fulfill your target capacity us INc

On-Demand base

The minimum number of On-Demand Instances that your Auto Scaling group provisions before considering Spot Instances as you

environment scales out.

Figure 3.7: Elastic Beanstalk Auto scaling group configuration (Author)

On the applications implementation plan, initially the Author envisioned creating an
‘Industry level standard’ architecture, including a highly resilient and available database
in AWS, a Multi AZ RDS MySQL database with an extra read-only replica, but after
further consideration, it came to light that for the purpose of this research, this database
setup would not help validate nor disprove the hypothesis, and it would incur extra costs
on the AWS billing.

A similar scenario was also faced in terms of the application setup. Initially, it was
envisioned that two Java applications would be created, a ‘frontend-application’, and a

‘backend-application’, but after further consideration, it was realized that when injecting

46



faults into instances for the same service, it would not matter having two different

services, so the author has elected to proceed with only the ‘backend-application’.

Both applications codes can be found at: brunorfranco/masterThesis: Folder to hold all

the necessary code and configuration for my personal Masters thesis (github.com)

Elastic IPs

Publid Subnet
¥

frontend-service

Backend-service connected to Multi AZ RDS e e
DB

VPC 10.0.0.0/16

Figure 3.8. Initial Design (Author)

The initial research design had scope that the AWS environment cannot satisfy.

A study by Portent (https://www.portent.com/blog/analytics/research-site-speed-

hurting-everyones-revenue.htm) discovered that the average website load time in 2023

IS 2.5 seconds, therefore the initial research design visioned for AWS to upkeep a self-
healing SLO of two seconds. However, after the preliminary test, it became clear that
two seconds was too ambitious, so the time expectation was modified to sixty seconds,
which was inspired by Frincu, et al. (2011), where recovery time findings were around

60s for 10 modules using on-demand deployment.

47


https://github.com/brunorfranco/masterThesis
https://github.com/brunorfranco/masterThesis
https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm
https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm

70000 v y T T

1 Healer - on demand

60000 F 1 Healer - idle clones ——
w 50000 | |
E
£ 40000 | 1
=
g 30000 |
& 20000 | 1

10000 | / 1

0 : . . ) .
0 2 4 6 8 10

Mo. failed modules

Figure 3.9. Recovery time vs. number of failed modules (Frincu, et al., 2011)

3.9.1 Final Design

Given Elastic Beanstalk limitations and the advice from experts in the field, the overall

cloud architecture will manually be created as follows:

Internet Gateway ‘Bzt Load l e
Baldheer

Backend-app

Subnet-2

ssssss t-1b

Figure 3.10. Final Design (Author)

For this experiment, a Test Plan will be created in Apache JMeter containing:
e One single Thread Group (as this is not a stress-test),
e HTTP Request Sampler pointing to the Elastic load balancer for the backend-
48



service,
e Graph and Table listeners.

e Constant Timer with 1000 milliseconds Thread Delay

File Edit Search Run Options lools Help

ETATVEE +-% 00U o BT

Figure 3.11. JMeter Test Plan Configured (Author)

An AWS Fault Injector setup will also be created to disable both EC2 instances running
the backend-service application, and the JMeter Test Plan will then collect information

during the fault injection.

The JMeter will collect the time of the last successful request to the API before the fault

injection, and the first successful request after the fault injection. The delta of the two

will be used as the time that the cloud architecture needed to heal itself.

Figure 3.12. JMeter Result in Table view (Author)

Once the FIS setup is completed and the targeted EC2 instances are terminated, an extra
five minutes will be allowed for the Auto Scale policy to spin up extra compute

instances, then the JMeter test plan will be stopped.

Following Ali Nagvi, et al. (2022) experiment, their experiment was executed in two

phases, eight times each, our experiment will be executed in four different phases

49



(differentiated by auto-scaling configurations), eight times each as well:
5. No warm pooling.

6. Warm pooling with one instance on ‘Stopped’ state.

7. Warm pooling with one instance on ‘Running’ state.
8

. Warm pooling with one instance on ‘Hibernated’ state.

Therefore, in total, the experiment will be executed thirty-two times, and any outliers
will be investigated carefully and re-executed. An experiment execution will be
considered an outlier if the cloud healing time has a 50% variation from the previous
two executions median (except for the first and second executions, which will be
evaluated against the following two executions). A final report will be produced from

the thirty-two results, separated by the four configuration variations.

3.10 Conclusions

This chapter has discussed the main technologies and steps necessary to conduct the

proposed experiment, collect the data and evaluate it.

The results should produce data to either support or contradict the notion that chaos
engineered techniques will degrade the proposed microservice architecture beyond a
sixty-seconds self-healing time, as well as compare results between various auto scaling

configurations.

Collecting data with an independent tool (JMeter), from outside of the AWS ecosystem,

will remove any bias regarding reliability of the results.
A fault injection tool from outside of the AWS ecosystem would have been preferred.

However, no free tool that could interact with AWS resources was found, therefore AWS

FIS was chosen as the only feasible tool.

50



4 DEVELOPMENT PROCESS

“Creating new paths requires moving old obstacles.”
— Anthony D. Williams, Inside the Divine Pattern

4.1 Introduction

In this chapter, the implementation of the microservice application, the cloud
architecture, the fault injection setup, and the API testing will be discussed. These are
all based on the designs outlined in Chapter 3. Following this implementation process,
four variations of the experiment are executed eight times each. The results these
experiments generate will be used for resiliency evaluation purposes. Finally, the
difference in results from the four experiment variations will be analyzed. Any problems
encountered during the development will be discussed and the technologies used will be
judged on their effectiveness during implementation. All of the code written for this
dissertation, as well as any generated configuration (user-data file, JMeter test plan, FIS
template, etc) can be found at the following Github location:
https://github.com/brunorfranco/masterThesis.

The diagram below shows all the necessary steps in the correct sequence to achieve the

final state within the AWS platform to proceed with the experiment.

VPC Key Pair Install
( ) Creation Creation Putty
> >
EC2
AMI creation
Extractio ( .(
AR Running Java App
App from added into
EC2 EC2
Elastic
Launch
Template ). ). ) Load
Security Auto Balancer
Group Scaling Creation
configuration Creation
'Lg (_l G (
E) Warm Review
- Pooling configuration
Configuration

Figure 4.1. AWS Diagram with all steps (Author)

51


https://github.com/brunorfranco/masterThesis

4.2 Java Micro-service Implementation

The ‘backend-service’ Java application was developed and compiled in JavaSE-17, in
the Eclipse IDE version 2023-09 (4.29.0). It was built with maven, Spring Boot 3.1.2,
Spring Boot Starter Data JPA, Spring boot Starter Web and H2 database. It contains a
single model called RandomEntry, which maps to a database table named
‘RandomEntryTable’, with two columns, ‘id” and ‘randomValue’. The application also
exposes a Rest API under port 8082, URL ‘/api/entries’ which returns all the rows of the
RandomEntryTable in JSON format. When the application starts up, it executes a
command to insert ten random rows into the in-memory database. Once the application
is running, the database can be interacted with from the ‘/h2-ui’ URL. The application
can be executed by running the ‘BackendServiceApplication.java’ class. The
application’s code can be found in its entirety at:

https://github.com/brunorfranco/masterThesis/tree/main/backend-service.

43 AWS Cloud Architecture implementation

This section will explore the steps to create the self-healing cloud architecture that will be
challenged by the fault injection tool of choice and note if such architecture will be able to
heal itself within sixty seconds. The main goal in this section is to configure the necessary

components mentioned in the diagram below:

Backend-app

Subnet-1

Internet Gateway Elzst] Load v, Auto Scaling

Figure 4.2. AWS Cloud Architecture Designed (Author)

For more details on how to setup any of steps described from section 4.3.1 to0 4.3.10, please
refer to Appendix B, section 2.
52


https://github.com/brunorfranco/masterThesis/tree/main/backend-service

4.3.1 VPC Creation

The objective of this step is to set up a virtual private cloud (VPC), so that other cloud

components can be created safely within it.

Once logged into the AWS console, the ‘Create VPC’ wizard steps were followed:

Figure 4.3. AWS Console — VPC (Author)

4.3.2 Key Pair Creation

The objective of this step is to create an AWS Key Pair, so that it can be used for users to
safely use the Secure Shell Protocol (SSH) to connect into compute instances. A key Pair
Is a set of security credentials, consisting of a public key and a private key, and it is used
to verify users' identities when they connect to an Amazon EC2 instance. To proceed with
the setup, a key pair needs to be created. Once logged into the AWS console, navigate to

the ‘Key Pair’ section, and follow the ‘Create key pair’ wizard.

Key pairs (1) info Create key pair

[Q search | 1 ®

(m] Name v | Type 9 | Created v | Fingerprint v | D

O  master-thesis rsa 2023/10/1215:42 GMT+1 14:30:2e:cT:cd:66:e 1:e3:db:55:e0:bb:d4: key-034f7£239085a78bd

Figure 4.4. AWS Console — Key pairs (Author)

4.3.3 (Windows users) Install Putty

The objective of this step is to download and install Putty, so that it is possible to SSH
into compute instances remotely to run the Java application. If the format file in the

download was .pem, then Puttygen can be used to convert it to .ppk.

4.3.4 EC2 Creation

The objective of this step is to create EC2 (Elastic Cloud Compute) instances, so that they

can be used to deploy and execute the Java Application

53



From the EC2 dashboard, the ‘Launch Instance’ button was clicked and instructions within

the wizard were followed to launch an ‘Amazon Machine Image’:

EC2 ) Instances » Launch an instance

Launch an instance i«

Amazon EC2 allows you to create virtual machines, or instances, that run on the AWS Cloud. Quickly get started by

following the simple steps below.

Name and tags info

Name

serverName|

Add additional tags

v Application and OS Images (Amazon Machine Image) info

An AMI is a template that contains the software configuration (operating system, application server, and

applications) required to launch your instance. Search or Browse for AMIs if you don't see what you are looking for

below

Q, Search our full catalog including 1000s of application and OS images

Recents My AMIs Quick Start
Amazon mac0S Ubuntu Windows Red Hat SUSE Li
Linux
o b4
aWS | % ubuntu® || BF Microsoft || 4@ RedHat (G)al
| Mac | SuUsS

Figure 4.5. AWS Console — EC2 Launch (Author)

Q

Browse more AMIs

Including AMIs from
AWS, Marketplace and
the Community

This will spin up an Amazon Linx 2023 x86_64 HVM kernel-6.1. The key pair created on

step 4.3.2 was selected under the ‘Key pair (login)’ section. Under the “Network settings’,

the ‘Create security group’ option was selected to simplify the configuration, given that

comes with SSH traffic allowed by default. The tick-box to ‘Allow HTTP traffic from the

internet” was also selected, as a Rest API endpoint will be exposed by the Java application.

Finally, the instance was launched.

54



4.3.5 Adding Java Application file into the EC2 instance.

The objective of this step is to copy the Java application .jar file into the EC2 instance, so
that it be deployed. To add the .jar file into the EC2 instance, the WinSCP tool was used,
version 6.1.2, build 13797 2023-09-19. For details on how to configure the use of a .ppk
key file into WinSCP and SSH into the EC2 instance from the previous step, please refer
to Appendix B, section 2.5. The backend-service-0.0.1-SNAPSHOT .jar file from the Java
application ‘target’ folder was then copied and pasted into the EC2 instance, under the

‘/home/ec2-user/’ folder:

!
22 3

B = (@ Synchronize [l 82 [ :7 Queue v - Transfer Settings Default

[ target- Documents X B ec2-user@52.90.250.203 X M NewTab ~ i

%= C: Local Disk @ -~ N ec2-user v [T~ [F]~ Sl 1 Find Files
New » - [+ v New » - [+ v
C:\Users\Bruno\MastersCodeBase\masterThesis\backend-service\target\ /home/ec2-user/
Name 2 Size Type Changed Name ® Size  Changed Rights Owner
5. Parent directory 12/10/2023 13:37| | £ 15/10/2023 16:20:48 PWXT-XT-X root
classes File folder 30/10/2023 17:57| | [£]backend-service-0.0.1... 44,422KB 12/10/2023 13:37:14 TW-rW-r-- ec2-user
generated-sources File folder 12/10/2023 12:25
generated-test-sources File folder 12/10/2023 12:25
maven-archiver File folder 12/10/2023 12:25
maven-status File folder 12/10/2023 12:25
surefire-reports File folder 12/10/2023 13:37
test-classes File folder 30/10/2023 17:57
|£/backend-service-0.0.1-SNAPSHOT.jar 44422 KB  ExecutableJarFile  12/10/2023 13:37
D backend-service-0.0.1-SNAPSHOT jar.or... 7KB  ORIGINAL File 12/10/2023 13:37

Figure 4.6. WinSCP Console (Author)

4.3.6 Connecting into EC2 through Putty and running the application.

The objective of this step is to connect to the EC2 instance via the command line interface,
so that the Java application can be executed. Once the .jar file was loaded into the EC2
instance, then it was time to SSH into the instance through the Putty command line and
run it. To achieve that, Putty version 0.79 was used. To open a new session from Putty, the
Public IPv4 address from the instance in the AWS console was captured, then inserted into
the Putty Host Name with the port 22. Under ‘Connection’, the author opened ‘SSH’, then
‘Auth’, then ‘Credentials’, then browsed and selected the .ppk key file that was generated

on step 4.3.2. The SSH connection was established then:

55




B ec2-user@ip-172-31-11-29:~ — O X

3 2023 from 145.224.659.87

Figure 4.7. Putty Console — Login (Author)

If the connection times out, please refer to Appendix B, section 6 for troubleshooting
advice. Once in, it was verified that the .jar file is in place and accessible by executing an

‘Is -I’ command:

Figure 4.8. Putty Console — Jar File (Author)

After that was confirmed, the application was started by executing “java -jar /home/ec2-
user/backend-service-0.0.1-SNAPSHOT .jar &”.

4.3.7 AMI Extraction

The objective of this step is to create a Machine Image, so that the image can be used
further on as part of the Auto Scaling group. That way, the Auto Scaling group will be able
create pre-configured instances from this AMI when spinning up new on-demand

instances.

56



That was achieved from the ‘EC2 Dashboard’ in the AWS console, by selecting the healthy
EC2 instance, then selecting ‘Actions’, then ‘Image and templates’, then ‘Create image’

and following the wizard:

Q Fir ‘ Connect
Inst [x] [ cearsiters | :E:’E:: ‘( . ®
B Name/ v | InstanceID | instancestate v | Instancetype ¥ | Status check Alarm status Availability Zone ¥ | Public IPv4 DNS ¥ | Instance settings » 7\
‘ © Runnin g @ Q t2.micro @ 2/2 checks passed  Noalarms + us-east-1a c2-52-90-250-203.co. Networking >
(] @ Runnin g @ Q t2.micro @© 2/2 checks passed  Noalarms + us-east-1b ec2-34-229-211-121.co... Security 3
Figure 4.9. AWS Console — Creating Image (Author)
4.3.8 Launch template
The objective of this step is to create a Launch Template, so that it can hold the necessary
configuration for the Auto Scaling group. A Launch Template can be created from the EC2
dashboard, then ‘Auto Scaling’, then ‘Auto Scaling Groups’, then the ‘Launch Templates’
option:
EC2 > Auto Scaling groups
Auto Scaling groups (1) info EH Launch configurations H Launch templates [ H Actions ¥ ‘ Create Auto Scaling group
s ‘ Opens in a new tab 3 ®
O Name v \ Launch template/configuration [ ¥ \ Instances ¥ Status v Desired capacity v Min ¥ Max v Availability Zones v
[m] auto-scaling-group-masters masters-launch-template | Version Latest 2 B 2 2 4 us-east-1a, us-east-1b

Figure 4.10. AWS Console — Launch Templates (Author)

4.3.9 Auto Scaling group and Elastic Load Balancer

The objective of this step is to create an Auto Scaling group and Elastic Load Balancer, so
that AWS can create compute instances on-demand and route incoming traffic from the
Load Balancer into said instances. With the Launch template in place, then the Auto
Scaling group can be created through the EC2 dashboard, ‘Auto Scaling’, ‘Auto Scaling

Groups’, ‘Create Auto Scaling group’ wizard:

57



) AULO SCAING GroUp UPGATed SUCCESSTUllY

EC2 D Auto Scaling groups

Auto Scaling groups (1) inte

v | status v | Desiredcapacity v | Min v | Max v | Availability Zones

Elastic Block Store

Load Balancing

Auto Scaling

Auto Scaling Groups
—_——— 0 Aukn Sealinn araune calartad A

Figure 4.11. AWS Console — Auto Scaling group (Author)

4.3.10 Warm Pooling

The objective of this step is to set up warm pools within the Auto Scaling group, so that

higher resilience is achieved.

As mentioned previously, Auto Scaling groups allow for different configuration variations,
which have effects on recovery time of the service, so they will be explored as part of the

experiment:

No warm pooling.
Warm pooling with one instance on ‘Stopped’ state.

Warm pooling with one instance on ‘Running’ state.

M W e

Warm pooling with one instance on ‘Hibernated’ state.

They can be configured under the ‘Auto Scaling Group’ section in the EC2 dashboard,
under the ‘Instance management’ tab. The details of each warm pooling setup will be

discussed under section 4.6 “Experiment Execution”.

58



44 JMeter Test Plan Implementation

For this experiment, a Test Plan was created in Apache JMeter version 5.6.2

& About Apache JMeter

a

Meter

Figure 4.12. JMeter Logo (Author)

This tool is maintained by the Apache Software Foundation and is free and open source.
At the time of this writing, the tool can be downloaded from

https://jmeter.apache.org/download jmeter.cqi

The creation and configuration of the Test Plan can be seen on Appendix B, section 3.
The full configuration can be found in .jmx format for ease of importing at
https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx

45 AWS Fault Injection Simulator (FIS) Creation

The author has opted to utilize the AWS FIS as the chaos engineering tool of choice. The

tool can be accessed through the AWS FIS console:

a\V‘L 5 EEE Services Q fis

AWS FIS Search results for ‘fis'
Try searching with longer queries for more relevant results

Experiment template
Features (87) -
Scenario Library New Services

Resources ' New
Experiments

Documentation (57,166) (\1'3

ve res and perf nce with controlled experiments

Knowledge Articles (5) Improve re and performance with controlled experimen
Spotlight
Marketplace (10) Top features

Blogs (13,713)

Share feedback [4

Figure 4.13. AWS FIS Menu option (Author)

59


https://jmeter.apache.org/download_jmeter.cgi
https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx

The creation of a FIS experiment template was done through the ‘Create experiment

template’ wizard:

Introducing Experiment Scheduler
We've added the ability to start FIS experiments at a preset time or on a recurrent schedule. Learn more about Experiment Scheduler. [4

Notifications ®0 A0 @0 @2 G0 Vv

AWS Fault Injection Simulator [EESECEENEIES
| m p rove res' lie n Cy a n d Choose your fault injection actions and the targets to

run them on. Then start running your experiments.

performance with controlled e
experiments

Figure 4.14. AWS FIS Console (Author)
The details of the FIS setup can be found at Appendix B, section 4.

The command line configuration can be found at the following link to facilitate the creation
of the FIS experiment:
https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate

46 Experiment Execution

As mentioned earlier, each warm pooling configuration was executed eight times each.
Before any experiment executions, it was verified that there were two healthy EC2
instances running and serving requests through the Load Balancer. A timer was initiated.
As soon as the timer reached thirty seconds, the JMeter Test Plan was initiated to start

collecting metrics:

Figure 4.15. JMeter View Results (Author)

Once the timer reached one minute, the FIS experiment was initiated to shut down

running EC2 instances:

60


https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate

Start experiment X

/\ You are about to start your experiment, which might perform destructive
actions on your AWS resources. Before you run fault injection experiments,

review the best practices and planning guidelines. Learn more [

To confirm that you want to start the experiment, enter start in the field:

sta rﬂ

Cancel Start experiment

Figure 4.16. AWS FIS — Starting experiment (Author)

The JMeter Test Plan would soon (~15 minutes after the FIS startup) indicate that the
requests were no longer responding successfully, so the author took note up to the
millisecond of the last time a request was successful before starting to fail, via the ‘View
Result in Table’ in JMeter.

HCAT VR +-“, Pt AN @0
- A

.Q‘

-
-
g

Figure 4.17. JMeter — Last success before fault (Author)

AWS auto scaling realized that it did not have the minimum required number of
instances as part of its group, so it spun up a healthy instance, then subsequently a second

one separately (as a mechanism to avoid spinning up extra unnecessary instances).

61



As soon as the new instances were assigned to the Load Balancer and the JMeter Test
Plan stopped failing and started receiving successful responses back again, then the

author also took note of the time up to milliseconds of the first successful response after

the fault injection:

Figure 4.18. JMeter — First success after fault (Author)

With both entries noted, the simple following subtraction was used to calculate the time
it took for AWS to self-heal its system:

Self-Heal Time = Time of the first successful request after fault injection —
Time of the last successful request before fault injection

4.6.1 No Warm Pooling Configuration

Before starting the execution of the experiment, the warm pooling configuration was verified

under the EC2 console, Auto Scaling section, Instance management tab:

¥ Elastic Block Store ) ) e—
Lifecycle hooks (0) e G |[ actions v | [ create itecyete hook

o P o 15 @

Name A | Lifecycle transition v | Default result @ | Heartbeat timeout (seconds) ¥ | Notification tars get ARN v | Role ARN

Create lifecycle hook

Warm pool e ‘ C ‘ Create warm pool
— B | it i o

Create warm pool

Figure 4.19. AWS Warm Pool Console (Author)

No warm pooling required no extra steps, given that it is the default setup for a newly created

62



Auto Scaling group.

4.6.2. Stopped Warm Pooling Configuration

From the Instance management tab, the ‘Create Warm Pool” was clicked, and configured as

follows:

Edit warm pool

Warm pool instance state

The state that the warm pool instances will be kept in when they are idle and not in service

Stopped

Keep a warm pool of stopped instances to reduce your compute cost. You will only be charged fo..

v

Minimum warm pool size

The minimum number of instances that should always be in the warm pool

1 instance

Max prepared capacity
The maximum number of instances that can be in the warm pool and Auto Scaling group at the same time

© Equal to the Auto Scaling group's maximum capacity

Any updates to the group's maximum capacity will automatically apply to the warm pool's max prepared capacity.

(O Define a set number of instances

Enter a set number of instances to use for the warm DDDI‘S max prepared capacity.

Cancel

Figure 4.20. AWS Stopped Warm Pool Window (Author)

Save changes

After a few minutes, the new instances that were part of the warm pool could be verified under

the “Warm pool instances’ section:

Warm pool info

Current warm pool size Minimum warm pool size Max prepared capacity

2 instances 1 instance 4 instances (Equal to group's maximum capacity)
Warm pool instance state Status

Stopped

Warm pool instances (2)

Q Filter warm pool instances ‘

Instance ID A | Lifecycle v Instance type v Launch templat: i b | ilability Zone
1-073295a7003e9b9b9 [4 Warmed:Stopped t2.micro masters-launch-template [4 | Version  us-east-1a
1-0f7325978b3bde81e [4 Warmed:Stopped t2.micro masters-launch-template [/ | Version us-east-1b

v | Health status
© Healthy

© Healthy

Figure 4.21. AWS Stopped Warm Pool Instances (Author)

4.6.3 Running Warm Pooling Configuration

From the Instance management tab, the ‘Create Warm Pool’ button was clicked, and

63



configured as follows:

Warm pool info ‘ (¢} Actions ¥

Current warm pool size Minimum warm pool size Max prepared capacity

2 instances 1 instance 4 instances (Equal to group's maximum capacity)

Warm pool instance state Status

Running

Figure 4.22. AWS Running Warm Pool Console (Author)

After a few minutes, the new instances that were part of the warm pool could be verified under

the “Warm pool instances’ section:

Warm pool instances (2)
Q Filter warm pool instances ‘ 1 [c]
Instance ID A | Lifecycle v Instance type v | Launch onfigurati... ¥ | ilability Zone v | Health status v
1-:034417157859¢156e [4 Warmed:Running t2.micro masters-launch-template [7 | Version us-east-1a Healthy
1-:0521f81a8bf045cb1 [4 Warmed:Running t2.micro masters-launch-template [7 | Version us-east-1b © Healthy

Figure 4.23. AWS Running Warm Pool Instances (Author)

4.6.4 Hibernated Warm Pooling Configuration

Hibernated Warm Pooling was introduced in February 2022, and it required extra security

configuration?®,

The AMI behind the auto scaling group is required to have its block storage (ELB) encrypted

for it to be able to be added to a hibernated warm pool:

Source Al Copy of source AN
__________ "\ Ty
— | CopvyImage _— I
a— | A— |

: EES ‘ [ Parameters: : EES - :

| (root) | ® Encrypted I (root] I

| snapshot : » * KmskeylD | snapshot |

| | (optional) I |
N s N s

KMS key
(optional)

Figure 4.24. EBS Encryption (Amazon Blog Posting*!)

10 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/hibernating-prerequisites.htmil
11 Amazon EBS encryption - Amazon Elastic Compute Cloud

64


https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/hibernating-prerequisites.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

It was initially decided to create an independent symmetric key under the KMS console (Key
Management Service):

@ Key enabled

KMS > Customer-managed keys

Customer-managed keys (1)

et

1 @

Q Filter keys by properties or tags

O Aliases v Key ID v Status Key type v Key spec @ Key usage

O master-key-enc 17c93bd2-69e3-4281-abdd-c. Enabled Symmetric SYMMETRIC_DEFAULT

Encrypt and decrypt

Figure 4.25. AWS Console — Key Creation (Author)

From the AMIs console, the existing AMI that was used throughout the other experiments was

selected, then ‘Actions’, then ‘Copy’:

Amazon Machine Images (AMIs) (1/2) info ‘ [2 Recycle Bin ‘ ‘ [2 EC2 Image Builder ‘ ‘ Actions A Launch instance from AMI
[owned by me v | [ Q Find AMi by attribute or tag | ‘ Copy AMI ‘ ®
= Edit AMI permissions

B Name/ v | AMIname v | AMIID v | Source v | Owner v | Visibility ate
Request Spot Instances

O masters-image-backend-enc3 ami-0a07869af9ac87d5d 096958155378/masters-image-backen.. 096958155378 Private 517:26 G
Manage tags

‘ masters-image-backend ami-049d22fe9ddbgsfog 096958155378/masters-image-backend 096958155378 Private 518116

Deregister AMI

Change description

Manage AMI Deprecation
Register instance store-backed AMI

Disable AMI

Figure 4.26. AWS Console — AMI Creation (Author)

On the setup page, the ‘Encrypt EBS snapshot of AMI copy’ was then selected and under the
KMS key field, the newly created symmetric key was selected:

65



Copy Amazon Machine Image (AMI)

Original AMI ID

ami-049d22fe9ddb99f09

AMI copy name

masters-image-backend

AMI copy description

[Copied ami-049d22feSddb95f09 from us-east-1] masters-image-backend

Vzi

Destination Region
A copy of the original AMI will be created in the destination Region.

| N. Virginia (US East)

(] Copy tags

Includes your user-defined AMI tags when copying the AML.

Encrypt EBS snapshots of AMI copy
Encrypts all snapshots in the AMI copy with the same key.

KMS key

This is the KMS key used to encrypt the snapshots.

Q  arn:aws:kms:us-east-1:096958155378:alias/master-key-enc X

v KMS key details

Description

master-key-enc

Account ID

096958155378

KMS key ID

17c93bd2-69e3-4281-3bd4-ceca163e086f

KMS kev ARN

Once the AMI was created, the Launch Template was updated to use the newly created

encrypted AMI:

Figure 4.27. AMI Creation Details (Author)

= Launch Templates (1/3) o

[ Q Search

Launch Template ID

v

Launch Template Name

v | DefaultVersion ¥ | LatestVersion ¥ | Create Time v | CreatedBy

0] [ |

Launch instance from template

@
Maodify template (Create new version)

Delete template

‘ O 110e045a7dc759098

enc-test-template

1 2 2023-11-11718:11:42.0002 amiawsiam:0969581553 7800t

Delete template version

11-03¢829b1a2606d8a4

Mytemplate

1 1 2023-11-09T19:31:16.0002 amawsiam:-09695815537800t

Set default version

,,,,,,,,,

Figure 4.28. AWS Console — Creating new Launch Template (Author)

66

il



v Application and OS Images (Amazon Machine Image) info

An AMl is a template that contains the software configuration (operating system, application server, and
applications) required to launch your instance. Search or Browse for AMIs if you don't see what you are looking for

below

l Q Search our full catalog including 1000s of application and OS images

[a

Specify a custom value...

masters-image-backend
ami-017a31clcc15bccdd

2023-11-11718:08:05.000Z  Virtualization: hvm

ENA enabled: true  Root device type: ebs

masters-image-backend
ami-049d22fe9ddb99f09
2023-10-15T17:11:42.000Z  Virtualization: hvm
masters-image-backend-enc3
ami-0a07869af9ac87d5d

2023-11-05T17:26:58.000Z  Virtualization: hvm

ENA enabled: true  Root device type: ebs

ENA enabled: true  Root device type: ebs

masters-image-backend
ami-017a31c1cc15bccdd

2023-11-11718:08:05.000Z  Virtualization: hvm

ENA enabled: true  Root device type: ebs

Description

[Copied ami-049d22fe9ddb99f09 from us-east-1] masters-image-backend

Architecture AMIID

x86_64

ami-017a31c1cc15becd4

v Summary

Software Image (AMI)

[Copied ami-049d22fe9ddb99f09 ...read more

ami-017a31c1cc15becd4

Virtual server type (instance type)

Firewall (security group)

Storage (volumes)
1 volume(s) - 8 GiB

® Freetier:In your first year includes
750 hours of t2.micro (or t3.micro in
the Regions in which t2.micro is
unavailable) instance usage on free
tier AMIs per month, 30 GiB of EBS
storage, 2 million 10s, 1 GB of
snapshots, and 100 GB of bandwidth
to the internet.

Cancel

Figure 4.29. AWS Console — New Launch Template details (Author)

With that in place, the auto scaling started launching unhealthy instances that would terminate

as soon as they start up.

Instances (1/8) info

Q. Find Instance by attribute or tag (case-sensitive)

-] Name # v | Instance ID ‘ Instance state v ‘ Instance type ¥ ‘ Status check Alarm status ‘ Availability Zone
O i-0697cBcc279078461 © Terminated ® @ t2.micro - Noalarms us-east-1a
O i-0ce168024551c802f © Terminated Q@  t2micro - Noalarms =+ us-east-1a
O i-08fa19b5c185595ae © Terminated ® @  t2.micro - Noalarms us-east-1b
O i-08500cbeb694c98ac @ Terminated ® @ m1.small - Noalarms us-east-1d
] i-0a56155b477cfa566 © Terminated Q  t2.micro - Noalarms =+ us-east-1b
O i-0073fbf53dce7313a © Terminated @ &  t2.micro - Noalarms us-east-1b
O i-0B0a1ed373ca099d7 @ Terminated Q@  tZmicro - Noalarms + us-gast-1a
i-Oebe38336a911adfe © Terminated Q  t2micro = Noalarms =+ us-east-1a

Figure 4.30. AWS Console — EC2 listing (Author)

The logs were verified so problem could be better understood, to no avail:

67



Activity history (100+)

Q, Filter activity history

Status v | Description v

Launching a new EC2
instance: i-
0073fbf53dce7313a
Status Reason: Instance
© st became unhealthy while
waiting for instance to
be in InService state.
Termination Reason:
ClientInternalError:
Client error on launch

Terminating EC2
instance: i-
0a56155b477cfa566 -
Waiting For ELB
Connection Draining

Launching a new EC2
instance: i-
0ce168024551c802f.
Status Reason: Instance
© Cancelled became unhealthy while
waiting for instance to
be in InService state.
Termination Reason:
Client.InternalError:
Client error on launch

Launching a new EC2

Cause v

At 2023-11-11T18:23:20Z an instance was launched in response to an unhealthy instance needing to be
replaced.

At 2023-11-11T18:23:20Z an instance was taken out of service in response to an EC2 health check
indicating it has been terminated or stopped.

At 2023-11-11T18:23:00Z an instance was started in response to a difference between desired and
actual capacity, increasing the capacity from 1to 2.

« e G

Start time

2023 November 11,
06:23:22 PM +00:00

2023 November 11,
06:23:20 PM +00:00

2023 November 11,
06:23:02 PM +00:00

Figure 4.31. AWS Console — EC2 error logs (Author)

4 5 6 7 8 > @

End time v

2023 November 11,
06:23:53 PM +00:00

2023 November 11,
06:23:33 PM +00:00

Unfortunately, the provided information did not have enough details, apart from ‘Client error

on launch’. The author suspects that the new symmetric key needed to be loaded as part of the

launch template, or the auto scaling group, or maybe there were privilege issues on the IAM, or

the security group and they were not able to access the new key when trying to mount the block

storage as part of the auto scaling group. Instead of continuing with the investigation of the

Issue, instead it was decided to not progress with the independent KMS key, but rather use the

one provided and managed by AWS when encrypting the AMI.

68



e e I LI EE

Copy Amazon Machine Image (AMI)

Original AMI 1D
ami-049d22fe9ddb99f09

AMI copy name

arn:aws:kms:us-east-1:096958155378:alias/master-key-enc
arm:aws:kms:us-east-1:096958155378:alias/aws/xray

arn:aws:kms:us-east-1:096958155378:alias/aws/dynamodb

armn:aws.kms:us-east-1:096958155378:alias/aws/ebs

arn:aws:kms:us-east-1:096958155378:alias/aws/elasticfilesystem
arn:aws:kms:us-east-1:096958155378:alias/aws/es
arn:aws:kms:us-east-1:096958155378:alias/aws/glue
arm:aws:kms:us-east-1:096958155378:alias/aws/kinesisvideo
arn:aws:kms:us-east-1:096958155378:alias/aws/rds
arn:aws:kms:us-east-1:096958155378:alias/aws/redshift
arn:aws:kms:us-east-1:096958155378:alias/aws,/redshifttest
arn:aws:kms:us-east-1:096958155378:alias/aws/s3

arn:aws:kms:us-east-1:096958155378:alias/aws/ssm

Q Select a KMS Key

Figure 4.32. AWS Console — AMI Creation with default key (Author)

That one change to the configuration allowed for the Auto Scaling group to be healthy and

launching working instances again:

69



Instances (1/70) info

Q, Find Instance by attribute or tag (case-sensitive) l

—] Name /' v ] Instance ID | Instance state v | Instance type V¥V | Status check
O i-0697c8cc279078461 @ Terminated ® @  t2.micro -
O i-0ce168024551c802f © Terminated @ @  t2.micro -
O i-08fa19b5c185595ae © Terminated @ @  t2.micro =
O i-0cOb6cb1accafdesd ®@Running @ t2.micro @ Initializing
O i-08500cbeb694cS8ac © Terminated @ @  m1.small -
O i-0a56155b477cfa566 © Terminated @ @ t2.micro e
O i-0073fbf53dce7313a © Terminated @ @  t2.micro -
O i-04d9a74c52716c890 ®@Running @ @  t2.micro @ Initializing
O i-080a1ed373ca099d7 © Terminated @ @  t2.micro -
i-0ebe38336a911adfe © Terminated @ @  t2.micro =

Figure 4.33. AWS Console — EC2 Successful listing (Author)

Finally, the Hibernated Warm Pool was created with the following configuration:
Create warm pool X

Warm pool instance state
The state that the warm pool instances will be kept in when they are idle and not in service.

Hibernated
Keep a warm pool of hibernated instances to improve scale-out speed for applications that take ...

Minimum warm pool size
The minimum number of instances that should always be in the warm pool.

1 - instance

Max prepared capacity
The maximum number of instances that can be in the warm pool and Auto Scaling group at the same time.

© Equal to the Auto Scaling group's maximum capacity
Any updates to the group's maximum capacity will automatically apply to the warm pool's max prepared capacity.

O Define a set number of instances
Enter a set number of instances to use for the warm pool's max prepared capacity.

Cancel

Figure 4.34. AWS Hibernated Warm Pool Window (Author)

4.7 Conclusions

In conclusion, the development process embarked upon in this research has been a
critical phase in realizing the objectives set forth in our exploration of chaos engineering

70



techniques within a self-healing cloud-native microservice architecture. The systematic
approach employed throughout the development lifecycle aimed at creating a robust,
scalable, and resilient system capable of withstanding the rigors of chaos engineered
fault injections.

By leveraging state-of-the-art technologies and methodologies tailored to the unique
demands of cloud-native microservices, we successfully translated theoretical concepts

into a tangible and functional solution.

The incorporation of chaos engineering techniques into the cloud-based microservice
architecture played a pivotal role in assessing the system's ability to withstand
unforeseen challenges. Noteworthy findings indicate that while auto-scaling warm
pools, a commonly advocated approach, may not be the silver bullet on aiding the
architecture's recovery from chaos engineered fault injections. This insight prompts a
reevaluation of existing assumptions and highlights the need for a more nuanced

understanding of resilience in the context of cloud-native microservices.

AWS Well Architected Framework played a crucial role in the decisions taken when
creating this self-healing architecture, ensuring that the resulting solution aligns closely

with industry best practices.

In subsequent chapters, the focus will shift towards the evaluation and analysis of the
developed solution. Rigorous testing and experimentation will be employed to validate
the effectiveness of the chaos engineering techniques and to measure the system's
performance under diverse conditions. The insights garnered from this development
process not only contribute to the academic discourse surrounding self-healing
microservice architectures but also offer practical implications for industry professionals

seeking to enhance the resilience of their cloud-native applications.

71



5 RESULTS AND EVALUATION

“Research is formalized curiosity. It is poking and prying with a purpose. ”

— Zora Neale Hurston.

5.1 Introduction

The culmination of the exploration into chaos engineering techniques in a self-healing
cloud-native microservice architecture brings this analysis to the pivotal stage of results,
evaluation, and discussion. This section represents the synthesis of theoretical insights,
practical implementations, and empirical observations, providing a comprehensive

understanding of the implications and outcomes of this research endeavor.

Throughout the preceding chapters, a discussion of the intricacies of designing and
implementing a resilient microservices architecture capable of withstanding chaos
engineered fault injections was presented. The development process, as detailed in
Chapter 4, laid the foundation for the investigation, leading to a tangible manifestation
of the theoretical principles governing self-healing systems in cloud-native

environments.

In this section, the outcome of the research is presented, employing a multifaceted
approach that encompasses quantitative metrics, qualitative assessments, and a thorough
exploration of the implications derived from the chaos engineering experiments based
on the various types of warm pooling configurations. The evaluation of the self-healing
microservices architecture will be underpinned by rigorous testing scenarios, allowing
for a scrutiny of its responsiveness, fault tolerance, and adaptability in the face of
orchestrated disruptions.

As the results are presented, the broader implications of the findings will be discussed
in the context of contemporary cloud-native application development. The discussion
will go beyond the immediate scope of the experiments, weaving in theoretical

perspectives, industry best practices, and the evolving landscape of cloud technologies.

Moreover, this section serves as a platform for critical reflection, offering insights into
the limitations of the approach used in this research, potential areas for further research,

and the applicability of the findings in real-world scenarios. Through a balanced and
72



comprehensive analysis, the aim is to contribute not only to the academic discourse on
chaos engineering and self-healing architectures but also to provide practical guidance
for professionals seeking to enhance the resilience and reliability of their cloud-native

microservices.

This chapter will evaluate the results of this exploration, present a thorough evaluation
of the developed solution, and engage in a nuanced discussion that contextualizes the
findings within the broader spectrum of cloud-native application development and chaos

engineering practices.

5.2 Calibration - Results and Evaluation

Throughout the experiment, the utilized broadband speeds were verified by testing it

eight times to ensure it was consistent and would not interfere with the results.

No. Download Upload Ping Download Upload
(MB) (MB) Latency (secs) Latency (secs) Latency (secs)

1 405 50 7 51 235
2 450 51 9 48 272
3 448 50 8 46 62

4 428 50 8 38 60

5 410 51 9 46 128
6 424 51 8 39 90

7 423 48 8 56 152
8 455 51 7 83 246
Avg. 430 50 8 51 156

Table 5.1. Broadband Details (Author)

The results above were recorded and the full details of these results can be found at:

https://github.com/brunorfranco/masterThesis/tree/main/experiments-

results/BroadbandSpeed

Timing each experiment step for the four different warm pooling variations was also
consistent, where a timer was utilized to initialize the JMeter test plan, and then the FIS
experiment with 30 seconds apart from each other. It was noted that across all the 32
executions of the experiment, it took an average of 13.68 seconds for the Fault Injector
to disable the application from responding to the JMeter requests. In the tables below

“TtU” is “Time to Unresponsiveness” in seconds.

73


https://github.com/brunorfranco/masterThesis/tree/main/experiments-results/BroadbandSpeed
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results/BroadbandSpeed

Experiments 1-16:

14 |14 |15 |9 |15 |9 |16 |16 |17 |14 |14 |15 |15 |9 16 | 14
Experiments 17-32:
14 |10 |13 |14 |15 |9 16 |12 |15 |15 |14 |15 |15 |9 15 | 15

Average Time to Unresponsiveness:

Over 32 experiments: 13.68 seconds

Table 5.2. Time to Unresponsiveness metrics (Author)

The numbers above were extracted from the experiments executions, by subtracting
thirty seconds from the last successful row’s ‘Sample #’ column in the JMeter View
Results in Table after the Fault Injection.

The results above were recorded and can be found at: masterThesis/experiments-results-

screenies at main - brunorfranco/masterThesis - GitHub

The next four upcoming sections will present the results of the executed experiments per

warm pooling configuration.

53 No Warm pooling Experiment

During the execution of the experiment while the Auto Scaling group had no warm pooling

setup, the results were as follows:

No. | Lastsuccessful request First successful request | Elapsed time
after fault after recovery
1 16:29:28.433 16:32:07.260 02:38.827
2 16:37:21.088 16:39:59.916 02:38.828
3 16:44:46.607 16:46:14.237 01:27.630
4 16:51:41.303 16:54:01.630 02:20.327
5 16:58:59.813 17:00:30.580 01:30.767
6 17:05:48.506 17:08:27.393 02:38.887
7 17:13:14.345 17:16:11.756 02:57.411
8 17:20:24.474 17:22:16.195 01:51.721
Average 02:15.549

74



https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies

Table 5.3. No Warm Pooling Details (Author)

Below is a bar graph to facilitate the visualization of the results:

No Warm Pooling Results

Time in seconds

Figure 5.1. No Warm Pooling Results Graph (Author)

The Delta between the slowest and fastest experiments was 89 seconds. It is worth noting
that after the first healthy instance started serving successful responses back to JMeter,
AWS took an extra minute to spin up a second instance (this is an expected mechanism
implemented by AWS to avoid creating unnecessary instances). It was noteworthy that
during the addition of the second instance to the Elastic Load Balancer, some of the

requests returned failures:

Figure 5.2. JMeter Intermittent Failures (Author)

75



This behavior would only present itself for a short time (~10 seconds), and the second
instance would soon serve successful responses. Given that the detailed algorithm for
adding instances into AWS Elastic Load Balancers is not publicly available, it has been
theorized that the second instance would pass the health check validation once the
computing instance is available, but the microservice application is not yet up and
running. Based on this theory, the first instance added to the Load Balancer is also
susceptible to this behavior, but unnoticeable, given that all requests were failing up to

the point where the first microservice application is up and running.

54 Stopped Warm Pooling Experiment

During the execution of the experiment while the Auto Scaling group had a stopped

warm pooling setup, the results were as follows:

No. | Lastsuccessful request | Firstsuccessful request | Elapsed time
after fault after recovery

1 12:21:14.040 12:23:53.779 02:39.739
2 14:18:39.652 14:20:16.130 01:36.47
3 14:27:41.048 14:30:02.658 02:21.610
4 14:36:24.950 14:38:00.258 01:35.308
5 14:44:04.283 14:46:00.484 01:56.201
6 14:51:21.225 14:54:21.301 03:00.076
7 15:01:16.763 15:04:03.782 02:47.019
8 15:09:03.961 15:12:19.420 03:15.459
Average 02:23.986

Table 5.4. Stopped Warm Pooling Details (Author)

Below is a bar graph to facilitate the visualization of the results:

Stopped Warm Pooling Results

(7]
5
c
o]
]
]
]
=
@
E
=

180

Figure 5.3. Stopped Warm Pooling Results Graph (Author)

76



The Delta between the slowest and fastest experiments was 100 seconds. Regarding the
issue discussed in section 5.3 where the second computing instance added to the load
balancer fails for around 8 seconds, this behavior can also be noticed when using stopped

warm pools.

Figure 5.4. Stopped Warm Pooling JMeter failures (Author)

55 Hibernated Warm Pooling Experiment

During the execution of the experiment while the Auto Scaling group had a hibernated warm

pooling setup, the results were as follows:

No. | Lastsuccessful request First successful request Elapsed time
after fault after recovery
1 18:08:25.344 18:09:48.567 01:23.223
2 18:15:08.020 18:17:42.913 02:34.893
3 18:22:12.935 18:23:47.238 01:34.303
4 18:29:12.944 18:31:43.360 02:30.416
5 18:39:44.713 18:41:51.029 02:06.316
6 18:46:36.257 18:48:14.913 01:38.656
7 18:54:54.811 18:55:57.026 01:02.215
8 19:01:58.829 19:03:51.875 01:53.046
Average 01:50.383

Table 5.5. Hibernated Warm Pooling Details (Author)




Below is a bar graph to facilitate the visualization of the results:

Hibernated Warm Pooling Results

v
T
c
o]
O
@
7]
=
Q
E
=

Figure 5.5. Hibernated Warm Pooling Results Graph (Author)

The Delta between the slowest and fastest experiments was 93 seconds. Hibernated warm

pools would not present failed responses when adding instances into the load balancer.

This is likely due to the nature of hibernated instances. When the instance is started again,

the root volume is restored to its previous state and the RAM contents are reloaded,

therefore the application will be up and running as soon as the instance is pulled from the

pool.

56 Running Warm Pooling Experiment

During the execution of the experiment while the Auto Scaling group had a running warm

pooling setup, the results were as follows:

No. Last successful request | First successful request | Elapsed time
after fault after recovery

1 17:37:44.065 17:39:35.936 01:51.871
2 17:45:18.922 17:47:34.990 02:16.068
3 17:52:46.518 17:53:48.744 01:02.226
4 18:02:41.585 18:03:43.793 01:02.208
5 18:10:01.389 18:11:29.012 01:27.62
6 18:16:43.552 18:17:45.765 01:02.213
7 18:30:05.661 18:31:34.408 01:28.747
8 18:37:05.916 18:38:08.136 01:02.220
Average 01:24.147

Table 5.6. Running Warm Pooling Details (Author)

Below is a bar graph to facilitate the visualization of the results:

78



Running Warm Pooling Results

(0]
Bl
c
(]
v
o
0
£
]
£
[

Figure 5.6. Running Warm Pooling Results Graph (Author)

The Delta between the slowest and fastest experiments was 74 seconds. As expected,
running warm pools would also not present failed responses when adding instances into
the load balancer, given that the instance is already running, therefore the application is

already up.

During the execution of this part of the experiment, one outlier was observed (screenshots

can be found at masterThesis/experiments-results-screenies/Running\WarmPool/7-outlier

at main - brunorfranco/masterThesis - GitHub).

Even though the overall time to recover was 1 minute and 35 seconds (slightly above the
average but still within range of acceptance), an unusual behavior was observed after the
3 minutes mark into the experiment. The first successful request after the fault injection
was followed by a failure that held the thread for an average of 10 seconds. This ‘success-
into-10-seconds-failure’ pattern repeated itself three times in total, and after that, all

requests started succeeding again:

00:03:47.20
0O - -


https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies/RunningWarmPool/7-outlier
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies/RunningWarmPool/7-outlier

It appears that the issue occurred when adding the second instance into the load balancer
(as observed for the experiments with no warm pooling and stopped warm pooling).
However, this should not have happened for running warm pooling, given that the
instances are supposed to be already running when pulling from the warm pool, and what
makes it more interesting is that this is the first and only time in all the 32 executions of
the experiment that the response took ten seconds before returning with a failure.

The explanation for such an event can be vague, given the error logs are limited at best. It
could had been an issue with the network connection for that specific EC2 instance, or
possibly the load balancer recruited the instance at the same time that the instance was
commissioned and prepared, and was sent to the warm pool itself causing a recruiting
conflict between the warm pool and the load balancer, or it could simply that the instance
misbehaved due to unexpected issues in hardware/software but was healed in around 30

seconds.

5.7 Conclusions

This chapter presented the outcomes of the research, using a multifaceted approach that
encompasses quantitative metrics, qualitative assessments, and a thorough exploration
of the implications derived from the chaos engineering experiments based on the various
types of warm pooling configurations. The evaluation of the self-healing microservices
architecture is be underpinned by rigorous testing scenarios, allowing for a scrutiny of
its responsiveness, fault tolerance, and adaptability in the face of orchestrated
disruptions. All the data presented in chapter 5 can be verified from the screenshots

presented at: https://github.com/brunorfranco/masterThesis/tree/main/experiments-

results-screenies.

Four separate experiments were undertaken (eight times each), and the average time for

each type of experiment was:

# Experiment Type Average Time
1 No warm pooling recovery time 02:15.549
2 Stopped warm pooling recovery time 02:23.986
3 Hibernated warm pooling recovery time 01:50.383
4 Running warm pooling recovery time 01:24.147

80


https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies

Given that the average metrics were collected in the ‘mm:ss.mmm’ format, they were

converted to seconds to facilitate comparisons.

No. No Pool Stopped Hibernated Running
1 159 160 83 112
2 159 96 155 136
3 88 142 94 62
4 140 95 150 62
5 91 116 126 88
6 159 180 99 62
7 177 167 62 89
8 112 195 113 62
Avg. 136 144 110 84

Table 5.7. Result Conversion to Seconds (Author)

The following vertical bar graph compares the recovery time in seconds per warm

polling configuration:

Recovery Time

Comparison in seconds

150
125

75
50
25

0]
No pooling Stopped Hibernated Running

Figure 5.8. Recovery Time Comparison Graph (Author)

When visualizing the data through a pie chart, this is the outcome:

Running
No WP

Hibernated

—T

Stopped

Figure 5.9. Recovery Time Comparison Chart (Author)

81



The following table presents the warm pooling recovery time comparison between one

another:
\ No WP Stopped | Hibernated Running
No WP +5.88% -23.64% -61.9%
Stopped -30.91% -71.43%
Hibernated -30.95%
Running

Table 5.8. Warm Pooling Performance Comparison (Author)

Unexpectedly, the results show that having no warm pools was 5.88% faster than setting
up Stopped Warm pools, contrary to popular belief. This could have been caused by the
effects of the overhead created in the Auto Scaling group when the computing instances
are small sized machines (t2.micro — one of the smallest machine offered by AWS at the
time of this writing) and the start-up time of the application is also minimal (averaging
3.47 seconds).

The remaining results are in accordance with what was expected by this paper and the
AWS documentation'?, where running warm pools should outperform all of the other’s
options, and hibernated warm pools should outperform stopped warm pools and having

no warm pools.

As mentioned in section 4.6, it is important to note that only the hibernated and running
warm pooling configurations did not present failed responses when adding the second
instance into the Load Balancer. That can be explained by the fact that hibernated
instances pre-initialize the entire EC2 instance state, not just the disk state, therefore
when they are requested from the pool, they already have the Java application in running
state, and running warm pool, as the name suggests, already has the instances fully
running, so they are ready to serve incoming requests. That concludes that when
prioritizing availability over performance, it is best to use hibernated or running warm
pools to avoid intermittent failed responses when requesting instances from the warm

pool.

2 https://docs.aws.amazon.com/autoscaling/ec2/userquide/ec2-auto-scaling-warm-pools.html
82



https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-warm-pools.html

The delta between fastest and slowest recovery times for the four experiments also
conclude that Stopped Warm Pooling is the most irregular of the four, with 100 seconds
of delta, while Running Warm Pooling only has 74 seconds, therefore is has a more
stable behavior.

When comparing the experiment findings with Frincu, et al. (2011), the AWS
architecture self-healed slower than Frincu’s multi agent system for inter-provider task
scheduling enhanced with self-healing capabilities.

Recovery Time

Comparison in seconds

No pooling Stopped Hibernated Running

Figure 5.10. AWS Recovery Time compared to Frincu and friends (Author)

It is worth mentioning that each pooling configuration has different financial costs, and
requires different levels of expertise to configure:

Configuration Financial Configuration
Type Costs Complexity

No WP None None

Stopped Low — EBS Volume Low (simple Ul wizard)

Hibernated Medium — EBS Volume (including RAM) | High (requires encrypted AMI)

Running High — EBS and compute time Low (simple Ul wizard)

Table 5.9. Warm Pooling Cost/Complexity Comparison (Author)

83




Given the nature of each warm pooling option, some conclusions can be drawn. Warm
pooling in general is known to help decrease latency for application with long boot times,
based on the AWS Warm Pooling documentation. Given that the current experiment had
an application with an average time of 3.47 seconds, a separate experiment with a longer

boot time application will likely wield different results.

It is also important to note that the running warm pool option is not financially advised.
If one is already willing to pay for a compute instance and its corresponding block
storage, it would be best to simply add such instance to the load balancer and use it,

rather than keep it in warm pool running and incurring costs.

When looking back into the research question, the results presented in this paper confirm
that AWS could not self-heal its microservice architecture within the defined timeframe
of sixty seconds. By utilizing auto scaling group with running warm pools, the AWS
platform came close to achieving it, but it missed the mark by extra 24 seconds, totaling

84 seconds to get back to a healthy state.

5.8 Expert Interviews Conclusions

Three interviews were undertaken with industry experts specializing in Cloud-based
Software Engineering. The forthcoming subsections will comprehensively outline and

expound upon the feedback provided by these experts.

5.8.1. First Interview

11 has suggested for the experiment to be conducted again with the Elastic Load Balancer
reconfigured with a shorter time-out (which is defaulted to 60 seconds). They concluded
that the default time-out could cause performance issues by overloading instances with

throttled requests while the Auto Scaling group works to spin up more instances.

11 has wondered how AWS would cope with a scenario where the deployed application
holds the requests for 5 seconds but JMeter continues to fire requests every second, so

that there will always be a growing queue of unattended requests.

11 agreed with the paper when concluding that if the experiment had used larger compute

84



instances, the warm pooling results would have been vastly different, likely much better

than no warm pooling.

I1 has also stated that in many industries segments, the 2 minutes, and 16 seconds
necessary for AWS to self-heal itself without any warm pooling is acceptable and the
return in investment for setting up and maintaining warm pooling might not be justified.
Overall, 13 was satisfied with how the experiment was conducted and the tools/platforms

chosen.

5.8.2. Second Interview

12 have challenged the paper’s choice of having 60 seconds SLO as part of the Research
Question, given that Frincu, et al. (2011) experiment has many different aspects from

this paper (i.e., optimal number of agents and number of idle clones).

They also suggested that instead of utilizing the FIS tool, a different approach where the

Java application itself would cause the error and bring the instance down with it.

During the experiment, when the Auto Scaling group is spinning up the first and second
instances after the fault injection, 12 has queried what is the average time between the
instantiation of the first and second instances, which unfortunately was a metric that was

not collected during the experiment execution.

12 suggested for the experiment to be executed more times with variations on the start-
up time of the Java application, to correlate the start-up time with the warm pooling

results and infer if the relation between the two is linear or exponential.

12 agreed that the findings of the experiment where no warm pooling outperformed
stopped warm pooling are interesting and valuable. They have stated that it is likely that
many companies have implemented Stopped Warm Pooling without knowing that this

is worsening their resilience rather than helping them.

12 has approved the design the of experiment and the chosen tools and platforms,
however, they have said they would ensure JMeter is accurately recording the findings,

by having a second tool (for example Postman or Karate API testing) to compare it with.

85



12 was satisfied with how the metrics were calculated, but they have stated that given
the human interactions when clicking buttons to start JMeter and the FIS tool, as well as

the JMeter one second delay per request, there will be a margin of error in the results.

The interviewee would have liked to have the experiment executed with more variables,
for example more instances in the auto scaling group, or more instances in the warm
pool, to understand better if the resilience would grow linearly or exponentially with

more instances.

They have also suggested that the paper could present the delta between the slowest and
fastest recovery times for each warm pooling configuration. This suggestion was heard

and implemented.

12 has concluded that they would recommend the use of Hibernated warm pools for most
cases, given that it has substantial performance gains over no warm pools, and it is

budget friendly (cheaper than running warm pool).

Overall, 12 was satisfied with how the experiment was conducted and the tools/platforms

chosen.

5.8.3. Third Interview

I3 has reviewed the experiment design and suggested that more than one AWS region

should be used to achieve higher resilience.
I3 expected AWS to recover in less time than the experiment has shown. They have also
agreed that if the Auto scaling group had more frequent health checks, the recovery time

would decrease significantly.

I3 also agrees that if the application start-up time was longer or the compute instances

were larger, warm pools would have performed better than no warm pools.

Overall, 13 was satisfied with how the experiment was conducted and the tools/platforms

chosen.

86



6 CONCLUSIONS AND FUTURE WORK

“If we knew what we were doing, it would not be called research, would iz?
— Albert Einstein.

6.1 Introduction

Within the ever-evolving landscape of cloud-native microservice architectures, this MSc
thesis has embarked on a pioneering expedition, delving deep into the realm of chaos
engineering techniques and their application in fostering resilience within self-healing
systems. As this comprehensive exploration nears its denouement, this conclusion serves
as a compass, directing attention towards the cardinal discoveries, implications, and

future trajectories illuminated throughout this odyssey.

Throughout the preceding chapters, a meticulous examination of chaos engineering
techniques has unfolded, strategically applied to the intricate web of a self-healing cloud-
native microservice architecture. This pursuit has not only unraveled the intricate
interplay between chaos and resilience but has also underscored the significance of

proactive measures in fortifying systems against unforeseen adversities.

In the crucible of this investigation, the synthesis of empirical data, the evaluation of
resilience patterns, and the validation of chaos engineering methodologies have all
converged to unveil a tapestry of insights. Moreover, this conclusion serves as the nexus
where the synergistic amalgamation of theoretical frameworks and practical applications

within the realm of self-healing architectures is encapsulated.

As the thesis approaches its crescendo, the far-reaching implications of this exploration
within the broader context of cloud-native ecosystems are elucidated. The ramifications
extend beyond theoretical frameworks, transcending into the realm of real-world
implementation, where the principles elucidated herein hold the potential to redefine
practices, guide strategic decision-making, and reshape the paradigms of system

reliability and robustness.

This conclusion, however, does not signify an endpoint but rather a pivotal juncture. It
87



beckons a contemplation of the expedition thus far—a testament to the rigor, innovation,
and resilience inherent in the pursuit of advancing technological frontiers. Furthermore,
it propels the discourse forward, inviting continued investigation, refinement, and
application of chaos engineering techniques within the ever-evolving tapestry of cloud-

native microservice architectures.

6.2 Conclusions

6.2.1. Experiment Design

The experimental design conducted in this exploration of Chaos Engineering techniques
within a self-healing Cloud Native Microservice Architecture has yielded profound
insights into the resilience and adaptability of complex systems.

Through a meticulously structured methodology, deliberate faults were injected into the
system to understand its response under stress. This experimentation revealed invaluable
information about the system's behavior, vulnerabilities, and the efficacy of its self-
healing mechanisms. The findings not only validated the importance of Chaos
Engineering but also highlighted its pivotal role in fortifying system robustness against
unforeseen disruptions.

The fault injections provided unique perspectives on system resilience, aiding in the
identification of weaknesses and the enhancement of recovery strategies. This granular
understanding forms a cornerstone for refining existing practices and forging innovative

approaches to bolster Cloud Native Microservice Architectures.

Moreover, the experiments underscored the dynamic nature of system resilience. The
adaptive nature of self-healing mechanisms was observed, showcasing their ability to
learn from and adapt to disruptions, further strengthening the architecture's overall

robustness.

The insights gleaned from this experiment design offer a roadmap for future endeavors
in Chaos Engineering. They emphasize the need for continual exploration and evolution,
advocating for a proactive stance towards system reliability within modern architectures.

As technology progresses, the lessons learned here provide a solid foundation for

88



advancing the field and ensuring the resilience and dependability of Cloud Native

Microservice Architectures in an ever-changing landscape.

In conclusion, the experiment design undertaken in this exploration has not only
validated the importance of Chaos Engineering but has also illuminated its potential in
fortifying the resilience of Cloud Native Microservice Architectures. The findings serve
as a catalyst for future research, shaping a more robust and adaptive technological
landscape through the application of proactive Chaos Engineering techniques in Self-
healing architectures.

6.2.2. Tools and Platforms

This paper discussed in detail the options for conducting the experiment, from the cloud
provider to the application, the architectural design, the API testing tool, and the fault
injection tool. The chosen tools and platforms were proven to be fit for purpose,
delivering on their promises, and facilitating the realization of the experiment.

The key findings for chapter 3 were:

e The JMeter API testing tool proved itself to be highly configurable, facilitating
the setup of HTTP requests waiting times, delay per request, number of active
threads, and multiple options for visualizing collected data.

e The AWS FIS service offers a variety of options to inject faults into multiple
AWS services. For this experiment, only the EC2 termination action was used,
but other options could had been leveraged.

e The choice of AWS as the cloud provider allowed for low level configuration
on compute instances, auto scaling groups, warm pools, and load balancers.

6.2.3. Experiment Execution

The choices made for the experiment execution had either strong reasonings or were
inspired by other papers in the field. The number of executions (inspired by Ali Nagvi,
et al. (2022)) summed up to 32 in total, which gives high confidence in the results. They
were conducted in a controlled environment, started each time from a stable state, timed

accordingly and recorded in details (masterThesis/experiments-results-screenies at main

89


https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies

- brunorfranco/masterThesis - GitHub).

The key findings were:

e The timing system applied to the experiment helped infer more data than initially
envisioned (i.e., time to unresponsiveness from the start of the fault injection)

e Broadband variation was negligible, given that the fault injection occurred within
the AWS network.

e The choice to terminate instances via instance ID in AWS FIS proved to be time
consuming and manual, given that the FIS template needed to be updated with
new IDs for each experiment execution. The author regrets not having used
‘tags’.

e The number of executions was satisfactory for high confidence in the results.

6.2.4. Results Evaluation

The results presented in this paper confirm that AWS could not self-heal its microservice
architecture within the defined timeframe of sixty seconds. Some specific configurations
in the auto scaling groups performed better than others, but none reached the pre-defined

time window SLO.

AWS presented its best results by utilizing running warm pools, missing the SLO mark

by 24 seconds, totaling 84 seconds to self-heal.

Also, the results show that having no warm pools was 5.88% faster than setting up

Stopped Warm pools, contrary to expectations.

It is worth noting that for this experiment, JMeter was configured to submit one request
per second, therefore there is a small margin of error for each experiment (i.e., AWS
could had healed itself just after a request went off and waited close to 1000 milliseconds

for the subsequent request to arrive and return successfully).

90


https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies

When evaluating the delta between fastest and slowest recovery times for the four
experiments, it can be concluded that Stopped Warm Pooling is the most unpredictable
of the four, with 100 seconds of delta, while Running Warm Pooling is the most
predictable, with a variation of 74 seconds.

As mentioned in section 4.6, it is important to note that only the hibernated and running
warm pooling configurations did not present failed responses when adding the second
instance into the Load Balancer. Therefore, when prioritizing availability, it is best to

use hibernated or running warm pools to avoid intermittent failed responses.

It is worth reiterating that when comparing the experiment findings with Frincu, et al.
(2011), the AWS’s best results self-healed 40% slower than Frincu’s multi agent system
for inter-provider task scheduling enhanced with self-healing capabilities, which

averaged 60 seconds.

Warm pooling in general is known to help decrease latency for application with long
start-up times. Given that the current experiment had an application with an average
start-up time of 3.47 seconds, a separate experiment with a longer start-up time

application will likely wield different results.

It is also important to note that it is not financially advised to configure running warm
pools. If one is already willing to pay for a compute instance and its corresponding block
storage, it would be best to simply add such instance to the load balancer and use it,

rather than keep it in warm pool running and incurring costs.

6.2.4. Experts Interviews Summary

The validity of the experiment and the accuracy of the selected tools and platforms were
affirmed by the three interviewees. However, 12 highlighted certain inherent fluctuations
in the collected metrics, indicating a variance of a few seconds. This was attributed to
JMeter's triggering of requests every second, potential request throttling due to timeouts,
and observed fluctuations in broadband performance on different days during the

experiments.

91



All interviewees expressed a desire for the experiment to incorporate more variations,
enabling a broader range of conclusions. For instance, 11 proposed varying the Load
Balancer timeout configuration, 12 suggested altering the cluster size and warm pool
dimensions, while 13 recommended varying the number of AWS regions. Regrettably,
implementing these suggestions would significantly expand the paper's scope and

require substantial time and effort to set up the proposed experiments.

A consensus was reached among the interviewees regarding a bottleneck in AWS's
time to recover, which is the time window in which the Auto Scaling group runs health-
checks against instances. Both 11 and I3 acknowledged the unalterable nature of this
configuration at the time of writing. However, 12 expressed uncertainty about the
feasibility of changing the health-check time window and opted to refrain from

providing a definitive response.

Despite the wealth of suggestions and insights offered during the interviews, the experts
expressed satisfaction with the experiment's execution and the credibility of the obtained

results.

6.3 Contributions and Impact

The researc_:h project incorporates contributions that augment the existing body of work,
encompassing:
e The research explored the various options provided by the AWS platform when
it comes to auto scaling groups warm pooling configuration.
e The research compared how warm pooling options compare with one another
when under stress.
e The research investigated various tools and technologies to implement a
successful chaos engineered experiment against a cloud-based architecture.
e The study highlights both the advantages and limitations of utilizing auto scaling
groups and elastic load balancers.
e The research described in detail how to create a highly available architecture in
AWS by following the Well Architected Framework.
e The research examined how resilient and available the AWS platform can be
92



when under chaos engineered fault injections.
6.4 Future Work
Upon concluding this research project, numerous prospects for future research emerged.

6.4.1 Long Start-up time applications

Further work on executing a similar experiment, with an application that requires longer
start-up time than the 3.47 seconds used in this research, could be carried out.

Based on the AWS documentation, warm pools would be more beneficial in such
scenarios. Therefore, the results should vary substantially from the results in this paper.
If a similar Java/Spring application were used in this scenario, then the longer start-up
time could be accomplished by adding a Thread.sleep() in the main method, or in a
CommandLineRunner ‘run’ method.

Here is an example that could be used, with a ‘three minutes delay’:

+import org.springframework.boot.CommandLineRunner;

1 neF 100
eBootApplicatio

public class BackendService implements CommandLineRunner{
public static void main(String[] args) {

SpringApplication.run(BackendService.class, args);

}

public void run(String... args) throws Exception {
Thread.sleep(180000) ;
}

Figure 6.1. Java Thread Sleep Example (Author)

It would be beneficial to verify if there is a linear or exponential correlation between

start-up time and self-healing capabilities when using warm pools.

6.4.2 AWS Tag-Based Resources

When creating compute instances in AWS, the use of ‘tags’ could have been leveraged.

93



That way, the AWS FIS tool would be able to randomize the termination of instances by
tag, allowing for a wider variation of experiments, instead of the chosen path in this
paper, where the FIS experiment had to be updated with each instance ID for every
execution.

Tags can be added when creating resources in AWS, including EC2 instances:

EC2 D Instances » Launch an instance

Launch an instance i

Amazon EC2 allows you to create virtual machines, or instances, that run on the AWS Cloud. Quickly get started by

following the simple steps below.

v Name and tags info

Key Info Value Info Resource types  Info

Q Name D 4 ’ ‘Q test X ’ ‘ Select resource ty... ¥ ‘ ‘ Remove

Instances X

Add new tag l

You can add up to 49 more tags

Figure 6.2. AWS EC2 Console — Name and tags (Author)

During the experiment creation in AWS FIS, such tags can be referenced to define
targets in the fault injection:

94



Edit target

Specify the target resources on which to run your selected actions. Leam more E

Name

Instances-Target-1

The name must have 1 to 64 characters.

Resource type

aws:ec2iinstance

Actions

Killlnstance

Target method

(O Resource IDs

QO Resource tags, filters and

parameters

P Service Quotas

Resource tags

Key

Value - optional

name

tesﬂ

| Remove

Figure 6.3. AWS FIS Console — Tagging targets (Author)

6.4.3 Compute-Size Instance Variation

t2.2xlarge or higher).

setup:

Further work could also be carried out by executing a variation of this experiment, by

changing the compute size of the instance from a t2.micro to a larger instance (i.e.,

That can be accomplished by choosing the desired instance size during the EC2 Launch

95



¥ Instance type info | Get advice

Instance type

t2.micro Free tier eligible
Family:t2 1vCPU 1 GiB Memory Current generation: true
On-Demand Windows base pricing: 0.0162 USD per Hour A

On-Demand SUSE base pricing: 0.0116 USD per Hour
On-Demand RHEL base pricing: 0.0716 USD per Hour
On-Demand Linux base pricing: 0.0116 USD per Hour

Q|

On-Demand RHEL base pricing: 0.1016 USD per Hour -

t3.large

Family: t3 2vCPU 8 GiB Memory  Current generation: true
On-Demand Linux base pricing: 0.0832 USD per Hour
On-Demand Windows base pricing: 0.1108 USD per Hour
On-Demand RHEL base pricing: 0.1432 UsD per Hour
On-Demand SUSE base pricing: 0.139% USD per Hour s t
t3.xlarge

Family: t3 4vCPU 16 GiB Memory  Current generation: true

On-Demand RHEL base pricing: 0.2264 USD per Hour

On-Demand Windows base pricing: 0.24 USD per Hour

On-Demand SUSE base pricing: 0.2227 USD per Hour

On-Demand Linux base pricing: 0.1664 USD per Hour

— t3.2xlarge —
Family: t3 8vCPU 32 GiB Memory Current generation: true
On-Demand RHEL base pricing: 0.4628 USD per Hour
On-Demand Linux base pricing: 0.3328 USD per Hour
On-Demand Windows base pricing: 0.48 USD per Hour
On-Demand SUSE base pricing: 0.4578 USD per Hour

c5.large

Family: c5 2wCPU 4 GiB Memory Current generation: true

On-Demand RHEL base pricing: 0.145 USD per Hour

On-Demand Windows base pricing: 0.177 USD per Hour

On-Demand SUSE base pricing: 0.141 USD per Hour -

Figure 6.4. AWS EC2 Creation — Compute options (Author)

It can be theorized that larger instances will benefit more from warm pools, as they take

longer to be commissioned. Therefore, the results will differ from this paper.

6.4.4 Cloud Provider Variation

96



Future work could be done by executing similar experiments within other cloud
providers (i.e., Microsoft Azure and Google Cloud) to compare the results and challenge
the providers claims.

The scope of the research would be much broader, given that an initial mapping of
corresponding services between cloud providers would need to be carried out, to ensure
the comparisons are reasonable and fair.

The research would be more technically challenging, as it would require in-dept
knowledge in various cloud providers to successfully set up the experiments.

6.4.5 Multiple Microservices Variation

The current experiment had one microservice application running when injecting faults.
Future work where multiple services interact with each other when faults are injected
could be carried on. That would elucidate how to implement lowly coupled services to

promote high availability when under stress.

R Tay :

Mabile API Gaoteway

®

Application Microservice Database

: B
B, B ey f

Browser Website Microservice Database

)

Microservice

Figure 6.5. Microservice Architecture example (MongoDB website'?)

6.4.6 Performance-based Research

Performance was not covered in this paper, therefore future work could explore how

cloud-based infrastructure would behave when under stress load (i.e., heavy number of

13 https://www.mongodb.com/databases/what-are-microservices

97


https://www.mongodb.com/databases/what-are-microservices

users that exceed the system’s breaking point).
For instance, similar research could be carried out where the AWS Auto Scaling group
is created with an ‘Average CPU Utilization’ Target tracking scaling policy:

Scaling info

You can resize your Auto Scaling group manually or automatically to meet changes in demand.

Scaling limits
Set limits on how much your desired capacity can be increased or decreased

Min desired capacity Max desired capacity
1 ‘ ‘ 4

Equal or less than Equal or greater than

desired capacity desired capacity

Automatic scaling - optional

Choose whether to use a target tracking policy Info

You can set up other metric-based scaling policies and scheduled scaling after creating your Auto Scaling group

(O No scaling policies © Target tracking scaling policy
Your Auto Scaling group will remain at its initial size and Choose a CloudWatch metric and target value and let the
will not dynamically resize to meet demand scaling policy adjust the desired capacity in proportion to

the metric's value.

Scaling policy name

‘ Target Tracking Policy

Metric type Info

Monitored metric that determines if resource utilization is too low or high. If using EC2 metrics, consider enabling detailed monitoring for
better scaling performance.
‘ Average CPU utilization v

Target value

Figure 6.6. Auto Scaling — CPU utilization (Author)

Then the JMeter Test Plan would perform load testing with hundreds of simultaneous

threads and verify how fast AWS can scale up.

6.4.7 Application Internal Faul Injection

Further work on executing a similar experiment, where the difference lies on how the

Chaos Engineered fault is injected, could be conducted. Rather than using AWS FIS, the

fault would come from the deployed application itself. For example, the following
98



Java/Spring code could be used to bring down a compute instance after a pre-defined

number of minutes after the application was deployed:

FA< goean

2 public CommandLineRunner CommandLineRunnerBean() throws IOCException {
28 String shutdow
29 String operatin

mmand
ystem = System.getProperty("os.name");

31 2 ¢ o ("Llnux".equals(ope:at;:gSyscemI || "™™ac OS X".equals (operatingSystem)) {
32 shutdownCommand = "shutdown -h now";

any wversion or wi S inciuding version 11

tem.contains ("Windows")) {
"shutdown.exe -s -t 0";

35 else if (operat

& shutdownComman

s

d

else {
throw new RuntimeException ("Unsupported operating system.");

42 Runtime.getRuntime () .exec (shutdownCommand) ;
3 System.=x1it(0);
<= return null;

Figure 6.7. Java/Spring Example — Shutting down instances (Author)

6.4.8 Future Work Conclusions

In conclusion, while this dissertation has made significant contributions to the
understanding of self-healing systems, there exist several unexplored paths and
opportunities for future researchers to continue building upon this work, advancing the
fields of chaos engineering, microservice paradigm, cloud providers and self-healing

architecture.

99



BIBLIOGRAPHY

Stubbs, J., Moreira, W., & Dooley, R. (2015). Distributed Systems of Microservices Using Docker and
Serfnode. 7th International Workshop on Science Gateways, 34-39.
https://doi.org/10.1109/IWSG.2015.16

Nagvi, M. A, Malik, S., Astekin, M., & Moonen, L. (2022). On Evaluating Self-Adaptive and Self-
Healing Systems using Chaos Engineering. 3rd IEEE International Conference on Autonomic Computing
and Self-Organizing Systems, 1-10. https://doi.org/10.1109/ACS0S55765.2022.00018

Wang, Y. (2019). Towards service discovery and autonomic version management in self-healing
microservices architecture. Proceedings of the 13th European Conference on Software Architecture,
2(13), 63-66. https://doi.org/10.1145/3344948.3344952

Mendonca, N. C., Jamshidi, P., Garlan, D., & Pahl, C. (2019). Developing Self-Adaptive Microservice
Systems: Challenges and Directions. IEEE Software, 38(2), 70-79.
https://doi.org/10.48550/arXiv.1910.07660

Filho, M., Pimentel, E., Pereira, W., Maia, P. H. M., & Cortes, M. I. (2021). Self-Adaptive Microservice-
based Systems - Landscape and Research Opportunities. International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 167-178.
https://doi.ieeecomputersociety.org/10.1109/SEAMS51251.2021.00030

Garriga, M. (2018). Towards a Taxonomy of Microservices Architectures. In A. Cerone & M. Roveri
(Eds.), Software Engineering and Formal Methods. SEFM 2017. Lecture Notes in Computer Science, vol
10729. Springer. https://doi.org/10.1007/978-3-319-74781-1 15

Petrenko, S. A. (2021). Self-Healing Cloud Computing. Voprosy kiberbezopasnosti, 80-89.
https://doi.org/10.21681/2311-3456-2021-1-80-89

Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., & Tilkov, S. (2018). Microservices: The Journey So
Far and Challenges Ahead. IEEE Software, 23(3), 24-35. https://doi.org/10.1109/MS.2018.2141039

Basiri, A., Behnam, N., Rooij, R. C., Hochstein, L., Kosewski, L., Reynolds, J., & Rosenthal, C. (2016).
Chaos Engineering. IEEE Software, 33(3), 35-41.
https://doi.ieeecomputersociety.org/10.1109/MS.2016.60

Villamizar, M., Garces, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., ... Lang, M. (2016).
Infrastructure Cost Comparison of Running Web Applications in the Cloud Using AWS Lambda and
Monolithic and Microservice Architectures. 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), 179-182. https://doi.ieeecomputersociety.org/10.1109/MS.2016.60

Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., & Deardeuff, M. (2015). How Amazon
Web Services uses formal methods. Communications of the ACM, 58(4), 66-73.
https://doi.org/10.1145/2699417

Verbitski, A., Gupta, A., Saha, D., Brahmadesam, M., Gupta, K., Mittal, R., ... Bao, X. (2017). Amazon
Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases. Proceedings of
the 2017 ACM International Conference on Management of Data, 1041-1052.
https://doi.org/10.1145/3035918.3056101

Kotas, C. W., Naughton 111, T. J., & Imam, N. (2018). A comparison of Amazon Web Services and
Microsoft Azure cloud platforms for high performance computing. IEEE Cloud Summit.

100


https://doi.org/10.1109/ACSOS55765.2022.00018
https://doi.org/10.1145/3344948.3344952
https://doi.org/10.48550/arXiv.1910.07660
https://doi.ieeecomputersociety.org/10.1109/SEAMS51251.2021.00030
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.21681/2311-3456-2021-1-80-89
https://doi.org/10.1109/MS.2018.2141039
https://doi.ieeecomputersociety.org/10.1109/MS.2016.60
https://doi.ieeecomputersociety.org/10.1109/MS.2016.60
https://doi.org/10.1145/2699417
https://doi.org/10.1145/3035918.3056101

https://doi.org/10.1109/ICCE.2018.8326349

Sen, A., & Skrobot, I. (2021). Implementation of DevOps paradigm to deployment and provisioning of
microservices. Issues in Information Systems, 22(1), 136-148. https://doi.org/10.48009/1 iis_2021 136-
148

Borge, S., & Poonia, N. (2020). Review on Amazon Web Services, Google Cloud Provider and Microsoft
Windows Azure. International Journal of Advance and Innovative Research, 7(3), 49-54.

Zhang, H., Li, S., Jia, Z., Zhong, C., & Zhang, C. (2019). Microservice Architecture in Reality: An
Industrial Inquiry. IEEE International Conference on Software Architecture (ICSA), 51-60.
https://doi.org/10.1109/ICSA.2019.00014

Blinowski, G., Ojdowska, A., & Przybylek, A. (2022). Monolithic vs. Microservice Architecture: A
Performance and Scalability Evaluation. IEEE Access, 10, 20357-20374.
https://doi.org/10.1109/ACCESS.2022.3152803

Yussupov, V., Breitenbucher, U., Krieger, C., Leymann, F., Soldani, J., & Wurster, M. (2020). Pattern-
based Modelling, Integration, and Deployment of Microservice Architectures. 2020 IEEE 24th
International Enterprise Distributed Object Computing Conference (EDOC), 40-50.
https://doi.org/10.1109/EDOC49727.2020.00015

Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yadwadkar, N. J., Popa, R. A,, ...
Patterson, D. A. (2021). What serverless computing is and should become: the next phase of cloud
computing. Communications of the ACM, 64(5), 76-84. https://doi.org/10.1145/3406011

Jindal, A., Podolskiy, V., & Gerndt, M. (2019). Performance Modelling for Cloud Microservice
Applications. Proceedings of the 2019 ACM/SPEC International Conference on Performance
Engineering (ICPE '19), 25-32. https://doi.org/10.1145/3297663.3310309

Dashofy, E. M., Hoek, A. V. D., & Taylor, R. N. (2002). Towards architecture-based self-healing
systems. Proceedings of the first workshop on Self-healing systems (WOSS '02), 21-26.
https://doi.org/10.1145/582128.582133

Frincu, M. E., Villegas, N. M., Pectu, D., Muller, H. A., & Rouvoy, R. (2011). Self-Healing Distributed
Scheduling Platform. 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
225-234. https://doi.org/10.1109/CCGrid.2011.23

Rios, E., Iturbe, E., & Palacios, M. C. (2017). Self-healing Multi-Cloud Application Modelling.
Proceedings of the 12th International Conference on Availability, Reliability and Security (ARES '17),
Acrticle 93, 1-9. https://doi.org/10.1145/3098954.3104059

Seeger, J., Broring, A., & Carle, G. (2020). Optimally Self-Healing 1oT Choreographies. ACM
Transactions on Internet Technology, 20(3), 1-20. https://doi.org/10.1145/3386361

Dias, J. P, Sousa, T. B., Restivo, A., & Ferreira, H. S. (2020). A Pattern-Language for Self-Healing
Internet-of-Things Systems. Proceedings of the European Conference on Pattern Languages of
Programs, Article 25, 1-17. https://doi.org/10.1145/3424771.3424804

Colombo, V., Tundo, A., Ciavotta, M., & Mariani, L. (2022). Towards self-adaptive peer-to-peer
monitoring for fog environments. Proceedings of the 17th Symposium on Software Engineering for
Adaptive and Self-Managing Systems, 156-166. https://doi.org/10.1145/3524844.3528055

Eismann, S., Shang, W., Bezemer, C. P., & Okanovic, D. (2020). Microservices: A Performance Tester's
101


https://doi.org/10.1109/ICCE.2018.8326349
https://doi.org/10.48009/1_iis_2021_136-148
https://doi.org/10.48009/1_iis_2021_136-148
https://doi.org/10.1109/ICSA.2019.00014
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1109/EDOC49727.2020.00015
https://doi.org/10.1145/3406011
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/582128.582133
https://doi.org/10.1109/CCGrid.2011.23
https://doi.org/10.1145/3098954.3104059
https://doi.org/10.1145/3386361
https://doi.org/10.1145/3424771.3424804
https://doi.org/10.1145/3524844.3528055

Dream or Nightmare?. International Conference on Performance Engineering, 1-13.
http://dx.doi.org/10.1145/3358960.3379124

Mendonca, N. C., Garlan, D., Schmerl, B., & Camara, J. (2018). Generality vs. reusability in architecture-
based self-adaptation: the case for self-adaptive microservices. Proceedings of the 12th European
Conference on Software Architecture: Companion Proceedings, Article 18, 1-6.
https://doi.org/10.1145/3241403.3241423

Migirditch, S., Asplund, J., & Curran, W. (2022). Chaos engineering: stress-testing algorithms to
facilitate resilient strategic military planning. Proceedings of the Genetic and Evolutionary Computation
Conference Companion, 2160-2167. https://doi.org/10.1145/3520304.3533962

Basiri, A., Hochstein, L., Jones, N., & Tucker, H. (2019). Automating Chaos Experiments in Production.
IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 31-40. https://doi.org/10.1109/ICSE-SEIP.2019.00012

Velepucha, V. and Flores, P., 2023. A survey on microservices architecture: Principles, patterns and
migration challenges. IEEE Access.

Ghosh, D., Sharman, R., Rao, H.R., & Upadhyaya, S. (2007). Self-healing Systems - Survey and
Synthesis. Decision Support Systems, 42(4), 2164-2185.

Jernberg, H., Runeson, P., & Engstrom, E. (2020). Getting Started with Chaos Engineering-design of an
implementation framework in practice. In Proceedings of the 14th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), 1-10.

Qian, L., Luo, Z., Du, Y., & Guo, L. (2009). Cloud Computing: An Overview. In Cloud Computing: First
International Conference, CloudCom 2009, Beijing, China, December 1-4, 2009. Proceedings 1, 626-631.
Springer Berlin Heidelberg.

Rosenthal, C., & Jones, N. (2020). Chaos Engineering: System Resiliency in Practice. O’Reilly Media.

Zhang, M. (2023, January 1). Top 10 Cloud Service Providers Globally in 2023. Dgtlinfra.
https://dgtlinfra.com/top-10-cloud-service-providers-2022/

Amazon Web Services. (2023, April 10). AWS Well-Architected Framework. AWS.
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html

Estes, A. (2023). AWS Certified Solutions Architect - Associate (SAA-C03) [MOOC]. Pluralsight. AWS
Certified Solutions Architect - Associate (SAA-CO03) | Pluralsight

Ellis, F. (2023). Hands-On Chaos Engineering with AWS Fault Injection Simulator [MOOC]. Pluralsight.
Hands-On Chaos Engineering with AWS Fault Injection Simulator (pluralsight.com)

102


http://dx.doi.org/10.1145/3358960.3379124
https://doi.org/10.1145/3241403.3241423
https://doi.org/10.1145/3520304.3533962
https://doi.org/10.1109/ICSE-SEIP.2019.00012
https://dgtlinfra.com/top-10-cloud-service-providers-2022/
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://www.pluralsight.com/paths/aws-certified-solutions-architect-associate-saa-c03
https://www.pluralsight.com/paths/aws-certified-solutions-architect-associate-saa-c03
https://www.pluralsight.com/cloud-guru/courses/hands-on-chaos-engineering-with-aws-fault-injection-simulator

APPENDIX A: MY JOURNEY

I would like to take the time to describe my personal journey, and what led me to the
decision of writing this dissertation.

| graduated in Software Engineering in 2014, but my career as a programmer started in
2011, when got my first job as an intern programmer at a small IT company
developing software for advocacy agencies.

Since then, I’ve come a long way, certifying myself in many different programming
languages, cloud platforms, agile methodologies, IT services standardizations, as well
as getting exposure to different companies, different business domains, and different
organizational cultures. I’'m currently a Lead Software Engineer at a major FinTech
company.

I’ve started this master’s course back in 2017 and finished all the credits except for the
dissertation by 2019, however, due to personal issues | was not able to submit the
dissertation’s proposal in 2019 and had to take a study break.

Once my personal life got back on track, in late February of 2023 I’ve made the decision
to finish the masters.

At the time, | was very interested in cloud architecture and microservices and would
love to have my thesis in this field, so | have decided to recertify myself as an AWS
Architect, to make sure | was up to date with the latest services, options, and
configurations offered by AWS.

| already had previously certified myself in 2017 as an AWS Associate Solutions
Architect, as well as an AWS Associate Developer, however these certifications expire
every 3 years, so | saw it as the perfect opportunity to get recertified.

I have covered the ‘A Cloud Guru — AWS Certified Solutions Architect — Associate
(SAA-CO3)’ course, read through the recommended AWS whitepapers, covered

multiple mock exams from ‘Tutorials Dojo, sat the exam and passed:

103



AWS training and

certification

AWS Certified Solutions Architect - Associate

Notice of Exam Results

Candidate: Bruno Franco Exam Date: Jun 14, 2023
Candidate ID: AWS03443638 Registration Number: 444024411
Candidate Score: 776 Pass/Fail: PASS

Congratulations! You have successfully completed the AWS Certified Solutions Architect - Associate and you
are now AWS Certified.

With that out of the way, I’ve started my literature review in June 2023 to look for
inspiration on what type of pioneering research I could conduct in the cloud space.
That’s when I came across the academic concepts of self-adaptive and self-healing, as
well as Chaos Engineering, and | thought that together, these concepts had a lot of
potential for research.

It was challenging to find a Chaos engineering tool freely available, especially one that
could interact with AWS resources. That’s when I came across the AWS FIS service.
I’ve enrolled myself on the course ‘Hands-On Chaos engineering with AWS Fault
Injection Simulator’ by A Cloud Guru, and by the end of the course | had a clear idea on
how to use this tool to help me with the research.

Given my previous years of experiences as a Software Engineer, | naturally selected
JMeter for the task of independently health-check the Elastic Load Balancer. Therefore,
my review of JMeter was less structured. I’ve found a few good tutorials on YouTube,
did a couple of exploratory tests with it, ensured it would be fit for purpose and settled
for it. In hindsight, I could have used two separate tools to ensure the metrics collected
in the experiment were validated by another independent tool (this idea was also brought
up by an expert in the field during the interviews).

I’ve also written all the necessary Java code for the experiment in August 2023, in
preparation for the dissertation, so | could hit the ground running when the time came
for the experiment execution and the dissertation writing.

That can be confirmed by the dates shown in the contribution activities in my GitHub,
104



where | stored all the material for this dissertation:

35 contributions in the last year Contribution settings v s

Dec Jan Feb Mar Apr May Jun Ju Aug Sep Oct

Contribution activity

August 13, 2023

Et Created 4 commits in 1 repository
brunorfranco/masterThesis 4 commits

B Created 1 repository

(] brunorfranco/masterThesis @ Java Aug 13

As can be seen, the initial code was pushed on the 13" of August.

Once the dissertation proposal was approved in September, | already had a clear path to
follow. | knew that the experiment design was feasible, and the chosen tools were fit for
purpose, so | only had minor challenges when implementing the experiment and

collecting data.

APPENDIX B: EXPERIMENT USER GUIDE

Please note that this user guide was revised, reedited, and reviewed when a complete
redevelopment of the system infrastructure was undertaken to assess the effectiveness

of these instructions.

1. Java Micro-service Implementation
The ‘backend-service’ Java application was developed and compiled in JavaSE-17, in

the Eclipse IDE version 2023-09 (4.29.0). It was built with maven, Spring Boot 3.1.2,
Spring Boot Starter Data JPA, Spring boot Starter Web and H2 database.

105



[m] backend-service/pomxml X

€ <parent>

com.tu.bruno</groug
ctId>backend-servi
ion>0.0.1-SNAPSHOT</~
>backend-service</name
ription>Backend Service for Brunosia

org.springframework.boot</groupId>
Id>spring-boot-starter-data-jpa</artifact

d>org.springframework.boot</g
ctId>spring-boot-starter-test<

It contains a single model called RandomEntry, which maps to a database table named
‘RandomEntryTable’, with two columns, ‘id’ and ‘randomValue’. The application also
exposes a Rest API under port 8082, URL “/api/entries’ which returns all the rows of
the RandomEntryTable in JSON format. When the application starts up, it executes a
command to insert ten random rows into the in-memory database. Once the application

is running, the database can be interacted with from the ‘/h2-ui” URL:

& C 0 @ localhost:8082/h2-ui/login.do?jsessionid=4d177a1c046ec3940c81e1fd98d00bS2

Runescape citinzenship B Royal Canin - Med MasterCard bike Masters2023 [ RSAiie - Customer.. NewHome plus

M| & | Eautocommit 0 ‘D | Maxrows:[1000 v| @ O B | £ |Autocomplete [OF v |Auto select [On v | )

[J idbc:h2:mem:testdb Run | Run Selected  Auto complete | Clear SQL statement
E ] RANDOM_ENTRY_TABLE
= 0 ID
# 0 RANDOM_VALUE
@ |3, Indexes
# () INFORMATION_SCHEMA
# 22 Sequences
@ {§ Users
@ H22.1.214 (2022-06-13)

select * from random_entry_table;

select * from random_entry_table;
ID |RANDCM_VALUE
1 |1Su5gmR9dfoTcDc
hGLiiwkzavTnOST
Cn1e3SRpRJrObJO
[tRPHRs 1wv4gaat
5qVJGnkHtPtubtg
vLK70Igjq9NPuHo
n7Jri4C1sFnx1VI
vDB34IAEXUEVH5X
|u3CseobafF2TuBY
10 |UloZ6xPLZcPpZ2d
(10 rows, 0 ms)

oo ~w[o]o] s w N

Edit

106



Login details can be found at the ‘application.properties’ file:

1l server.porc=8082

3 spring.datasource.url=jdbc:hZ :mem:testdb
4 spring.datasource.driverClassName=org.h2.Driver
5 spring.datasource.username=sa

o

spring.datasource.password=

Z spring.jpa.show-sgl=trus

S gpring.jpa.properties.hibernate.dialect=org.hikbernate.dialect.HZDialect
L0 spring.jpa.hibernate.ddl-auto= update
L1l spring.jpa.defer—-datasource-initialization=true

L3 spring.=sgl.initc.mode=always

s

LS spring.h2.console.enakbled=true
g’y

# default path: h

nsole

r
J o

L7 spring.h2.console.path=/h2 -ui

The application can be executed by running the ‘BackendServiceApplication.java’ class:

¥ LPOLL ULY.apacis . CUMMIUNS . 161G « RAIUUO LI LUGULLLS| |

ingBootAppli

n (scanBasePackages = { "com.tu.bruno.backendservice”, "com.tu.bruno.backendservice.model"”,
"com.tu.bruno.backendservice.repository"” })
public class BackendServiceApplica’

towired

RandomEntryRepository randomEn

public static void main(String Open Declaration F3
, SpringApplication.run(Back Open Type Hierarchy F4
Open Call Hierarchy Ctrl+Alt+H
@Bean Show in Breadcrumb Alt+Shift+B
public CommandLineRunner Comma Quick Outline Ctrl+0
return (args) -> { 2 : Ctrl+T
for (int i = 0; i.¢ id Quick Type Hierarchy trl+
randomEntryReposit Open With > .s.random(l5, true, true))):
} Show In Alt+Shift+W >
¥
}
} - e
52 Copy Qualified Name
[} Paste Ctrl+V
|55 Raw Paste
Quick Fix Ctrl+1
Source Alt+Shift+S >
< Refactor Alt+Shift+T >
Local History >

2! Problems | @ Javadoci@ Declaration | 4" Search | B

B iceApplication [Java Applicatior References > k05:39 - 18:05:47) [pid: 11256]

main] w.s.c.ServletWebServerApplicatic Declarations > 1itialization completed in 970 ms

main] com.zaxxer.hikari.HikariDataSour

main] com.zaxxer.hikari.pool.HikariPoc [ Add to Snippets... m conn0: url=jdbc:h2:mem:7db878la-1fe2-4
main] com.zaxxer.hikari.HikariDataSou: i.

main] o.hibernate.jpa.internal.util.Lc Q Coverage As > :nceUnitInfo [name: default]

main] org.hibernate.Version © RunAs > [T 1Java Application Alt+Shift+X, )

main] org.hibernate.cfg.Environment $ Debug As <

main] o.h.b.i.BytecodeProviderInitiatc Run Configurations...
main] 0.s8.0.3j.p.SpringPersistenceUnitl 9;’ Profile As > :ing urA class transIormer

The application’s code can be found in its entirety at

https://github.com/brunorfranco/masterThesis/tree/main/backend-service.

2. AWS Cloud Architecture implementation

2.1 VPC Creation

107


https://github.com/brunorfranco/masterThesis/tree/main/backend-service

The first step towards creating the cloud architecture is setting up a virtual private cloud.

Once logged into the AWS console, open the VPC section, click on ‘Create VPC’:

% Your VPCs (2) iuta | & || actions » Create VPC G
Global View (3 Q Search 1 ®
Fliver by &, Name v VPCIiD v S 1Pv4 CIDR v IPvé CIDR Main ble M
> O mesters-public-vpe pe-038620d0761F13c4 © Avallable o ath ¢
| © Avallable 1 dopt-2699034 £th-73452615 a

When doing it through the UI wizard, select ‘VPC and more’, by default that will create
four subnets (one public and one private for two separate availability zones). It will also

create three route tables (one public and two private), as well as two network connections:

VPC  Show details Subnets (4) Route tables (3) Network connections (2)
Yo Subnets within this VPC Route network traffic to resources Cannections to other networks
project-vpc us-east-1a project-rtb-public project-igw

project-subnet-public1-us-east-1a project-rtb-private1-us-east-1a project-vpce-s3
project-subnet-privatel-us-east-1a project-rtb-private2-us-east-1b
us-east-1b

project-subnet-public2-us-east-1b

project-subnet-private2-us-east-1b

Also provide the IPv4 CIDR, enter *10.0.0.0/24°. The default values for the other fields are

sufficient to proceed with the setup:

108



Create VPC workflow

®© Success
¥ Details

@ Create VPC: vpc-05da7623501febc74 [4

®© Enable DNS hostnames

© Enable DNS resolution

© Verifying VPC creation: vpc-05da7623501febc74 [4
© Create S3 endpoint: vpce-0f25a70f9cc64b94a [4
© Create subnet: subnet-048704e79a2b50a2d [4

© Create subnet: subnet-0633309e122061e27 [4

@ Create subnet: subnet-08b5e3b2ec3176d6c [4

@ Create subnet: subnet-09d999aea2753b975 [4

© Create internet gateway: igw-0da427073f9ebae80 [4
© Attach internet gateway to the VPC

@ Create route table: rtb-0c1666f09c1e3c502 [4

© Create route

© Associate route table

© Associate route table

@ Create route table: rtb-007e8b16a66e7cb28 [4

© Associate route table

© Create route table: rtb-0880c0ae14f9992ec [4

© Associate route table

© Verifying route table creation

© Associate $3 endpoint with private subnet route tables: vpce-0f25a70f9cc64b94a [4

2.2 Key Pair Creation

Once logged into the AWS console, navigate to the ‘Key Pair’ section, click ‘Create key

pair’
Q Search ®
(m] Name v | Type 9 | Created ¥ | Fingerprint v | I v
O masterthesis rsa 2023/10/12 15:42 GMT+1 14:a0:2excT:cd 66T e3:db:55:e0bbidd:.. key-034{7f239085a78bd

Once logged into the AWS console, navigate to the ‘Key Pair’ section, click ‘Create key
pair’. Type a unique name, leave the default options for RSA and .ppk format, and click

on ‘Create Key pair’:

109



Create key pair

Key pair

A key pair, consisting of a private key and a public key, is a set of security credentials that you use to prove your identity when connecting to

to 255 ASCII characters. It can't include leading or trailing spaces

Key pair type Info

O RSA O ED25519 ‘

Private key file format

O .pem

For use with OpenSSH
O .ppk

For use with PuTTY

Tags - optional

No tags associated with the resource.

Add new tag

0 more tags

You can add up to 50

Cancel Create key pair

That will automatically trigger a download, save this file in a secure location as this cannot

be found anywhere else.
2.3 (Windows users) Install Putty

To prepare for the next steps, the download and installation of Putty to be able to SSH into
remote machines is necessary. If users have downloaded in .pem format file, then use

Puttygen to convert it to .ppk.
2.4 EC2 Creation

Navigate to the EC2 dashboard, click on ‘Launch Instance’, enter a name, quick select the

Amazon Linux AWS option under ‘Amazon Machine Image’:

110



EC2 ) Instances » Launch an instance

Launch an instance

Amazon EC2 allows you to create virtual machines, or instances, that run on the AWS Cloud. Quickly get started by
following the simple steps below.

Name and tags info

Name

serverNameI Add additional tags

v Application and OS Images (Amazon Machine Image) info

An AMlI is a template that contains the software configuration (operating system, application server, and
applications) required to launch your instance. Search or Browse for AMIs if you don’t see what you are looking for
below

Q, Search our full catalog including 1000s of application and OS images

Recents ‘ My AMIs Quick Start
Amazon macOS Ubuntu Windows Red Hat SUSE Li Q
Linux
> Browse more AMIls
aWS1 l ubuntu?® BE picrosoft & RedHat m Including AMIs from
- Mac sus AWS, Marketplace and
the Community

This will spin up an Amazon Linx 2023 x86_64 HVM kernel-6.1.

Select the key pair created on step 2 under the ‘Key pair (login)’ section:

111



v Key pair (login) info

You can use a key pair to securely connect to your instance. Ensure that you have access to the selected key pair
before you launch the instance.

Key pair name - required

master-thesis A C Create new key pair
_la |
Proceed without a key pair (Not recommended) Default value
: Edit
master-thesis 5
Type: rsa

Under ‘VPC — required’, select the VPC created in step 2.1 and select one of the subnets
created with it:

v Network settings info

VPC - required Info

vpc-0bf4b5d40a6786ebe (interview-experiment-vpc)

10.0.0.0/16 . G

Q |

vpc-0bf4b5d40a6786ebe (interview-experiment-vpc) v’

10.0.0.0/16 G Create
vpc-23404744 (default)

172.31.00/16

Auto-assign public IP Info

Disable

Under the ‘Network settings’, select ‘Create security group’, this will simplify the setup
steps as it will be created with SSH traffic already allowed. Also tick the box to ‘Allow

HTTP traffic from the internet’, as a Rest API endpoint will be exposed by the Java
application:

112



v Network settings info Edit

Network Info
vpc-23404744

Subnet Info

No preference (Default subnet in any availability zone)

Auto-assign public IP info
Enable

Firewall (security groups) Info

A security group is a set of firewall rules that control the traffic for your instance. Add rules to allow specific traffic to reach your
instance.

© Create security group (O Select existing security group

We'll create a new security group called 'launch-wizard-1' with the following rules:

Allow SSH traffic from

Anywhere
Helps you connect to your instance

0.0.0.0/0

[ Altow HTTPS traffic from the internet

To set up an endpoint, for example when creating a web server

Allow HTTP traffic from the internet

To set up an endpoint, for example when creating a web server

/A Rules with source of 0.0.0.0/0 allow all IP addresses to access your instance. We recommend setting X
security group rules to allow access from known IP addresses only.

Make sure that the ‘Auto-assign public IP” option is enabled so that is assigned to the

primary network interface of the instance.

Launch Instance:

113



v Summary

Mumber of instances Info

1

Software Image (AMI)

Amazon Linux 2023 AMI 2023.2.2...read more
ami-0dbc3d7bcb46e8516

Virtual server type (instance type)

t2.micro

Firewall (security group)

Mew security group

Storage (volumes)
1 volume(s) - 8 GIB

@ Free tier: In your first year includes X
750 hours of t2.micro (or t3.micro in
the Regions in which t2.micro is
unavailable) instance usage on free
tier AMIs per month, 30 GiB of EBS
storage, 2 million 10s, 1 GB of
snapshots, and 100 GB of bandwidth
to the internet.

Review commands

2.5 Adding Java Application file into the EC2 instance

To add the .jar file into the EC2 instance, use the WinSCP tool, version 6.1.2, build 13797
2023-09-19:

114



Mew = = |+

&M Abhout a

[«

ze
WinsSCP
Version 6. 1.2 (Build 13797 2023-09-19)

Copyright © 2000-2023 Martin Prikryl
https: {fwinscp. ne

To send comments and report bugs use support forum at:
https: /fwinscp. net/forum/

Portions copyright:

License agreements of all following programs (libraries) are part
of application license agreement.,

S5H and SCP code based on PUTTY 0,78+
Copyright © 1997-2023 Simon Tatham

Display license
https:/ fwww. chiark. greenend. org.uk/~sgtatham/putty/

This product indudes software developed by the OpenS5L

Project for use in the OpensSL Toolkit 1. 1. 1w,

Copyright © 1995—2023 The Opens5L Project ¥
https: {fwww . openssl.org/

License, .. Help

Once in WinSCP, click ‘New Tab’ to start a new connection, then provide the EC2 IPv4

address (found in the EC2 details as per image below) into the Host name field, port 22.

The default username is ‘ec2-user’.

EC2 > Instances ) i-0697c8cc279078461

Instance summary for i-0697¢8cc279078461 info

Updated less than a minute ago

Instance ID
i-0697c8cc279078461

1PV6 address

Hostname type

[G ][ comeet ] [ nstancestave v ] [ actions v

Public IPv4 address Private IPv4 addresses

52.90.250.203 |open address [4 & 17231.11.29

Instance state Public IPv4 DNS

®© Running [ ec2-52-90-250-203.compute-1.amazonaws.com |open address [4

Private IP DNS name (IPv4 only)

1P name: ip-172-31-11-29.ec2.internal ip-172-31-11-29.ec2.internal

Answer private resource DNS name Instance type Elastic IP addresses

- t2.micro -

Auto-assigned IP address VPCID AWS Compute Optimizer finding

[ 52.90.250.203 [Public IP) @ vpc-23404744 [3 @® Opt-in to AWS Compute Optimizer for recommendations. | Learn more [
1AM Role Subnet ID Auto Scaling Group name

- subnet-c15be088 [4 @ auto-scaling-group-masters

Before trying to connect, the .ppk key file generated on step 2 needs to be referenced, so

go to ‘Advanced...’, then ‘Advanced...’ again:

115



Size

KB
KB

Properties ~ | New ~ 5. ] , s Copy ~ (X Edit + X L,t 1 Properties vlﬁ New ~
lastﬂ T Login == X
= e Changed
New Site ession ! 3
31/10/202:
B eco-user@52.90.250.203 3 [
e prnicok 31/10/202:
SFTP v
Host name: Port number:
52.90.250.203 25
User name: Password:
ec2-user
|
Save v Cancel Advanced... |v 1
Session
I Advanced... |
Edit Raw Settings...
Transfer Settings Rule...
Global Preferences
Logging...
Tools v Manage v 2] Login v Close Help (
H"v ]

Under ‘SSH’, ‘Authentication’, provide the location of the private key under the field

‘Private key file’:

116



Advanced Site Settings ? x
>
Environment [ | Bypass authentication entirely
- Directories o ]
.. Recyde bin Authentication options
- Encryption B Attempt authentication using Pageant
:hFI-:T B attempt keyboard-interactive’ authentication
... She
Connectian 8 Respond with a password to the first prompt
PFDIY :f
- Tunnel Authentication parameters B
35H [] Allow agent forwarding
- Key exchange )
Private key file:
- Authentication rva L= E
- Bugs C:'Uzers\Bruno'Downloads \master-thesis-private. ppk D ﬂ
Mote
Display Public Key Tools -

Certificate to use with the private key:

GSSAPI
B attempt GSSAPT authentication

[ allow GSSAPI credential delegation

Color - Cancel Help F

Once this is in place, continue to click ‘Login’ and the connection will be established.

Copy the backend-service-0.0.1-SNAPSHOT .jar file from the Java application ‘target’

folder, and paste it inside the EC2 instance, under the ‘/home/ec2-user/’ folder:

B, target - ec2-user®52.90.250.203 — WinSCP = O
5] .2 (& Synchronize .}. =l r}fﬁ" Queue ~  Transfer Settings Default v i@~
{7 target— Documents X B ec2-user@52.90.250.203 X M NewTab ~ i
%= C: Local Disk - 7. M~ v - i /.\ 9| " ec2-user v [T~ -~ v - i LS /.\ 9 7"‘ Find Files |
I New~ :[¥] | [¥] ~ | B New~ :[#] =] V]
C:\Users\Bruno\M: deBase) Thesis\backend ice\target\ /home/ec2-user/
Name e Size Type Changed Name ¥ Size Changed Rights Owner
. Parent directory 12/10/2023 13:37( | ‘2. 15/10/2023 16:20:48 PWXT-XT-X root
classes File folder 30/10/2023 17:57| | | £ backend-service-0.0.1... 44422KB  12/10/2023 13:37:14 TW-rw-r-- ec2-user
generated-sources File folder 12/10/2023 12:25
generated-test-sources File folder 12/10/2023 12:25
maven-archiver File folder 12/10/2023 12:25
maven-status File folder 12/10/2023 12:25
surefire-reports File folder 12/10/2023 13:37
test-classes File folder 30/10/2023 17:57
| £/ backend-service-0.0.1-SNAPSHOT jar 44422 KB Executable JarFile  12/10/2023 13:37,
0 backend-service-0.0.1-SNAPSHOT jar.or... 7KB ORIGINAL File 12/10/2023 13:37

117




2.6 Connecting into EC2 through Putty and running the application

Once the .jar file is loaded into the EC2 instance, then it is time to SSH into the instance

through the Putty command line and run it.

To achieve that, use Putty version 0.79:

B¢ PuTTY Conf guration
Cateqory: lis region
[=)- Session Basic options for your PuTTY session
i + Logging Specify the destination you want to connect to
(=) Terminal Host N
- Keyboard oSt RAMQ  About PuTT
. Bell .
- Features Connection PuTTY
=) Window
. Appearance O ssH Release 0.79
i Load. save Buid platform: 64bit x86 Windows
- Translation Saved Ses! Compiler: clang 14.0.0 , emulating Visual Studio 2022 (17.2),
[+ Selection _MSC_VER=15932, _"MSC_FULL_VER=193231329
- Colours Embedded HTML Help file: no
&) Connection Default Se Source commit: b10055c9522aeb9343a55a409ea01740061d2440
- Data ec2instag © 1997-2023 Simon Tatham. Al ights reserved.
- Proxy
(- SSH
- Serial
- Telnet View Licence Vist Web Site Close
- Rlogin
- SUPDUP Close window on exit: r
(O Aways (O Never @ Only on clean exit
About Open Cancel

To open a new session from Putty, go back to the AWS console and get the Public IPv4

address from the instance, then insert it into the Putty Host Name and use port 22.

Under ‘Connection’, open ‘SSH’, then ‘Auth’, then ‘Credentials’, then browse and select

the .ppk key file that was generated on step 2.

118



ﬁ PuTTY Configuration

Category:
- Keyboard Credentials to authenticate with
- Bel Publicdey authentication
- Features _ o
& Window Private key file for authentication:
- Appearance C:AlUsers'\Bruno'Downloads*masterthes  Browse. .
- Behaviour Certificate to use with the private key (optional):
- Translation
] Browse...
- Selection
Colours Plugin to provide authentication responses
=)~ Connection _
- Data Plugin command to nun
- Proy
=-55H
- Host keys
- Cipher
[=- Auth
i Crederti
- GSSAPI
X1
About Cancel

Go back to the ‘Session’ section, select a unique name and save the session, that way this

configuration can be reused in the future. Click ‘Open’ and the SSH connection will be

established:

119



EP ec?-user@ip-172-31-11-29:~ - O e

If the connection times out, go back to the EC2 console, go to ‘Security’, and click on the

‘Security groups’ link:

120



EC2 ) Instances » i-0697c8cc279078461

Instanc

pdated less than a minute ago

Instance ID

[ i-0697c8cc279078461

IPv6 address

Hostname type

IP name: ip-172-31-11-29.ec2.internal

Answer private resource DNS name

Auto-assigned IP address

[ 52.90.250.203 [Public IP]

Role
MDSv2
Required
Details Security Networking

¥ Security details

| DAle
IAM Role

Security groups

sg-05836dcfcd6c22680 (masters-security-group)

e summary for i-0697c¢8cc279078461 info

Status checks

Public IPv4 address

52.90.250.203 |open address [4

Instance state

® Running

Private IP DNS name (IPv4 only)

ip-172-31-11-29.ec2.internal

Instance type

t2.micro

VPCID
vpc-23404744 [4

Subnet ID
subnet-c15be088 [

Monitoring Tags
Owner ID

096958155378

Make sure there is an inbound rule for SSH, with Source 0.0.0.0/0 (Anywhere).

This is not a safe approach, as anyone holding the private key could connect to the instance,

so the key should be kept in a safe place.

Once in, ensure that the .jar file is indeed there

command:

and accessible by executing an ‘Is -I’

121



These Linux instances do not come with Java pre-installed, therefore please execute the

commands in this order:
1. sudosu
2. yum update -y

3. sudo yum install java-17-amazon-corretto-headless

E? root@ip-10-0-8-17:/home/ec2-user = O X

After that, then the application can be started by executing “java -jar /home/ec2-
user/backend-service-0.0.1-SNAPSHOT .jar &”:

122



EP ec2-user@ip-172-31-11-29:~ — O X

Once the application is up and running, then verify that the Rest endpoint is available
through a browser via {IPADDRESS}:8082/api/entries:

If the response is unavailable, check the security group assigned to the EC2 instance and

make sure the following inbound rules exist:

123



EC2 > Security Groups ) sg-0ae1681d9ec624056 - launch-wizard-1

sg-0ae1681d9ec624056 - launch-wizard-1

Details

Security group name

@ launch-wizard-1

Owner

@ 096958155378

Security group ID

5g-0ae1681d9ec624056

Inbound rules count

4 Permission entries

Description

launch-wizard-1 created 2023-11-

28719:00:27.469Z

Outbound rules count

1 Permission entry

VPCID
vpc-0bfab5d40a6786ebe [4

Inbound rules Outbound rules Tags

Inbound rules (4)

Edit inbound rules

Q Search ‘ 1 (o}
() Name v Security group rule... ¥ IP version v | Type v Protocol v Port range v Source v Description
(] - sgr-052777261bcdSb... IPv4 HTTPS TCP 443 0.0.0.0/0 -
(] - sgr-048b5623b83a58c... IPv4 Custom TCP TCcP 8082 0.0.0.0/0 -
(] - sgr-00f0ae84ed0580a94 IPv4 SSH TCcP 22 0.0.0.0/0 -
[m] - sgr-06eb0a7e1a6c9abc9 IPv4 HTTP TCP 80 0.0.0.0/0 -
2.7 AMI Extraction
With a healthy EC2 instance fully setup, then it is time to create an Amazon Machine
Image (AMI), so that other instances can be spun up from the same setup.
From the ‘EC2 Dashboard’ in the AWS console, select the healthy EC2 instance, then
select ‘Actions’, then ‘Image and templates’, then ‘Create image’:
Instances (1/2) info Actions A ‘ Launch instances ¥
‘ Q Find Instance by attribute or tag (ca nsitive) Connect
ning [X] [ clearfitters | View details ®

B  Name/ v | Instance D | instancestate v | Instancetype ¥ | Statuscheck Alarmstatus | Availability Zone ¥ | Public IPv4 DNS
‘ -0697c8cc279078461 ©@Running @ @ t2.micro © 2/2 checks passed  Noalarms =+ us-east-1a £c2-52-90-250-203.co...
(m] i-0a56155b477cfa566 @Running @ @ t2.micro @ 2/2 checks passed  Noalarms + us-east-1b £c2-34-229-211-121.co

Manage instance state
Instance settings
Networking

Security

Create image

Image and templates

Create template from instance

Launch more like this

Monitor and troubleshoot

A name for the image needs to be selected, the click the ‘Create Image’ button:

124



| imageTest ’

Maximum 127 characters. Can't be modified after creation.

Image description - optional

| Image description ‘

Maximum 255 characters

No reboot
[] Enable

Instance volumes

Storage type Device Snapshot Size Volume type 10PS Throughput Delete on

termination

EBS v /dev/.. ¥ Create new snapshot fr... ¥ EBS General PurposeS... ¥ 3000 Enable
Add volume

Encrypted

® During the image creation process, Amazon EC2 creates a snapshot of each of the above volumes.

Tags - optional
Atagis a label that you assign to an AWS resource. Each tag consists of a key and an optional value. You can use tags to search and filter your resources or track your AWS costs.

© Tag image and snapshots together O Tag image and snapshots separately
Tag the image and the snapshots with the same tag. Tag the image and the snapshots with different tags.

No tags associated with the resource.

Add new tag

You can add up to 50 more tags.

2.8 Launch template:

To create a Launch template, go into the EC2 dashboard, then ‘Auto Scaling’, then ‘Auto

Scaling Groups’.

125



Launch Templates
Spot Requests
Savings Plans
Reserved Instances
Dedicated Hosts
Capacity Reservations
¥ Images
AMlis

AMI Catalog

¥ Elastic Block Store
Volumes
Snapshots

Lifecycle Manager

¥ Network & Security
Security Groups
Elastic IPs
Placement Groups
Key Pairs

Network Interfaces

¥ Load Balancing
Load Balancers

Target Groups

¥ Auto Scaling

Auto Scaling Groups

From there, then

EC2 > Auto Scaling groups

Auto Scaling groups (1) info

® Auto Scaling group updated successfully

EC2 > Auto Scaling groups

Auto Scaling groups (1) info

Q Search your Auto Scaling groups

Q Search your Auto Scaling groups

OJ Name Launch template/configuration [ v | Inst:
O auto-scaling-group-masters masters-launch-template | Version Latest 2
0 Auto Scalina arouns selected
click on ‘Launch Templates’:
| Launch c H Launch 2 H Actions ¥ ‘ Create Auto Scaling group
‘ Opens in 3 new tab ; ®

O Name

O auto-scaling-group-masters

v

Launch template/configuration [ ¥ | Instances ¥ Status

masters-launch-template | Version Latest 2 -

v

Desired capacity v | Min v | Max ¥ | Availability Zones

2

2

4

us-east-13, us-east-1b

Then ‘Create Launch Templates’:

Launch Templates (1) info

Q Search ‘
Launch Template ID v | Launch Template Name v | DefaultVersion ¥ | LatestVersion v | CreateTime
(e} 1t-0419f717f231b919b masters-launch-template 6 7

2023-10-15T17:24:09.000Z

v | CreatedBy

[ ][ acen: ~ |

arn:aws:iam::096958155378:root

A name must be specified, then the ‘Auto Scaling guidance’ checkbox must be selected:

126

@

v



Launch template name and description

Launch template name - required

Mytemplate

Template version description

A prod webserver for MyApp

Max 255 chars

Auto Scaling guidance Info
Select this if you intend to use this template with EC2 Auto Scaling

Provide guidance to help me set up a template that | can use with EC2 Auto
Scaling

Under the ‘Launch template contents’, go into ‘My AMIs’, and select the AMI created on

step 7.

127



Launch template contents

Specify the details of your launch template below. Leaving a field blank will result in the field not being included in the launch template.

v Application and OS Images (Amazon Machine Image) - required info

An AMlI is a template that contains the software configuration (operating system, application server, and
applications) required to launch your instance. Search or Browse for AMIs if you don't see what you are looking for
below

Q Search our full catalog including 1000s of application and OS images

Recents My AMIs Quick Start

Q

Specify a custom value...

masters-image-backend
ami-049d22fe9ddb9gf09 v
2023-10-15717:11:42.000Z Virtualization: hvm ENA enabled: true  Root device type: ebs

masters-image-backend-enc3
ami-0a07869af9ac87d5d
2023-11-05T17:26:58.0002 Virtualization: hvm ENA enabled: true  Root device type: ebs

masters-image-backend
ami-049d22fe9ddb99f09 A
2023-10-15T17:11:42.000Z Virtualization: hvm ENA enabled: true  Root device type: ebs

Description

masters-image-backend

Architecture AMI ID
x86_64 ami-049d22fe9ddb99f09

Under ‘Network Settings’, select the security group created previously, then under

‘Advanced network configuration’, select ‘Auto-assign public IP’ as ‘Enable’:

128



Common security groups Info

Select security groups v

Compare security

launch-wizard-1 sg-0ae1681d9ec624056 X group rules
VPC: vpc-0bf4b5d40a6b786ebe

Security groups that you add or remove here will be added to or removed from all your network interfaces.

¥ Advanced network configuration

Network interface 1 Remove

Device index Info Network interface Info Description Info

0

Existing network interfaces are not
recommended when creating a template
for auto-scaling.

Subnet Info Security groups Info Auto-assign public IP Info
Don't include in launch template Select security groups ¥ Enable v
Not applicable for EC2 Auto Scaling G

T2l Clamice il cnlind 14

All the other fields can be left with the default values, except for one. Under ‘Advanced
details’, the ‘User data’ field must be provided so that the java executable runs every time
a new instance is created, restarted or rebooted.

The required script to be added is as follows:

- ] == ] == L ] == L ] === = — ==

Content-Type: multipart/mixed; boundary="//"

2 MIME-Version: 1.0

3

- —=ff

S Content-Type: text/cloud-config; charsetc="us-ascii™
6 MIME-Version: 1.0

7 Content-Transfer-Encoding: 7bhit

8 Content-Disposition: attachment; filename="cloud-config.txt"™
o
10 #cloud-config
11 clnud_final_mﬂdulesﬂ
12 - [scripts-user, always]
13
14 —=ff
15 Content-Type: text/x-shellscript:; charset="us-ascii™
16 MIME-Version: 1.0

17 Content-Transfer-Encoding: 7bhit
Content-Disposition: attachment; filename="userdata.txt™

T e ]

$#'/bin/bash
java —-jar /home/ecZ-user/backend-service-0.0.1-5HAPSHOT.jar &

| I % I P

It can be also found at: https://github.com/brunorfranco/masterThesis/blob/main/user-
129



https://github.com/brunorfranco/masterThesis/blob/main/user-data%20file.txt

data%20file.txt

Once this is in place, then click the ‘Create launch template’ button:

Create launch template Sl g AN

Creating a launch template allows you to create a saved instance configuration that can be reused, shared and launched at masters-image-backend
a later time. Templates can have multiple versions. ami-049d22fe9ddb99f09

Virtual server type (instance type)

Launch template name and description -

Firewall (security group)
Launch template name - required

‘ Mytemplate ‘

Storage (volumes)
1 volume(s) - 8 GiB

Must be unique to this account. Max 128 chars. No spaces or special characters like ‘&', *

Template version description

‘ A prod webserver for MyApp ‘ ® Freetier: In your first year includes X

Max 255 chars 750 hours of t2.micro (or t3.micro in
the Regions in which t2.micro is
Auto S;al:fng guudar;ce Infuh | . l unavailable) instance usage on free
Select thi tend t this te with EC2 Auto S

elec is if you intend to use this template wi uto Scaling tier AMIs per month, 30 GiB of EBS
storage, 2 million 10s, 1 GB of
Scaling 7

snapshots, and 100 GB of bandwidth

to the internet.

Provide guidance to help me set up a template that | can use with EC2 Auto

» Template tags

» Source template

Cancel

2.9 Security Group configuration

Go to the Security Group tab under the EC2 dashboard and make sure you include inbound
and outbound rules for the port 8080, as well as 8082 into the newly created security group:

Security Groups (1/4) info ‘ Actions ¥ ‘ ‘ Export security groups to CSV “ v ‘ _
1 @

Q Find resources by attribute or tag

[-] Name v Security group ID v Security group name v VPCID v Description v Owner
[ sg-bdbSbac? default vpc-23404744 [A default VPC security group 096958155378
- 5g-0ae1681d9ec624056 launch-wizard-1 vpc-Obfab5d40a6786ebe @z launch-wizard-1 created 2023-11-28T... 096958155378
o - sg-07daca764717242b8 default vpc-0bfab5d40a6786ebe [4 default VPC security group 096958155378
O - $g-0d4e045d9de7b1f8f launch-wizard-2 vpc-Obfab5d40a6786ebe e launch-wizard-2 created 2023-11-28T... 096958155378
q »
- E = @

Edit inbound rules

Inbound rules (5)

Q search ‘ 1 ®
0 Name v | Securitygroup rule... v | IP version v | Type v | Protocol v | Portrange v | source v | Description
a - sgr-052777261bcdSb.... 1Pva HTTPS TCP 443 0.0.0.0/0 -
(] - sgr-048b5623b83as8c... 1Pv4 Custom TCP TCP 8082 0.0.0.0/0 -
a - sgr-00f0ae84ed0580a94 1Pva SSH TCP 22 0.0.0.0/0 -
O - sgr-06eb0a7e1abc9abe9 1Pv4 HTTP TCP 80 0.0.0.0/0 -
O - sgr-059e7ab9698e7fedc 1Pva Custom TCP TCP 8080 0.0.0.0/0 -
q D

130


https://github.com/brunorfranco/masterThesis/blob/main/user-data%20file.txt

That is a very important step to allow for the Elastic Load balancer to be able to connect

to the instances.
2.10 Auto Scaling group and Elastic Load Balancer

With the Launch template in place, then it was time to create the Auto Scaling group. That
was achieved through the EC2 dashboard, ‘Auto Scaling’, ‘Auto Scaling Groups’, ‘Create

Auto Scaling group’ button:

) Aulo SGaling Group Upaated successtully

EC2 > Auto Scaling groups

t
g
odicat Auto Scaling groups (1) infe C [ Launch configurations ‘ [ Launch templates [3 | Actions v | Create Auto Scaling group
— ——————
pacit Q 1 ®
images Name v Launch template/configuration [3 ¥ | Instances ¥ Status Min v Max ¥ | Availability Zones v
i

aute-scaling:group-masters

Elastic Block Store

0 Autn Sralinn arnine calartard

Once there, provide a name for the Auto scaling group, and select the Launch template

defined on step 8:

131



Specify a launch template that contains settings common to all EC2 instances that are launched by this Auto Scaling group. If
you currently use launch configurations, you might consider migrating to launch templates.

Name

Auto Scaling group name
Enter a name to identify the group.

Auto-scaling-group-name

Must be unique to this account in the current Region and no more than 255 characters.

Launch template info Switch to launch configuration

Launch template
Choose a launch template that contains the instance-level settings, such as the Amazon Machine Image (AMI), instance type, key pair, and
security groups.

masters-launch-template '| | C |

Create a launch template A
Version
| Default (6) v | ‘ C ’

Create a launch template version [

Description Launch template Instance type
master-launch-enc2 masters-launch-template [4 t2.micro
1t-0419f717f231bS19b

AMI ID Security groups Request Spot Instances
ami-0ce4bf6197472c257 - No

Key pair name Security group IDs

master-thesis sg-05836dcfcd6c22680 [4

Tick the boxes for no minimum nor maximum vCPUs and Memory (GiB):

132



Required instance attributes
Enter your compute requirements in virtual CPUs (vCPUs) and memory.

vCPUs

Enter the minimum and maximum number of vCPUs per instance.
0 minimum maximum

No minimum No maximum

Memory (GiB)

Enter the minimum and maximum GiBs of memory per instance.

0 minimum maximum

No minimum No maximum

Click ‘Next’, and select two different Availability Zones and subnets, to ensure higher

availability of the solution:

133



Instance type requirements info Override launch template

You can keep the same instance attributes or instance type from your launch template, or you can choose to override the launch template
by specifying different instance attributes or manually adding instance types.

Launch template Version Description

masters-launch-template [4 Default master-launch-enc2
1t-0419f717f231b919b

Instance type

t2.micro

Network info

us-east-1a | subnet-c15be088
172.31.0.0/20 Default

us-east-1b | subnet-5f3bf404 nes and let EC2 Auto Scaling balance your instances across
172.31.16.0/20 Default e for getting started quickly.
0 us-east-1c | subnet-dOc8a6b5

172.31.64.0/20 Default

1g group.

us-east-1d | subnet-b164ac9c
= 172.31.48.0/20 Default C
n us-east-1e | subnet-53857d6f

172.31.32.0/20 Default

us-east-1f | subnet-7a63ed76

172.31.80.0/20  Default ) can use in the chosen VPC.
Select Availability Zones and subnets A ’ C l

us-east-1a | subnet-c15be088 X
172.31.0.0/20 Default

us-east-1b | subnet-5f3bf404 X
172.31.16.0/20 Default

After clicking ‘Next’, select Attach a new load balancer’, then selected ‘Application Load
Balancer (HTTP, HTTPS), selected a name for the load balancer, selected ‘Internet-facing:

134



Load balancing info

Use the options below to attach your Auto Scaling group to an existing load balancer, or to a new load balancer that

you define.
O No load balancer O Attach to an existing load O Attach to a new load
Traffic to your Auto Scaling group balancer balancer
will not be fronted by a load Choose from your existing load Quickly create a basic load
balancer. balancers. balancer to attach to your Auto
Scaling group.

Attach to a new load balancer

Define a new load balancer to create for attachment to this Auto Scaling group.

Load balancer type
Choose from the load balancer types offered below. Type selection cannot be changed after the load balancer is created. If you need a
different type of load balancer than those offered here, visit the Load Balancing console. [4

© Application Load Balancer (O Network Load Balancer
HTTR, HTTPS TCP, UDP, TLS

Load balancer name
Name cannot be changed after the load balancer is created.

Auto-scaling-group-name-1

Load balancer scheme
Scheme cannot be changed after the load balancer is created.

O Internal © Internet-facing

Network mapping
Your new load balancer will be created using the same VPC and Availability Zone selections as your Auto Scaling group. You can select
different subnets and add subnets from additional Availability Zones.

Under ‘Health checks’, select ‘Turn on Elastic Load Balancing health checks’ and left the
health check grace period at the 300 seconds’ default.

Under ‘Listeners and routing, in the dropdown ‘Default routing (forward to)’, select

‘Create a target group:

Listeners and routing
If you require secure listeners, or multiple listeners, you can configure them from the Load Balancing console [/ after your load balancer is
created.

Protocol Port Default routing (forward to)

HTTP 80 Create a target group v

New target group name
An instance target group with default settings will be created.

interview-auto-scaling-group-1

135



Click ‘Next” once again, then it is time to setup the Group sizing with two desired capacity,

two minimum capacity and four maximum capacities:

Group size - optional info

Specify the size of the Auto Scaling group by changing the desired capacity. You can also specify minimum and
maximum capacity limits. Your desired capacity must be within the limit range.

Desired capacity

i

Minimum capacity

I

Maximum capacity

i

Review all the details provided and created the Auto Scaling group:

136



Scaling policy

No scaling policy

Instance scale-in protection

Instance scale-in protection

Enable instance protection from scale

Step 5: Add notifications

Notifications

No notifications

Step 6: Add tags

Tags (0)

Key Value Tag new instances

No tags

With that in place, double check if the Auto scaling group and the load balancer were

created appropriately and are healthy:

Load balancers (1) _.

Elastic Load Balancing scales your load balancer capacity automatically in response to changes in incoming traffic.

Q Filter load balancers ‘ <1 > ®
(] Name v | DNSname v | state v | vecip v | Availability Zones v | Type v | Datecreated v
O  autoscling-group-m... auto-scaling-group-master... @ Active Vpc-23404744 2 Availability Zones application October 17, 2023, 19:01 (UTC+01:00)

Auto Scaling groups (1) info [ Launch confi i H Launch @z ” Actions ¥ |_
<1 > ®

Q Search your Auto Scaling groups ‘

O Name v Launch template/configuration [ v ‘ Instances v Status v Desired capacity ¥ Min v Max ¥ Availability Zones v

(] it i ters-l h-te late | Version Latest 2 - 2 2 4 us-east-13, us-east-1b

137



Once that is verified, get the Elastic Load Balancer DNS and access it by adding

“/api/entries” and that should return a successful response:

EC2 > Load balancers

Load balancers (1) C Actions ¥ ‘ Create load balancer ¥
o ing scales your load balancer capacity automati esponse to changes in incoming traffic.

1 @

O Name v | DNSname v | state v | vecip v | Availability Zones v Type v Date created v

interview-auto-scaling-gro @ Active Vpc-0bf4b5d40a6786 2 Availability Zones application November 28, 2023, 20:33 (UTC+00:00)

Add Listeners and Rules to the newly created Elastic Load Balancer for port 80 and 8082

from the ‘Load Balancers’ tab:

Listeners and rules Network mapping Security Monitoring Integrations Attributes Tags

A listener checks for connec

Listeners and rules (3) info Add listener
n its configs Traffic ener is routed according to the default action and any additional rules.

1 Q Filter listeners ‘ 1 (0]

Protocol:Port v Default action v Rules v | ARN @ Security policy v Default SSL/TLS certificate v mTLS v | Truststore

Forward to target group
O HTTP:80 o auto-scaling-2-1 [4: 1 (100%) 1rule ARN Not applicable Not applicable off Not applicat
« Group-level stickiness: Off

Forward to target group
O HTTP:8082 o auto-scaling-2-1 [4: 1 (100%) 1rule ARN Not applicable Not applicable off Not applicat
* Group-level stickiness: Off

Forward to target group
(] HTTP:8080 e auto-scaling-2-1 [4: 1 (100%) 1rule ARN Not applicable Not applicable off Not applicab
* Group-level stickiness: Off

211 Warm Pooling

As mentioned previously, auto Scaling groups allow for different configuration variations,
which have effects on recovery time of the service, so they will be explored as part of the
experiment:

5. No warm pooling.

6. Warm pooling with one instance on ‘Stopped’ state.
7. Warm pooling with one instance on ‘Running’ state.
8

Warm pooling with one instance on ‘Hibernated’ state.

They can be configured under the ‘Auto Scaling Group’ section in the EC2 dashboard,

under the ‘Instance management’ tab:

138



¥ Load Balancing

¥ Auto Scaling

2.12

(2

Instances (Z)

3. JMeter Test Plan Implementation

For this experiment, create a Test Plan in Apache JMeter version 5.6.2

InServi 2.mic © Heatt h
InSer 2.mic @ Health,
C As v \ Create lifecycle hook
Q 1 ®
Warm pool e C [ n pool
Setup Diagram
VPC Key Pair Install
Creation Creation Putty
» » -
EC2
AMI ! _
Extractio .( <€ eon
Running Java App
App from added into
EC2 EC2
Elastic
Launch
Template > : > Load
Security Auto Balancer
Group Scaling Creation
configuration Creation
: ;-[ @ ‘ Warm Review
e Pooling configuration
Configuration

139



£ About Apache JMeter

This tool is maintained by the Apache Software Foundation and is free and open source.
At the time of this writing, the tool can be downloaded from
https://jmeter.apache.org/download_jmeter.cqi

To create a test plan, click on ‘File’, then ‘New’:

sBoman 12 | A" A7 | Aa -~ | fa =

T & Apache IMeter (5.6.2)

File Edit Search Run Options Tools Hel
Mew Ctrl-L

Templates...

Upen

Then create a Thread Group by right-clicking the Test Plan, then going into ‘Add’,
‘Threads (Users)’, then selecting ‘Thread Group’:

140


https://jmeter.apache.org/download_jmeter.cgi

Threads (Users)

Config Element

List
Timer
Pre Proc
Copy Code Post Proc
Save Node As Image Ctrl-G  Assertions
As Image Ctrl+Shift-G  Test Fragment

Non-Test Elements

The default configuration for the Thread Group is enough for the purpose of this
experiment, given that a single Thread will be used to check the health of the service
running in AWS.

Add a HTTP Request into the Thread Group by right-clicking the Thread Group, then
selecting ‘Add’, ‘Sampler’, ‘HTTP Request’:

Thread G roup
Sampler Flow Control Action
Add Think Time children Logic Controller HTTP Request

Start : , Debug Sampler

Start no pauses

The HTTP Request needs to be configured to point to the Elastic Load Balancer address,
therefore the Protocol, Server Name, HTTP Request and Path need to be configured as

per the image below:

Server Name or IP: om Port Number:

Parameters Body Data

Include Equals?

Given that by default JMeter’s requests are fired every 300 milliseconds, that would

141



generate excessive entries in the result set, therefore configure a ‘Constant Timer’ so
only a single request was fired per second, facilitating the result’s readings.
That can be achieved by right-clicking on the Thread Group, then going into ‘Add’,

‘Timer’, ‘Constant Timer’:

Thread Group

:rr a Sampler error

:art Next Thread Loop
Ctrl-X Constant Timer
Ctrl-C

Test Fragment Uniform Random Timer

Ctrl-V e Precise Throughput Timer
Config Element 7 Shett s a5

rie Ru ions loc
HC&S VBE + -4 00 % .- B E
v A Test Plan

v & Threa

Constant limer
NET Constant Timer
Comments:

& Constant Timer Thread Delay (in milliseconds): | 1000

To view the results of the requests, two different listeners need to be created:
6.4.8.1 View Results Tree
6.4.8.2 View Results in Table
Listeners can be added by right-clicking ‘Thread Group’, then navigating to ‘Add’, then

‘Listeners’:

142



v A TestPlan "
nread Group

v'| Same user o
Delay Threac

Specify Thre

Image Ctrl+Shift-G

The full configuration can be found in .jmx format for ease of importing at
https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx

4. AWS Fault Injection Simulator (FIS) Creation

The author has opted to utilize the AWS FIS as the chaos engineering tool of choice.

The tool can be access through the AWS FIS console:

aXV'S‘ i35 Services Q fis

AWS FIS Search results for ‘fis

Try searching with longer queries for more relevant results

Experiment templateg
Features (87) -
Scenario Library New Services

2 Resources ' New
Experiments

Documentation (57,166) [

Knowledge Articles (5) Impr silie nd performance with controlled experiments
Spotlight

Marketplace (10) Top features

Blogs (13,713)
Share feedback [4 o

The first step is to create an experiment template:

143


https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx

Introducing Experiment Scheduler
We've added the ability to start FIS experiments at a preset time or on a recurrent schedule. Learn more about Experiment Scheduler. [4

Notifications ®0 A0 @0 @2 Qo Vv

AWS Fault Injection Simulator [JEESEEURTEREE
I m p rove reSi lie n Cy a n d Choose your fault injection actions and the targets to

run them on. Then start running your experiments.

performance with controlled Sy s
experiments

Faull mulatol

o continuously

Provide a Description, then add an action of ‘Action type’ of ALL, and

‘aws:ec2:terminate-instances’:

Q

CLOUDWATCH

(D New targets and actions expe

aws:cloudwatch:assert-alarm-state

Asserts that the CloudWatch alarms are in the expected states.

Actions (1) info
EBS

v New action aws:ebs:pause-volume-io Yemiove
Pauses IO for a set of EBS volumes

EC2
Name

aws:ec2:reboot-instances

‘ kill-instances Reboot the specified EC2 instances

I'he name must have 1 to 64 char: : i 3
aws:ec2:send-spot-instance-interruptions

s Interrupt the specified EC2 Spot instances.
Description - optional
| aws:ec2:stop-instances

Stop the specified EC2 instances.

The description must have 1 to 51 aws:ec2:terminate-instances

Terminate the specified EC2 instances

Action type Info

‘ ALL v ’ ‘ Select an action type & ‘
Start after - optional Info
‘ Select an action v ‘

Targets also need to be setup, so click on ‘Edit” under the ‘Targets’ section, keep the
Resource type as ‘aws:ec2:instance’, also keep the Target method as ‘Resource IDs’,

then select the Resource 1Ds of the EC2 instances currently running:

144



Edit target X

Specify the target resources on which to run your selected actions. Learn more [

Name

Instances-Target-1 ‘

The name must have 1 to 64 characters.

Resource type

aws.ecZ:instance v ‘

Actions

kill-instances

Target method

O Resource IDs (O Resource tags, filters and

parameters

Resource |Ds

Select a resource D Y

Q |

[] i-0697cBcc279078461

[] i-0a56155b477cfa566

The Resource IDs can be double checked by going back to the EC2 console, then
accessing the Instances (running):

145



Instances (2) info

‘ Q, Find Instance by attribute or tag (case-sensitive) ‘

\ Instance state = running \ X \ \ Clear filters \

O Name v | Instance ID | Instance state v | Instance type ¥ | Status check

O i-0697cBcc279078461 @ Running & & t2.micro ) 2/2 checks passed
O i-0a56155b477cfas66 @ Running @ Q t2.micro @ 2/2 checks passed

Select the ‘Create a new role for the experiment template” option under ‘Service access’,
so an 1AM role can be automatically created with correct permissions to conduct the

experiments:

Service access

FIS requires permission to conduct experiments on your behalf
© Create a new role for the experiment template

(O Use an existing IAM role

Service role name

‘ AWSFISIAMRole-1699695469160

Click on ‘Create experiment template’.

The command line configuration can be found at the following link to facilitate the
creation of the FIS experiment:

https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate

5. Experiment Execution

Ensure that before any of the experiment executions there are two healthy EC2 instances

running and serving requests through the Load Balancer.

Initiate a timer. As soon as the timer reaches thirty seconds, initiate the JMeter Test Plan to

start collecting metrics:

146


https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate

Once the timer reaches one minute, initiate the FIS experiment to shut-down running EC2
instances:

Start experiment X

/A\ You are about to start your experiment, which might perform destructive
actions on your AWS resources. Before you run fault injection experiments,

review the best practices and planning guidelines. Learn more []

To confirm that you want to start the experiment, enter start in the field:

sta rﬂ

Cancel Start experiment

The JMeter Test Plan would soon (~15 minutes after the FIS startup) indicate that the requests
were no longer responding successfully, so take note up to the millisecond of the last time a
request was successful before starting to fail, via the ‘View Result in Table’ in JMeter.

/

ETAT VRN + -
> A

& ’

147



AWS auto scaling will realize that it does not have the minimum required number of instances
as part of its group, so it will spin up a healthy instance, then subsequently a second one
separately (as a mechanism to avoid spinning up extra unnecessary instances).

Instances (3) e

Q

Name / v Instance ID Instance state v Inst tys v Stat heck Al t Availability Zone @ ¥
® el @ Q No al +
© Qe alarms 4 b
® ;@ Q ) ® ala + t

As soon as the new instances are assigned to the Load Balancer and the JMeter Test Plan will
stop failing and start receiving successful responses back again, then take note of the time up
to milliseconds of the first successful response after the fault injection:

With both entries noted, the simple following subtraction can be used to calculate the time it
takes for AWS to self-heal its system:

Time of the first successful request after fault injection — time of the last successful request before fault injection

APPENDIX C: INTERVIEW PRESENTATION

AN EXPLORATION OF CHAOS ENGINEERING TECHNIQUES ON A SELF
HEALING CLOUD NATIVE MICROSERVICE ARCHITECTURE

i BRUNO FRANCO

148



AGENDA

INTRODUCTION
RESEARCH QUESTION
EXPERIMENT
RESULTS

YOUR CONCLUSIONS!

INTRODUCTION

ROSERVICES

An architectural approach that organizes
an application into a set of services
characterized by the following

attributes:
1. Capable of independent deployment.
2. Loosely interconnected.

3. Aligned with specific business

functionalities.

4. Managed by small, dedicated teams.

149



INTRODUCTION

UD INFRASTRUCTURE

Cloud computing is the on-demand

delivery of IT resources over the

Internet with pay-as-you-go pricing.

INTRODUCTION

~HEALING SYSTEMS

Self-healing  systems  perform

periodic health assessments on
various components and
autonomously initiate corrective
actions, such as redeployment, to
restore them to their intended
operational conditions (Ghosh, et

al., 2007).

150



INTRODUCTION

{OS ENGINEERING TECHNIQUES

Involves conducting systematic
experiments on a system to instill
confidence in its capacity to endure
challenging operational conditions
(Rosenthal and Jones, 2020). In
software development, it is common
to specify the need for a software
system to gracefully handle failures
while maintaining an acceptable

level of service quality

x #cce).gbrtl
isplay:block; pos RESEARCH QUESTION
.‘y;::otop:_sz' s
Wi=4px\0/; left .,

VE IN

Can Chaos Engineering techniques
implemented via AWS Fault Injector
Simulator (FIS) degrade an ‘Industry
standard Self-healing Cloud-based
microservice architecture’ beyond a

one-minute response-time SLO?

151



Intermnet Gateway

AWS ARCHITECTURE

X
- '
! '
| '
! '
' '
| '
' '
' '
; Backend-app '
' '
' '
' Subnet-1 "
S O AR :
- Juseast:la _ B e T v T =
_’l,‘—
Elastid Load’ l Auto Scaling |
gadeal e, )
’ ! '
! '
¢! !
! '
! |
' 1
! |
! Backend-app '
' '
'
i L. Subnet-2 4 !
U b2 2
' !
‘o us-east-1b o L I
. vpc =)
Region J

EXPERIMENT DESIGN

Generates

JIMeter Test Plan

Collects data from the cloud
infrastfucture

Injects Faults

AWS FIS

Initiate
event

152



SAMPLE

Step 1

- 00000122
0 - -

SAMPLE

Step 2

- 0001:03.30
- -

SAMPLE

Step 3

- 00:01:58.15

153



SAMPLE

Step 4

- 00:02:50.26

SAMPLE

Step 5

- 00:03:33.18
e &5

SAMPLE

Step 6

- 00:04:21.86
Py

154



SAMPLE

Setact ammtance

o- o

AWS CONFIGURATION VARIATION

POOLING

The experiment was executed in four different phases
(differentiated by auto-scaling configurations), eight

times each as well:
1. No warm pooling.
2. 'Warm pooling with one instance on ‘Stopped’ state.
3. Warm pooling with one instance on ‘Running’ state.

4. 'Warm pooling with one instance on ‘Hibernated” state.

155




RESULTS

IG DIAGRAMS!

NO WARM POOLING

No. | Last successful request | First successful request | Elapsed time
after fault after recovery
1| 16:29:28.433 16:32:07.260 02:38.827
2 [16:37:21.088 16:39:59.916 02:38.828
3 | 16:44:46.607 16:46:14.237 01:27.630
4 [16:51:41.303 16:54:01.630 02:20.327
5 116:58:59.813 17:00:30.580 01:30.767
6 | 17:05:48.506 17:08:27.393 02:38.887
7 [17:13:14.345 17:16:11.756 02:57.411
§ [ 17:20:24.474 17:22:16.195 01:51.721
Average 02:15.549

0
o
c
o
0
o
w7
£
0 5
£
=

No Warm Pooling Results

156



STOPPED WARM POOLING

Time in seconds

Stopped Warm Pooling Resuljt__§

HIBERNATED WARM POOLING

No. | Last successful request | First successful request | Elapsed time
after fault after recovery

1] 12:21:14.040 12:23:53.779 02:39.739

2 | 14:18:39.652 14:20:16.130 01:36.47

3 [ 14:27:41.048 14:30:02.658 02:21.610

4 | 14:36:24.950 14:38:00.258 01:35.308

5 | 14:44:04.283 14:46:00.484 01:56.201

6 |14:51:21.225 14:54:21.301 03:00.076

7| 15:01:16.763 15:04:03.782 02:47.01%

8§ | 15:09:03.961 15:12:19.420 03:15.459

Average 2:23.986

No. | Last successful request | First successful request | Elapsed time
after fault after recovery

1| 18:08:25.344 18:09:48.567 01:23.223

2 |18:15:08.020 1§:17:42.913 02:34.893

3 [18:22:12.935 18:23:47.238 01:34.303

4 [18:29:12.944 1§:31:43.360 02:30.416

3 183944713 18:41:31.029 02:06.316

6 [ 18:46:36.257 18:48:14913 01:38.636

1 [ 18:34:54811 18:35:57.026 01:02213

§ [19:01:58.829 19:03:51.875 01:53.046

| Average 01:30.383

No. | Last successful request | First successful request | Elapsed time
after fault after recovery

1 17:37:44.065 17:39:35.936 01:51.871

2 17:45:18.92 17:47:34.9% 02:16.068

3 17:52:46.518 17:53:48.744 01:02.226

4 18:02:41.585 18:03:43.793 01:02.208

5 18:10:01.389 18:11:29.012 01:27.62

6 18:16:43.552 18:17:45.765 01:02.213

1 18:30:05.661 18:31:34.408 01:28.747

8 18:37:05.916 18:38:08.136 01:02.220

Average 01:24.147

w
T
c
<]
o
]
0
£
]
E
i

Time in seconds

Hibernated Warm Pooling Results

157



F o M o=

RECOVERY TIME PER POOL

No warm pooling recovery time: 02:15.549

Stopped warm pooling recovery time: 02:23.986

Hibernated warm pooling recovery time: 01:50.383

Running warm pooling recovery time: 01:24.147

Recovery Time

Comparison in seconds

150
125
100
75
50
25

0
No pooling

Stopped

Hibernated Running

RECOVERY TIME COMPARISON

No WP Stopped | Hibernated | Running
No WP +588% | -23.64% -61.9%
Stopped 3091% | -71.43%
Hibernated -30.95%
Running

158



CONCLUSIONS:

WARM-UP QUESTIONS:

How many years experience in Software Architecture
Business Domains
Cloud Domains

CHOICE OF TOOLS

Would you have chosen the tools/platforms differently?
AWS x FIS x JMeter

EXPERIMENT VALIDATION

Are you satisfied with how the experiment was conducted?
Would you have done it differently?

RESULTS

Are the results as you have expected?
Which warm pooling configuration would you recommend?
What can you conclude from the experiment results?

THANK YOU

il APPRECIATE YOUR TIME!

159




