
i

An Exploration of Chaos Engineering

Techniques on a Self-Healing Cloud Native

Microservice Architecture

Bruno Franco

A dissertation submitted in partial fulfilment of the requirements of

Technological University Dublin for the degree of

M.Sc. in Computing (Advanced Software Development)

January 2024

ii

I certify that this dissertation which I now submit for examination for the award of MSc

in Computing (Advanced Software Development), is entirely my own work and has not

been taken from the work of others save and to the extent that such work has been cited

and acknowledged within the test of my work.

This dissertation was prepared according to the regulations for postgraduate study of the

Technological University Dublin and has not been submitted in whole or part for an

award in any other Institute or University.

The work reported in this dissertation conforms to the principles and requirements of the

Institute’s guidelines for ethics in research.

Signed:

Date:

iii

ABSTRACT

This dissertation delves into the realm of cloud-native microservice architectures with a

focus on self-healing mechanisms, investigating their response to chaos engineering

techniques. In an era where cloud-based applications demand resilience and cost-

effectiveness, understanding the behavior of self-healing architectures under chaotic

conditions is of paramount importance.

The primary research objective of this study is to explore how a cost-effective self-

healing cloud-native microservice architecture reacts when subjected to chaos

engineered fault injections. By simulating real-world disruptive scenarios, the key aim is

to provide valuable insights into the architecture's ability to maintain operational

integrity and recover gracefully.

Key findings from our research indicate that while auto-scaling warm pools have been

widely advocated to bolster resilience, their actual impact on aiding a cloud architecture's

recovery from chaos engineered fault injections is less impactful than hitherto claimed.

This study contributes to the ongoing discourse on self-healing microservice

architectures, offering practical implications for architects, developers, and organizations

striving to enhance the robustness and reliability of their cloud-native applications.

The results of this research not only deepen our understanding of self-healing cloud

architectures but also underscore the need for a comprehensive approach to resilience,

encompassing aspects beyond mere scalability. This dissertation serves as a valuable

resource for professionals and researchers engaged in cloud-native system design and

chaos engineering, providing essential insights for building more resilient, cost-effective,

and adaptable systems.

Key words: Chaos Engineering, microservices, cloud services, self-healing system

iv

ACKNOWLEDGEMENTS

I am very grateful to my supervisor Damian Gordon, for his excellent guidance

throughout the production of this dissertation. Damian was extremely friendly,

approachable, helpful, and flexible during our journey together. It was an absolute

pleasure to work with him, and I consider myself very lucky to have had the opportunity

to have him as my supervisor.

I would like to thank my colleagues Anmar Hammadi, M. Sc., Nawaz Zai, M. Sc., and

Flavio Junior Neves, MBA, who helped me review the experiments and validate my tool

choices and the approach for metrics collection and conclusions.

I would also like to thank my wife Ana for her unambiguous support during the late hours

of reading and writing, and the many one-sided babbling tech conversations during our

breakfasts when she pretended to be interested in the nitty gritty details of my design

experiment.

Of course, none of it would have been possible without my mother Alcione, who worked

extremely hard in three shifts for many years, to be able to afford good primary and

secondary education for her children. Without her herculean effort, I wouldn’t be able to

be here, in this very privileged position, in the final steps of concluding a master’s degree.

v

TABLE OF CONTENTS

Contents

ABSTRACT ... 3

ACKNOWLEDGEMENTS ... 4

TABLE OF CONTENTS ... 5

TABLE OF FIGURES .. 8

TABLE OF TABLES ... 11

1 INTRODUCTION ... 12

1.1 Project Background... 12

1.2 Project Description .. 13

1.3 Project Aims and Objectives .. 15

1.4 Project Evaluation ... 16

1.5 Project Scope .. 17

1.6 Thesis Roadmap ... 18

2 LITERATURE REVIEW .. 19

2.1 Introduction .. 19

2.2 Chaos Engineering Techniques .. 19

2.3 Self-Healing and Self-Adaptive Systems .. 22

2.4 Microservice Architecture .. 27

2.5 Cloud Infrastructure ... 29

2.6 Conclusions .. 33

3 DESIGN AND METHODOLOGY .. 34

3.1 Introduction .. 34

3.2 Ethical Considerations ... 35

3.3 Cloud Provider Selection .. 36

3.4 Microservice Application Development... 37

3.5 Self-healing Architecture Design .. 38

3.6 API Testing Tool .. 41

3.7 Fault Injector .. 43

3.8 Expert Interview Design .. 44

vi

3.9 Experiment Design ... 45

3.10 Conclusions .. 50

4 DEVELOPMENT PROCESS ... 51

4.1 Introduction .. 51

4.2 Java Micro-service Implementation .. 52

4.3 AWS Cloud Architecture implementation ... 52

4.3.1 VPC Creation ... 53

4.3.2 Key Pair Creation .. 53

4.3.3 (Windows users) Install Putty .. 53

4.3.4 EC2 Creation.. 53

4.3.5 Adding Java Application file into the EC2 instance ... 55

4.3.6 Connecting into EC2 through Putty and running the application. 55

4.3.7 AMI Extraction ... 56

4.3.8 Launch template ... 57

4.3.9 Auto Scaling group and Elastic Load Balancer ... 57

4.3.10 Warm Pooling .. 58

4.4 JMeter Test Plan Implementation ... 59

4.5 AWS Fault Injection Simulator (FIS) Creation .. 59

4.6 Experiment Execution ... 60

4.6.1 No Warm Pooling Configuration ... 62

4.6.2. Stopped Warm Pooling Configuration .. 63

4.6.3 Running Warm Pooling Configuration .. 63

4.6.4 Hibernated Warm Pooling Configuration .. 64

4.7 Conclusions .. 70

5 RESULTS AND EVALUATION ... 72

5.1 Introduction .. 72

5.2 Calibration - Results and Evaluation .. 73

5.3 No Warm pooling Experiment .. 74

5.4 Stopped Warm Pooling Experiment ... 76

5.5 Hibernated Warm Pooling Experiment .. 77

5.6 Running Warm Pooling Experiment .. 78

5.7 Conclusions .. 80

5.8 Expert Interviews Conclusions .. 84

vii

6 CONCLUSIONS AND FUTURE WORK .. 87

6.1 Introduction .. 87

6.2 Conclusions .. 88

6.3 Contributions and Impact ... 92

6.4 Future Work ... 93

BIBLIOGRAPHY ... 100

APPENDIX A: MY JOURNEY .. 103

APPENDIX B: EXPERIMENT USER GUIDE .. 105

1. Java Micro-service Implementation .. 105

2. AWS Cloud Architecture implementation ... 107

3. JMeter Test Plan Implementation ... 139

4. AWS Fault Injection Simulator (FIS) Creation .. 143

5. Experiment Execution ... 146

APPENDIX C: INTERVIEW PRESENTATION... 148

viii

TABLE OF FIGURES

FIGURE 1.1 RESILIENCE / AWS ARCHITECTURE BLOG ... 12

FIGURE 1.2 FIS – AWS FAULT INJECTION SIMULATOR .. 14

FIGURE 2.1 MONOCLE UI FOR RPC DEPENDENCIES WITHIN A CLUSTER.......................... 20

FIGURE 2.2 CHAOS ENGINE ALGORITHM .. 21

FIGURE 2.3 OVERALL ARCHITECTURE OF CHESS .. 22

FIGURE 2.4 MUSA OVERALL PROCESS .. 25

FIGURE 2.5 SELF-ADAPTATION TECHNIQUES RESEARCH QUESTIONS 27

FIGURE 2.6 MICROSERVICE CAPACITY IDENTIFICATION ... 28

FIGURE 2.7 A PROTOTYPICAL IMPLEMENTATION OF THE MICO SYSTEM 31

FIGURE 3.1 HIGH-LEVEL OVERALL EXPERIMENT .. 34

FIGURE 3.2 CLOUD SERVICE PROVIDERS PER MARKET SHARE ... 37

FIGURE 3.3 VPC EXAMPLE ... 40

FIGURE 3.4 SECURITY GROUPS EXAMPLE ... 41

FIGURE 3.5 JMETER ARCHITECTURE ... 43

FIGURE 3.6 FIS EXPLAINED .. 44

FIGURE 3.7 ELASTIC BEANSTALK AUTO SCALING GROUP CONFIGURATION 46

FIGURE 3.8 INITIAL DESIGN ... 47

FIGURE 3.9 RECOVERY TIME VS. NUMBER OF FAILED MODULES 47

FIGURE 3.10 FINAL DESIGN ... 48

FIGURE 3.11 JMETER TEST PLAN CONFIGURED ... 48

FIGURE 3.12 JMETER RESULT IN TABLE VIEW ... 49

FIGURE 4.1 AWS CLOUD ARCHITECTURE DESIGNED ... 52

FIGURE 4.2 AWS CONSOLE – VPC .. 52

FIGURE 4.3 AWS CONSOLE – KEY PAIRS .. 53

FIGURE 4.4 AWS CONSOLE – EC2 LAUNCH ... 54

FIGURE 4.5 WINSCP CONSOLE .. 55

FIGURE 4.6 PUTTY CONSOLE – LOGIN .. 56

FIGURE 4.7 PUTTY CONSOLE – JAR FILE... 56

FIGURE 4.8 AWS CONSOLE – CREATING IMAGE .. 57

FIGURE 4.9 AWS CONSOLE – LAUNCH TEMPLATES ... 57

ix

FIGURE 4.10 AWS CONSOLE – AUTO SCALING GROUP .. 58

FIGURE 4.11 AWS DIAGRAM WITH ALL STEPS .. 59

FIGURE 4.12 JMETER LOGO .. 59

FIGURE 4.13 AWS FIS MENU OPTION ... 60

FIGURE 4.14 AWS FIS CONSOLE .. 60

FIGURE 4.15 JMETER VIEW RESULTS .. 61

FIGURE 4.16 AWS FIS – STARTING EXPERIMENT .. 61

FIGURE 4.17 JMETER – LAST SUCCESS BEFORE FAULT .. 62

FIGURE 4.18 JMETER – FIRST SUCCESS AFTER FAULT .. 62

FIGURE 4.19 AWS WARM POOL CONSOLE ... 63

FIGURE 4.20 AWS STOPPED WARM POOL WINDOW ... 63

FIGURE 4.21 AWS STOPPED WARM POOL INSTANCES .. 64

FIGURE 4.22 AWS RUNNING WARM POOL CONSOLE .. 64

FIGURE 4.23 AWS RUNNING WARM POOL INSTANCES ... 64

FIGURE 4.24 EBS ENCRYPTION ... 65

FIGURE 4.25 AWS CONSOLE – KEY CREATION ... 65

FIGURE 4.26 AWS CONSOLE – AMI CREATION .. 65

FIGURE 4.27 AMI CREATION DETAILS .. 66

FIGURE 4.28 AWS CONSOLE – CREATING NEW LAUNCH TEMPLATE 66

FIGURE 4.29 AWS CONSOLE – NEW LAUNCH TEMPLATE DETAILS 67

FIGURE 4.30 AWS CONSOLE – EC2 LISTING ... 67

FIGURE 4.31 AWS CONSOLE – EC2 ERROR LOGS .. 68

FIGURE 4.32 AWS CONSOLE – AMI CREATION WITH DEFAULT KEY 69

FIGURE 4.33 AWS CONSOLE – EC2 SUCCESSFUL LISTING .. 70

FIGURE 4.34 AWS HIBERNATED WARM POOL WINDOW .. 70

FIGURE 5.1 NO WARM POOLING RESULTS GRAPH .. 75

x

FIGURE 5.2 JMETER RUNNING WARM POOL OUTLIER .. 76

FIGURE 5.3 STOPPED WARM POOLING RESULTS GRAPH ... 77

FIGURE 5.4 STOPPED WARM POOLING JMETER FAILURES ... 78

FIGURE 5.5 HIBERNATED WARM POOLING RESULTS GRAPH .. 79

FIGURE 5.6 RUNNING WARM POOLING RESULTS GRAPH .. 80

FIGURE 5.7 JMETER CONTINUED INTERMITTENT FAILURES .. 81

FIGURE 5.8 RECOVERY TIME COMPARISON GRAPH ... 82

FIGURE 5.9 RECOVERY TIME COMPARISON CHART ... 82

FIGURE 5.10 AWS RECOVERY TIME COMPARED TO FRINCU, ET AL. (2011) 84

xi

TABLE OF TABLES

TABLE 1.1 CONFIGURED TO FACILITATE WARM POOLING.. 13

TABLE 5.1 BROADBAND DETAILS .. 73

TABLE 5.2 TIME TO UNRESPONSIVENESS METRICS ... 74

TABLE 5.3 NO WARM POOLING DETAILS ... 75

TABLE 5.4 STOPPED WARM POOLING DETAILS .. 77

TABLE 5.5 HIBERNATED WARM POOLING DETAILS .. 78

TABLE 5.6 RUNNING WARM POOLING DETAILS ... 79

TABLE 5.7 RESULT CONVERSION TO SECONDS... 82

TABLE 5.8 WARM POOLING PERFORMANCE COMPARISON ... 83

TABLE 5.9 WARM POOLING COST/COMPLEXITY COMPARISON 84

12

1 INTRODUCTION

“In all chaos there is a cosmos, in all disorder a secret order.”

- Carl Jung, The Archetypes and The Collective Unconscious

1.1 Project Background

Over the past decades, microservice architecture has become the de-facto pattern in the

Software Engineering industry (P. Jamshidi, et al. 2018). Microservice architecture is

widely accepted as being a fine-grained, loosely coupled collection of independent

services communicating through lightweight protocols. When in combination with cloud-

provided infrastructure, microservices become easier to provision and scale (either

horizontally or vertically). Machines can be provisioned in minutes and billing plans are

varied and flexible. Furthermore, cloud providers also offer out-of-the-box highly

available and fault tolerant services, facilitating the creation of self-healing architectures,

which refers to the ability of systems to detect and remediate issues without human

intervention. At the time of this writing AWS is the biggest cloud provider in the market,

leading by a large margin (Borge and Poonia, 2020).

Figure 1.1: Resilience / AWS Architecture Blog (Amazon Blog Posting1)

Chaos engineering is a discipline within software engineering and system reliability

engineering that focuses on proactively testing the resilience and robustness of complex

systems by intentionally introducing controlled disruptions or failures into them.

1 https://aws.amazon.com/blogs/architecture/creating-a-multi-region-application-with-aws-services-part-

2-data-and-replication/

https://aws.amazon.com/blogs/architecture/creating-a-multi-region-application-with-aws-services-part-2-data-and-replication/
https://aws.amazon.com/blogs/architecture/creating-a-multi-region-application-with-aws-services-part-2-data-and-replication/

13

The primary objective of chaos engineering is to uncover vulnerabilities, weaknesses, or

unforeseen behaviors in systems before they cause significant outages or failures in real-

world scenarios.

By intentionally introducing chaos or disruptions in a controlled environment, chaos

engineering aims to build confidence in the system's ability to withstand unexpected

failures, improve its resilience, and enhance overall reliability. It has gained prominence

in modern cloud-native architectures, distributed systems, and microservices where

complexity and interdependencies between components make systems more susceptible

to failures.

1.2 Project Description

This research will explore the use of Chaos Engineered AWS Fault Injector Simulator

(FIS) against a Self-Healing Microservice Architecture deployed in AWS. One outcome

will be to explore that given reasonable Service Level Objectives (SLO), when

configured appropriately, AWS can be a cost-effective, resilient, and reliable cloud

provider. This research will assume an SLO of one minute for AWS to self-heal during

fault injections, which will be referred to as ‘self-healing SLO’ throughout this paper.

Cloud providers, such as AWS, claim to offer highly available and fault tolerant services,

but it raises the question, how fault tolerant? If financial resources are not a limitation nor

concern, then a company or individual could build a software architecture unnecessarily

redundant in multiple availability zones and regions, and be extremely resilient, but when

it comes to a cost-effective architecture, how fault tolerant can it be? To answer this

question, the author proposes an experiment. Inspired by AWS best practices (Amazon

Web Services, 2023), in this research, a self-healing cost-effective microservice

architecture will consist of:

• A microservice application serving HTTP GET requests (backend-service app).

The service will be running on two general purpose t2.micro instances, for

redundancy. An Auto Scaling group with the policy described in Table 1.1 below

will also be provisioned.

Desired Capacity Maximum Capacity Minimum Capacity

2 4 2

Table 1.1: Configured to facilitate Warm Pooling

Also, an ELB (Elastic Load Balancer) will be configured to redirect incoming requests to

14

healthy instances. It was decided to run two instances instead of a single instance due to

AWS EC2 instances committing to 99.99% availability SLA (Service Level Agreement)

per EC2 Region, therefore two instances present eight 9’s availability, which corresponds

to 3.15 seconds of downtime per year. To challenge the resilience of the architecture

described above, faults will be injected via Chaos Engineered AWS Fault Injector

Simulator (FIS). A FIS experiment template will be created which will define fault

actions against EC2 instances.

Figure 1.2: FIS – AWS Fault Injection Simulator (Amazon Fault Services2)

Metrics will be monitored via a JMeter test plan, which will test the health of the

application every second and produce metrics and visual reports.

Key Research Question

Can Chaos Engineering techniques implemented via AWS Fault Injector Simulator (FIS)

degrade an ‘Industry standard Self-healing Cloud-based microservice architecture’

beyond a one-minute self-healing SLO?

Key Hypothesis

AWS is widely known for its fault tolerance and high availability. However, when

running a cost- effective architecture, chaos engineering techniques can still bring down

services and disrupt agreed SLOs.

• HA: On a microservice architecture running redundant instances under an Elastic

Load Balancer and Auto Scaling group with warm pooling, AWS Fault Injector

2 https://aws.amazon.com/fis/

https://aws.amazon.com/fis/

15

Service can inject enough faults so that the public facing service cannot respond to

requests within a one-minute window.

• H0: The use of ELBs and Auto Scaling groups configured with Warm Pooling over

redundant EC2 instances is widely accepted as highly resilient and can cope with

multiple failures while still maintaining high availability and response-times within

the one-minute window.

1.3 Project Aims and Objectives

Project Objective: To explore how a cost-effective self-healing cloud microservice

architecture will react to chaos engineered fault injections.

To achieve the objective, an experiment will be executed on the Amazon Web Services

platform. The experiment will require the creation of a microservice (backend-service)

connected to an in-memory database. This will be implemented using the Java

programming language and the Spring Boot framework. An Elastic Load Balancer will

be configured to route requests to the microservice, exposing an API that will be the

point of external testing later in the experiment. Internally, the backend-service will run a

select statement, retrieve data, and expose the data in JSON format in the response.

Crucially, the computational logic of the applications is not relevant in the context of this

experiment, given that the experiment is focused on self-healing capabilities, and not

performance.

To run this architecture, the author will setup the following components in the AWS

platform:

• On the AWS console, navigate to ‘Key Pairs’, create a key pair, download, and

save the private key.

• Create a standard security group.

• Deploy the backend-service application into an EC2 instance, configure the

instance to spin up the application at start-up via the ‘user-data’ script.

• Create an image of the EC2 instance, so it can be used by the Auto Scaling group.

• Create an Auto Scaling group (setup policy as per Table 1).

• Setup one virtual private cloud (VPC) with the standard accompanying

configuration (subnets, route tables and network connections).

16

• Configure an Elastic Load Balancer

• Create an AWS Fault Injector Simulator setup to terminate both EC2 instances:

o Setup the IAM policy for FIS so it has the privilege to terminate instances.

o Attach the new policy to a role (by either creating a new role or re-using an

existing one).

o Assign the role to FIS.

o Add Action (‘aws:ec2:terminate-instance’ passing in the EC2 instances ID

parameter).

A Test Plan will be created in Apache JMeter with:

• One single Thread Group (as this is not a stress-test).

• HTTP Request Sampler pointing to the Elastic load balancer for Service A.

• Graph and Table listeners.

Once the above configuration is in place, the JMeter test plan will be started, which will

continuously test the backend-service API and collect response-times. The AWS FIS setup

will then be started. Once FIS has been executed and the targeted EC2 instances are

terminated, an additional five minutes will be added to allow for the Auto Scale policy to

spin up extra compute instances, then finally the JMeter test plan will be stopped.

Auto Scaling groups allow for different configuration variations, which have effects on

recovery time of the service, so they will be explored as part of the experiment:

1. No warm pooling.

2. Warm pooling with one instance on ‘Stopped’ state.

3. Warm pooling with one instance on ‘Running’ state.

4. Warm pooling with one instance on ‘Hibernated’ state.

1.4 Project Evaluation

JMeter metrics will produce the main outcome of the experiment. The following metrics

will be provided from the ‘View Results in Table’ listener:

• Sample#: Identifier of the request in incremental numbers.

• Start Time: Time in which the request has been started (up to milliseconds).

• Thread Name: Name of the thread that initiated the request.

17

• Label: Label of the request.

• Sample Time(ms): Time between the sending of the request and the receiving of

the response back.

• Status: HTTP response status code

• Bytes: Size of the request in bytes

• Sent Bytes: Size of the response in bytes

• Latency: Latency of the connection

• Connect Time(ms): Time required for the handshake between sender and receiver.

The experiment is expected to take no longer than 10 minutes and will be executed eight

times per warm pool configuration. Any outliers will be examined, noted, and re-executed.

An experiment execution will be considered an outlier if the time between the last

successful response and the first successful response after the fault injection has a 50%

variation from the previous two executions median (except for the first and second

executions, which will be evaluated against the following two executions). A final report

will be produced from the compiled results, with the median value per warm pooling

configuration. If within the four warm pooling configurations, the median ‘Sample Time

(ms)’ goes over the one-minute SLO, then the hypothesis has been proven.

1.5 Project Scope

The focus of this project is to stress and validate the resilience of a cloud architecture,

therefore performance metrics will not be collected and are out of scope of this research

(i.e., API responses latency, API throttling, or how many threads the solution can handle

simultaneously before degrading).

Securing assets in the cloud is also not the focus of this project. Minimum security

configuration will be in place for inbound and outbound requests in the load balancer and

the Linux instances but will by no means be a state-of-the-art security configuration.

The research is also not focused on the quality of the code deployed to the cloud

architecture, therefore some of the best software development practices (i.e., unit tests,

integration tests) were omitted.

18

1.6 Thesis Roadmap

Chapter 2 is the Literature Review chapter, it focuses on four main topics: Chaos

Engineering Technique, Self-Healing and Self-Adaptive Systems, Microservice

Architecture, and Cloud Infrastructure.

Chapter 3 is the Design Chapter which presents the design of the system and the design of

the range of experiments that will be undertaken as part of this research.

Chapter 4 is the Development Chapter which presents the development of the system and

the execution of the range of experiments that were undertaken as part of this research.

Chapter 5 is the Results and Evaluation Chapter which presents the results of each of the

experiments as well as an analysis and evaluation of these results with respect to each other

and the relevant literature.

Chapter 6 is the Conclusions and Future Work Chapter which presents the key findings of

this project, highlighting what aspects of the research went well and what aspects did not

go well. It also discusses some future directions that the research may take.

19

2 LITERATURE REVIEW

“Research is to see what everybody else has seen, and to think what nobody else has thought.”

- Arthur Schopenhauer, 1851 Parerga und Paralipomena

2.1 Introduction

This chapter explores the four key areas of the research, to develop the required

foundation of understanding to begin the design and development on the proposed

experiment. Those four main areas are as follows:

• Chaos Engineering Techniques

• Self-Healing and Self-Adaptive Systems

• Microservice Architecture

• Cloud Infrastructure

2.2 Chaos Engineering Techniques

Chaos engineering involves conducting systematic experiments on a system to instill

confidence in its capacity to endure challenging operational conditions (Rosenthal and

Jones, 2020). In software development, it is common to specify the need for a software

system to gracefully handle failures while maintaining an acceptable level of service

quality. This characteristic, often referred to as resilience, is frequently outlined as a

critical requirement. Unfortunately, many development teams struggle to fulfill this

requirement, often due to constraints like tight deadlines or limited domain expertise.

Chaos engineering presents itself as a valuable technique to meet the resilience mandate.

It serves as a method for enhancing resilience against a range of potential setbacks,

including infrastructure failures, network disruptions, and application glitches (Jernberg,

et al., 2020).

Basiri, et al. (2016) describe the concepts and benefits of Chaos Engineering

(exemplified by its use at Netflix). They also describe Chaos Engineering techniques to

run experiments to validate the resilience of a software architecture. Their focus was on

bringing awareness, so practitioners and research communities come to recognize Chaos

Engineering as its own discipline and continue developing it.

20

Three years later, in 2019, Basiri, et al. published a subsequent paper describing the

evolution of the Netflix platform for automatically generating and executing chaos

experiments in their production environment. Netflix has built an in-house orchestration

system named ChaP (Chaos Automation Platform) which interacts with multiple internal

Netflix services to carry out chaos engineered experiments via a fault injection system,

also developed in-house, named FIT. In designing ChaP, an additional service was also

developed, named Monocle, which has two functions, introspecting services and

generating experiments:

Figure 2.1. Monocle UI for RPC dependencies within a cluster (Basiri, et al., 2019)

Their paper demonstrates that it is feasible to generate and run chaos experiments in any

environment, including production, automatically and safely.

Migirditch, et al. (2022) propose a Chaos Engine that stresses agents by intelligently

searching over ‘scenario chaos factors’ reflecting real-world events. Their approach is

focused on facilitating resilient strategic military planning. Their chaos engineering

methodology prioritizes expediting agent training to establish robust policies. This is

achieved through the introduction of the 'Adversarial Architect', a system that explores

parametric chaos elements (such as enemy force composition, platform failures,

weather, communication interference) to identify situations that result in preventable

failure scenarios.

21

Figure 2.2. Chaos Engine Algorithm (Migirditch, et al., 2022)

Zhang, et al. (2021) introduce an innovative framework named PHOEBE, designed for

injecting faults related to system call invocations. PHOEBE offers several distinctive

features.

• It grants developers complete visibility into system call invocations.

• It creates error models that closely resemble real-world errors occurring in

production environments.

• PHOEBE is capable of autonomously conducting experiments to systematically

evaluate the reliability of applications in the context of system call invocation

errors during production.

To assess the efficiency and runtime impact of PHOEBE, they conducted evaluations on

two actual applications within a production setting, both utilizing the Java software stack.

The results demonstrate that PHOEBE effectively generates realistic error models and

identifies critical reliability issues associated with system call invocation errors. To the

best of their knowledge, the concept of "realistic error injection," which involves basing

fault injection on actual production errors, has not been explored previously.

This section presented an introduction to Chaos Engineering, an approach to software

development that helps support the graceful degradation of software services in the event

of failures occurring. It also outlines some state-of-the-art research in the field of Chaos

Engineering.

22

2.3 Self-Healing and Self-Adaptive Systems

Self-healing systems perform periodic health assessments on various components and

autonomously initiate corrective actions, such as redeployment, to restore them to their

intended operational conditions (Ghosh, et al., 2007). At the hardware level, this self-

healing process involves relocating services from a malfunctioning node to a functioning

one while also conducting health evaluations on various components. On the other hand,

self-adaptive architecture can modify itself, e.g., adjust its states or behaviors, to satisfy

certain objectives (Yang et al., 2013)

Ali Naqvi, et al. (2022) propose CHESS, an approach for systematic evaluation of self-

adaptive and self-healing systems that builds on Chaos Engineering techniques. An

exploratory study was conducted to evaluate a self-healing application to evaluate the

limitations and promises of CHESS. The managed system is injected with faults using

chaos engineering concepts. The problem detection, fault diagnosis, fault recovery, and

knowledge modules of the self-healing system are reflected in a feedback loop that

adheres to the MAPE-K reference model. To capture the status of the system being

evaluated before, during, and after fault injection for subsequent analysis, the system

self-monitoring component offers intensive monitoring and data collecting.

Figure 2.3. Overall architecture of CHESS (Ali Naqvi, et al., 2022)

Motivated by the growth value of private cloud solutions, Petrenko (2021) conducted a

thorough comparison between different approaches and technologies that allow for

building a resilient cyber-stable private cloud based on well-known and proprietary

artificial immune system (AIS) models and approaches, as well as technologies for

distributed data processing, container orchestration, logging, security, and others.

23

Petrenko focuses on five layers in his paper:

• Client application,

• Data Services (Cassandra Postgresql, Ingnite, Kafka, Elasticsearch),

• Core Services (Ubuntu Linux, Kubernetes, Ceph),

• Hardware (Compute node, Storage Node, Network),

• Management (Console, Monitoring, Logging).

Dashofy, et al. (2002) present an approach and vision for developing self-healing

systems, focusing primarily on an event-based developed infrastructure to support the

creation and execution of repair strategies.

They have built a substantial infrastructure to support their vision based on:

• xADL 2.0, an extensible architecture description language, describes software

architectures and their alterations.

• c2.fw, a flexible framework for constructing event-based systems, is used to

instantiate and manage software systems.

• ArchStudio 3 development environment, which is also built on c2.fw, maintains

and manages the mapping between architectural descriptions and running

systems, as well as hosting design critics, which may be used to examine

architecture descriptions or the impact of a change before it is implemented.

Their long-term strategy can be seen as a refinement of the preceding approach, focusing

on tools and approaches that enable more flexibility or dependability in system

reconfiguration in general than was previously used.

In their paper, Frincu, et al. (2011) presented a proposal for a multi agent task scheduling

system enhanced with self-healing capabilities. To deliver a distributed, self-healing

scheduling platform, they addressed the following issues:

1. Provide fully distributed storage and communication mechanisms by using

distributed underlying platforms.

2. Since agents must be fault tolerant and self-adaptive, they implement agents as

modular smart control loops.

3. Maintain independence among multiple providers and easy switch scheduling

policies by using an inference engine for policy execution.

4. Facilitate flexibility in changing negotiation policy according to specific needs by

adding a “negotiator” as an easy-to-integrate plug-in module.

24

Simulated tests were conducted to minimize, but not reduce, the number of agents

involved in cross-service scheduling, and finally, their RMS was tested on a real-world

environment to evaluate its healing capabilities. Their tests have demonstrated that the

platform’s recovery times are within acceptable limits. Their next step is to integrate and

test the platform using the future, cloud-based API provided by mOSAIC.

Pedro Dias, et al. (2020) present and discuss a set of patterns for self-healing IoT systems

that bring improvements in reliability, by providing error detection, recovery, and

health-check mechanisms. In their paper they present a collection of 27 patterns, as well

as a pattern language, that can enhance the robustness of IoT systems by enabling them

to heal themselves. These patterns are grouped into two main categories: Error Detection

(Probes) and Recovery & Maintenance of Health. These patterns are mostly derived from

previous work on related fields such as: Cloud computing, Space systems engineering

and Critical and industrial systems. These patterns are not new, but their

contextualization to IoT systems is introducing new concepts, both in terms of fault-

tolerance and self-healing.

Seeger, et al. (2019) tackle the challenge of optimally self-healing IoT edge systems

with a combination of two key concepts:

• a policy-enabled failure detector that enables adaptable failure detection, and

• an allocation component for the efficient selection of failure mitigation actions.

In their paper, they introduce a system aimed at facilitating the autonomous recovery of

IoT choreographies. This system is primarily comprised of two key components:

1. A pioneering failure detection concept that offers extensive flexibility in

configuring parameters tailored to specific applications and policies. They also

provide recommendations on parameter selection.

2. They have devised an Integer Linear Programming (ILP) formulation to achieve

optimal task allocation, taking into consideration energy efficiency. Furthermore,

they have developed a heuristic approach that allows for real-time allocation

computation.

They have conducted evaluations for both the PE-FD failure detector and the

performance of the allocation algorithm.

Rios, et al. (2017) produced a paper that introduces a novel modeling language and an

accompanying tool designed to cater to the specific requirements of multi-cloud

25

application modeling.

This solution addresses the limitations of current modeling approaches by simplifying

two critical aspects:

1. It streamlines the computation of Composite Security Service Level Agreements

(SLAs) that encompass security and privacy considerations.

2. It enhances risk analysis and service matchmaking by considering not only the

functional and business aspects of cloud services but also their security aspects.

The language and tool discussed in their paper were developed within the scope of the

MUSA EU-funded project. These enhancements build upon the existing CAMEL

language, which already provided comprehensive meta-models for Requirements,

Deployment, Scalability, and Security, covering many requirements for specifying

multi-cloud applications. However, the MUSA project identified additional needs for

more detailed deployment and security specifications, risk analysis, and the composition

of Security SLAs. Consequently, extensions to the CAMEL language were developed to

fulfill these requirements. The modeling tool that supports this extended CAMEL meta-

model, known as the MUSA Modeller, has been seamlessly integrated with the MUSA

framework and is accessible on the MUSA website at www.musa-project.eu.

Figure 2.4. MUSA Overall Process (Rios, et al., 2017)

Mendonca, et al. (2018) investigate several representative self-adaptation solutions that

have been proposed recently from the perspective of generality and reusability, and

propose directions for the following challenges:

http://www.musa-project.eu/

26

1. New Adaptation Mechanisms

2. New Control Lopp Deployment Structures

3. New Continuous Delivery Strategies

4. New Testing Approaches

5. New Migration Strategies to Microservices

Colombo, et al. (2022) address the challenges of accurately and efficiently monitor Fog

environments. They introduced ‘AdaptiveMon’, an adaptive P2P monitoring solution

that leverages a knowledge base constantly updated with monitoring information to

dynamically modify the system behavior by triggering countermeasures. The

experimental results demonstrate that adaptive behaviors improve monitoring accuracy

while optimizing the utilization of available resources compared to a non-adaptive

solution.

Mendonca, et al. (2019) identify key challenges for the development of microservice

applications development, delivery, and operations from multiple self-adaptation

perspectives. They present the following contributions in their work:

1. We provide a detailed description of a cloud-based intelligent video surveillance

application, serving as an illustrative example of a self-adaptive microservice

system.

2. In the context of this example application, we highlight and explain various

challenges that arise during microservice development, delivery, and operations,

considering multiple aspects of self-adaptation.

3. We explore potential avenues for addressing the primary challenges encountered

in the development of self-adaptive microservice systems. This exploration

involves drawing upon existing microservice practices and technologies to

propose new directions for improvement.

A 2021 paper, written by Filho, et al. conducted a systematic mapping in which multiple

studies on “self-adaptation techniques and mechanisms in microservice-based systems”

were analyzed considering quantitative and qualitative research questions.

27

Figure 2.5. Self-Adaptation Techniques Research Questions (Filho, et al, 2021)

The findings indicate that the majority of research efforts center around the "Monitor"

phase, accounting for 28.57% of the adaptation control loop. Additionally, a significant

emphasis is placed on achieving the self-healing property (23.81%), employing a

reactive adaptation strategy (80.95%), primarily at the system infrastructure level

(47.62%), and adopting a centralized approach (38.10%).

This section presented an introduction to Self-Healing systems, which are systems that

perform regular checks on the key components, and to autonomously initiate corrective

actions. It also outlines some state-of-the-art research in the field of Self-Healing

systems.

2.4 Microservice Architecture

Microservices, which is also referred to as the microservice architecture, is an

architectural approach that organizes an application into a set of services characterized

by the following attributes:

1. Capable of independent deployment.

2. Loosely interconnected.

3. Aligned with specific business functionalities.

4. Managed by small, dedicated teams.

This architectural style empowers an organization to deliver large, intricate applications

efficiently and consistently with speed and reliability.

28

Jindal, et al. (2019) address the challenge of identifying a Microservice Capacity (MSC)

for a single microservice within a multiple microservice ecosystem. Such challenge was

overcome by sandboxing a microservice and creating a performance model via the

‘Terminus’ tool. The tool assesses a microservice's capability under various deployment

setups by executing a concise set of load tests and then applying a suitable regression

model to the gathered performance data. The assessment of these microservice

performance models across four different applications has yielded highly accurate

predictions, with a mean absolute percentage error (MAPE) consistently below 10%.

These outcomes from the suggested performance modeling of individual microservices

serve as a crucial input for the broader microservice application performance modeling.

Figure 2.6. Microservice Capacity Identification (Jindal, et al., 2019)

Zhang, et al. (2019) investigated the gap between Academia’s ideal vision and real

industry’s practices on microservices. A series of industrial interviews was undertaken,

encompassing thirteen diverse types of companies. Following this, they systematically

structured and coded the acquired data according to prescribed qualitative methods.

From the interviews, they validated both the advantages of implementing microservices,

which can be gained through practical experience, and the potential challenges that may

require additional investment based on their own experiences. Additionally, some of

these identified challenges, such as organizational transformation, decomposition,

distributed monitoring, and bug localization, could serve as valuable inspiration for

researchers to pursue further investigations.

29

Stubbs, et al. (2015) reviewed container technology and introduced Serfnode, a non-

intrusive Docker image, as a solution to service discovery challenges. Serfnode also has

a self-healing and monitoring mechanism based on Supervisor for resiliency.

Microservices architecture has emerged as a popular approach for organizations looking

to modernize their legacy applications. However, there is a significant gap in

understanding the key principles required for successfully implementing a microservices

architecture. Velepucha, et al. (2023) wrote a paper which aims to fill this void by

conducting a comprehensive survey of existing literature that delves into the

foundational principles of the object-oriented approach and how these concepts relate to

both monolithic and microservices architectures.

Furthermore, their investigation covers not only monolithic architectures but also

microservices, including an exploration of the design patterns and principles commonly

applied in microservices development. Their contribution includes the compilation of a

list of patterns commonly used in microservices architecture. They also compare the

principles advocated by experts such as Martin Fowler and Sam Neuman in the

decomposition of microservices architectures with the pioneering Principle of

Information Hiding put forth by David Parnas. Parnas discusses modularization to

enhance system flexibility and comprehension.

Additionally, they provide a concise summary of the advantages and disadvantages of

both monolithic and microservices architectures, as gleaned from the literature review.

The summary in their paper can serve as a valuable reference for researchers in academia

and industry, shedding light on the current trends in microservices architecture.

This section presented an introduction to Microservice architectures, an approach to

software architecture that organizes an application into a set of services. It also outlines

some state-of-the-art research in the field of Microservice architectures.

2.5 Cloud Infrastructure

Cloud infrastructure refers to the essential elements required for cloud computing,

encompassing hardware, abstracted resources, storage, and networking components.

Consider cloud infrastructure as the foundational building blocks necessary for

constructing a cloud environment. To accommodate services and applications within the

30

cloud, the presence of cloud infrastructure is imperative (Qian, et al, 2009).

Kotas, et al. (2018) evaluates compute-oriented instances from Amazon Web Services

and Microsoft Azure cloud platforms in multiple high-performance computing

benchmarks (HPCC and HPCG). Their experiment investigates the performance of

various HPC benchmarks on both the AWS and Azure cloud platforms, with a specific

focus on the compute-centric c4.8xlarge and H16r instance types. Nevertheless,

determining which cloud platform offers the most cost-effective solution for a particular

use case hinges on the computational and communication patterns of the application. In

the context of the tests conducted at the time of this study, the AWS c4.8xlarge

demonstrated a cost advantage in terms of raw computing power, whereas Azure's H16r

excelled in providing cost-effective bandwidth. Consequently, applications that heavily

rely on communication may find Azure's H16r with its faster network and larger RAM

to be a more economical choice, resulting in an overall cost-saving solution. It is worth

noting that cloud service providers consistently enhance their offerings. Therefore, the

most reliable method for determining an application's performance in the current cloud

environment is to conduct testing on the prospective system.

Yussupov, et al. (2020) propose a model-driven and pattern-based approach (MICO) for

composing microservices, which helps with the transition from architectural models to

running deployments. Central to their approach is the MICO meta-model, which

harmonizes architectural and deployment considerations, simplifying the transition from

integration models to active deployments. In addition to modeling interface-based

service integration, the MICO Model empowers the utilization of integration services

for modeling messaging-based service interactions. These integration services rely on

the implementations of well-known enterprise integration patterns. They promote

loosely coupled integration of microservices while abstracting away the technical

intricacies linked to the underlying infrastructure deployment prerequisites. To

substantiate the validity of their approach, they have conducted a prototypical

implementation of the system architecture. This implementation utilized Kubernetes for

container orchestration, Apache Kafka as a message-oriented middleware, and Open

FaaS for managing the service integration logic. Subsequently, they executed a concrete

case study based on a third-party application.

31

Figure 2.7. A Prototypical Implementation of the MICO system (Yussupov, et al., 2020)

Schleier-Smith, et al. (2021) discuss the evolution of cloud computing and the benefits

of Serverless Architecture in terms of lowering costs and simplifying system

administration. They conclude their paper with five predictions for serverless

computing:

1. The present categories of FaaS and BaaS are anticipated to evolve into a broader

spectrum of abstractions, which we classify into two categories: general-purpose

serverless computing and application-specific serverless computing. While

serverful cloud computing will not vanish, its relative usage within the cloud

ecosystem is expected to diminish as serverless computing continues to address

its current limitations.

2. Anticipated developments in general-purpose serverless abstractions aim to

encompass nearly any conceivable use case. These abstractions will encompass

state management and offer optimization possibilities—either user-driven or

automatically inferred—resulting in efficiencies that rival, or potentially surpass,

those of serverful computing.

3. There is no inherent reason for serverless computing to be more costly than

serverful computing. We predict that as serverless technology advances and

gains popularity, nearly all applications, whether small or large-scale, will cost

no more—and perhaps even less—when utilizing serverless computing.

4. Machine learning is poised to assume a pivotal role in serverless

implementations, enabling cloud providers to enhance the execution of extensive

32

distributed systems while furnishing a user-friendly programming interface.

5. The hardware landscape for serverless computing is expected to exhibit a

significantly greater degree of heterogeneity compared to the prevailing x86

servers that currently underpin it.

Blinowski, et al. (2022) evaluate the performance and scalability of monolithic versus

microservice architecture by running controlled experiments in three different

deployment environments (local, Azure App Service and Azure Spring Cloud) using two

different implementation technologies (Java versus C# .NET). Their findings are as

follows:

1. In terms of performance on a single machine, a monolithic system outperforms its

microservices-based counterpart.

2. When dealing with computation-intensive services, the Java platform

demonstrates superior utilization of robust hardware, whereas this platform effect

is reversed when non-computationally intensive services run on hardware with

limited computational capacity.

3. In the Azure cloud environment, vertical scaling proves to be a more economically

efficient choice than horizontal scaling.

4. Extending scaling beyond a specific number of instances leads to a decline in

application performance.

5. The choice of implementation technology does not significantly affect the

scalability performance.

Sen and Skrobot (2021) demonstrate and discuss the process of deployment and

provisioning of microservices utilizing DevOps principles and practices in industry

standard, more specifically AWS Elastic Container Service (ECS). They concluded that

throughout the transition from testing to production phases, AWS ECS serves various

environments, offering a substantial reduction in the time and labor required for

deploying microservices. This eliminates the need for manual server deployment and

configuration. Additionally, AWS ensures a high level of security and reliability without

necessitating additional efforts. AWS also seamlessly integrates ECS with its other

33

services, including Elastic Load Balancer and Identity Access Management, simplifying

the deployment of intricate multi-component applications in the AWS Cloud.

This section presented an introduction to Cloud infrastructure, looking at all the parts of

a cloud environment, including software, hardware, and networking components. It also

outlines some state-of-the-art research in the field of Cloud infrastructure.

2.6 Conclusions

This chapter began by dividing the research area of this dissertation into four separate

topics, and then discussed multiple papers to provide the necessary background to proceed

into the preparation of the proposed experiment.

As mentioned in this chapter, although much has already been extensively studied, the

author has not encountered any recent/relevant paper exploring chaos engineering

techniques on a self-healing Microservice Cloud Architecture.

34

3 DESIGN AND METHODOLOGY

“Cloud is about how you do computing, not where you do computing.”

– Paul Maritz, CEO of VMware

3.1 Introduction

In this chapter, the framework and procedures used to collect and analyze data for study

will be outlined. An experiment based on self-healing cloud architecture will be designed

to host a microservice application. Then, chaos engineered faults will be injected into

such architecture to measure how resilient it is.

First, an infrastructure cloud provider will be selected based on its relevance in the

current industry, then a microservice application will be developed. Following that, an

architecture within the selected cloud provider will be defined and created to host the

microservice application. To collect health-check data from the architecture

independently, an API testing tool will be chosen. A chaos engineered fault injection

tool will be selected to challenge the architecture. Finally, the experiment will be

conducted.

Replicability of the experiment will also be facilitated by a detailed experiment user

guide in Appendix B.

Research Question: Can Chaos Engineering techniques implemented via AWS Fault

Injector Simulator (FIS) degrade an ‘Industry standard Self-healing Cloud-based

microservice architecture’ beyond a sixty-second self-healing SLO?

Figure 3.1. High-level Overall experiment (Author)

35

3.2 Ethical Considerations

This study is not motivated to, and will not, promote nor demote any specific technology

or cloud provider. The focus is on, given a specific set of parameters, quantitatively

assess how resilient a cloud architecture can be. For this research, the AWS platform

will be used for the reasons outlined in Section 3.3. Nonetheless, that rationale does not

encourage, nor discourage, the choice of using other cloud providers in industry or in

the academia.

Regarding data controls and residency, AWS claims that the customer can manage their

data effectively through the utilization of robust AWS services and tools. These tools

empower the user to specify the data's storage location, implement security measures,

and regulate access permissions. For example, AWS Identity and Access Management

(IAM) ensures secure control over access to AWS services and resources. Additionally,

services like AWS CloudTrail and Amazon Macie aid in compliance, detection, and

auditing, while AWS CloudHSM and AWS Key Management Service (KMS) enable

the secure creation and management of encryption keys. To further enhance data

governance and residency, AWS Control Tower provides the necessary governance and

control mechanisms.

Regarding data privacy, AWS claims to consistently enhance privacy protection

measures by offering services and features that empower users to establish their own

privacy controls, encompassing advanced access, encryption, and logging

functionalities. They simplify the process of encrypting data during transit and at rest,

allowing users to choose between keys managed by AWS or those they manage entirely

on their own. The user can also integrate externally generated and managed keys. Their

privacy management procedures are uniformly structured and scalable, governing data

collection, utilization, access, storage, and deletion. To assist users in safeguarding their

data, AWS provides an extensive array of best practice resources, training, and guidance,

including the Security Pillar of the AWS Well-Architected Framework.

AWS claims to only handle customer data, which refers to any personal data the user

uploads to their AWS account, following their documented instructions. AWS claims to

not access, employ, or disclose user data without their explicit consent, except when

necessary to prevent fraud and abuse or to comply with legal requirements, as outlined

in the AWS Customer Agreement and AWS GDPR Data Processing Addendum. Many

36

customers subject to GDPR, PCI, and HIPAA regulations rely on AWS services for such

workloads. AWS has attained multiple globally recognized certifications and

accreditations, showcasing compliance with rigorous international standards, including

ISO 27017 for cloud security, ISO 27701 for privacy information management, and ISO

27018 for cloud privacy.

Regarding AWS billing, AWS has created a User Guide console to be transparent with

any charges incurred. The AWS Billing console offers functionalities for settling user

AWS invoices and tracking AWS expenses and usage. If the user is part of AWS

Organizations, they can also employ the AWS Billing console to oversee their

consolidated billing. When registering for an AWS account, Amazon Web Services will

automatically bill the credit card supplied. The user has the flexibility to view or modify

their credit card details at their convenience, including the option to assign a different

credit card for AWS charges. These adjustments can be made through the Payment

Methods page within the Billing console.

The author would also like to highlight that no information present in this research

regarding chaos engineering techniques can be readily used to deliberately harm/degrade

cloud infrastructures.

3.3 Cloud Provider Selection

When deciding regarding a public cloud provider, there are several factors to consider:

• Required Services: Ensure that the provider offers the essential services that are

needed, including computing, storage, networking, and databases.

• Feature Set and Capabilities: Evaluate the provider's features and functionalities

that align with the specific requirements, encompassing scalability, security, and

performance.

• Cost Structure: Verify that the pricing is competitive and that there is a clear

understanding of the associated terms and conditions.

• Support Services: Confirm that the provider delivers effective support services,

enabling users to access assistance whenever necessary.

Presently, AWS stands as the foremost cloud provider, with a global user base in the

millions and commanding a market share exceeding 30 percent. Introduced by Amazon

37

in 2006, it has since evolved into one of the most widely adopted cloud service providers,

supported by a wide community of engaged users and developers. Covering 245

countries and territories, AWS operates within 102 availability zones spanning across

32 geographic regions (as of December 2023). Its comprehensive offering encompasses

more than 200 fully featured services encompassing compute, storage, networking,

databases, analytics, and machine learning. Moreover, AWS regularly introduces new

features to meet evolving demands.

AWS includes robust security measures, with over 140 security standards and

certifications that cater to the compliance requirements of customers around the world.

Microsoft Azure, Google Cloud Platform, Alibaba Cloud, IBM Cloud, Oracle Cloud

Infrastructure, Tencent Cloud, DigitalOcean, UpCloud, Akamai, amongst many other

cloud providers have grown over the years, but in this research the experiment will be

undertaken based on AWS.

Figure 3.2. Cloud service providers per market share (DGTL Ingra website3)

3.4 Microservice Application Development

In this experiment, the Java programing language will be used to develop the

microservice application that will be deployed in AWS. The Java programming language

is characterized by its high-level nature, object-oriented approach, and a deliberate

3 Top 10 Cloud Service Providers Globally in 2023 - Dgtl Infra

https://dgtlinfra.com/top-cloud-service-providers/

38

emphasis on minimizing implementation dependencies. It is a versatile language

designed to enable the "write once, run anywhere" (WORA) principle, signifying that

compiled Java code can function on any platform that supports Java without requiring

recompilation. Typically, Java applications are compiled into bytecode, which is

executable on any Java virtual machine (JVM), irrespective of the underlying computer

architecture.

While Java's syntax bears some resemblance to C and C++, it offers fewer low-level

capabilities compared to both. The Java runtime environment provides dynamic

functionalities, such as reflection and runtime code modification, which are typically

absent in traditional compiled languages.

In this paper, the Java application will utilize the Spring framework to spin-up an in-

memory H2 database containing one table with two columns, inject ten random entries

into the table and then expose the entries in JSON format through a REST API via the

Spring Web module.

Based on the AWS microservice definition4, the Java application proposed in this paper

fits the description of being a microservice, as it has a well-defined interface using a

lightweight API, it is autonomous, specialized, it can independently run, be updated,

deployed and scaled.

3.5 Self-healing Architecture Design

In this research, the design of the cloud architecture is based on the AWS Well-

Architected framework, which is widely accepted in the industry. However, given the

nature of the experiment, a bigger focus was given to the Reliability Pillar, which states:

“The reliability pillar focuses on workloads performing their intended functions and how

to recover quickly from failure to meet demands. Key topics include distributed system

design, recovery planning, and adapting to changing requirements.5”).

It is also worth mentioning that most of the architectural design choices were focused on

the free-tier services, which are offered by AWS to accounts created within the past 12

4 https://aws.amazon.com/microservices/
5 https://aws.amazon.com/architecture/well-architected

https://aws.amazon.com/microservices/
https://aws.amazon.com/architecture/well-architected

39

months. There are three main components to this self-healing architecture:

1. EC2 instances: These are the computational power, machines where the Java

application will be deployed and executed. In this experiment two instances will be

created, due to AWS EC2 instances committing to 99.99% availability SLA (Service

Level Agreement) per EC2 Region, therefore two instances present eight 9’s.

availability, which corresponds to 3.15 seconds of downtime per year.

2. Auto Scaling Groups: An Auto Scaling group comprises a set of EC2 instances that

are organized as a cohesive entity, serving the purpose of automated scaling and

administration. Additionally, an Auto Scaling group facilitates the utilization of

Amazon EC2 Auto Scaling capabilities, including health check substitutions and

scaling policies. The central functions of the Amazon EC2 Auto Scaling service

encompass both the management of instance quantities within an Auto Scaling group

and the automatic scaling process. For this experiment, the Auto Scaling group will

be set to contain a minimum of two instances and a maximum of four.

3. Elastic Load Balancers: Elastic Load Balancing (ELB) autonomously disperses

incoming application traffic among numerous targets and virtual appliances situated

in one or multiple Availability Zones (AZs).

However, these components are dependent on the lower-level services listed below:

• VPC (Virtual Private Cloud): Amazon Virtual Private Cloud (VPC) empowers

the user to deploy AWS resources within a logically segregated virtual network

that have been personally configured. This virtual network mirrors the structure

of a conventional network the user might manage in their private data center

while leveraging the advantages of AWS's scalable infrastructure.

40

Figure 3.3. VPC example (Amazon VPC6)

• Key-Pair: A key pair, comprising both a public key and a private key, represents

a pair of security credentials employed for verifying the users’ identity when

establishing a connection to an Amazon EC2 instance. In this setup, Amazon

EC2 retains the public key on the users’ instance, while they retain control over

the private key. In the context of Linux instances, this private key serves as the

secure means for SSH access to their instance. Alternatively, in lieu of key pairs,

they have the option to utilize AWS Systems Manager Session Manager for

connecting to their instance. This method provides an interactive, one-click,

browser-based shell, or integration with the AWS Command Line Interface

(AWS CLI).

• AMI: An Amazon Machine Image (AMI) is a meticulously curated and managed

image made available by AWS, containing all the essential data needed to initiate

an instance. When launching an instance, specifying an AMI is a mandatory step.

If the user needs multiple instances with identical configurations, they can

initiate several instances from a single AMI. Conversely, when they need

instances with varying configurations, they can utilize distinct AMIs for

launching those instances.

• Launch Template: It is possible to generate a launch template, which

encapsulates the setup details needed for initiating an instance. Launch templates

offer a convenient way to store launch parameters, eliminating the need to

6 https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

41

repeatedly specify them when launching instances. For instance, a launch

template might include essential information like the AMI ID, instance type, and

customary network settings employed for launching instances. When users

launch an instance through the Amazon EC2 console, an AWS SDK, or a

command line tool, they have the option to designate the specific launch template

to employ.

• Security Groups: A security group governs the traffic that is permitted to enter

and exit the resources it is linked to. For instance, once users associate a security

group with an EC2 instance, it takes charge of managing both incoming and

outgoing traffic for that instance. It’s worth noting that they can only associate a

security group with resources located within the same VPC where the security

group was established. Upon creating a VPC, a default security group is

automatically provided. If needed, they have the flexibility to generate extra

security groups for each VPC in their account.

Figure 3.4: Security groups example (Amazon Security Basics7)

3.6 API Testing Tool

APIs are pivotal for enabling smooth communication among different applications and

services. Given their fundamental role in contemporary software, rigorous testing

becomes crucial to ensure their dependability, scalability, and security. This is where the

significance of API testing tools becomes apparent.

7 https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html#security-group-basics

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html#security-group-basics

42

API testing is a procedure used by developers to evaluate the functionality, efficacy, and

security of APIs. Before releasing their software, the results of this procedure will inform

developers if an API requires problem fixes and patches.

The Apache JMeter software is an open-source, entirely Java-based application from the

Apache Software Foundation that is designed to assess performance and stress-test

functional behavior. While its initial purpose was testing web applications, it has since

evolved to encompass a broader range of testing functions. Apache JMeter may be used

to test performance both on static and dynamic resources, Web dynamic applications.

Some of the important characteristics of JMeter to this experiment are as follows:

• It is available freely as open-source software.

• Featuring a user-friendly and intuitive graphical user interface (GUI).

• JMeter is versatile, capable of conducting load and performance tests on various

server types, including Web (HTTP, HTTPS), SOAP, Database (via JDBC),

LDAP, JMS, Mail (POP3), and more.

• It is a tool that operates seamlessly across different platforms. On Linux/Unix

systems, users can initiate JMeter by executing the JMeter shell script, while on

Windows, it can be launched by running the jmeter.bat file.

• JMeter offers robust support for Swing and lightweight components

(precompiled JAR utilizes javax.swing.* packages).

• Test plans in JMeter are stored in XML format, facilitating the creation and

modification of test plans using a simple text editor.

• With its comprehensive multi-threading framework, JMeter enables concurrent

sampling by multiple threads and simultaneous sampling of various functions

through separate thread groups.

• The extensibility of JMeter allows for the integration of additional functionalities

and plugins.

• Beyond load and performance testing, JMeter can also be employed for

automated and functional testing of applications.

43

Figure 3.5: JMeter architecture (JMeter Tutorial8)

3.7 Fault Injector

As the name suggests, fault injection is a technique for deliberately introducing stress or

failure into a system to see how the system responds. Runtime fault injection gained

significant traction, particularly within organizations overseeing extensive, intricate, and

distributed systems. In 2011, Netflix introduced Chaos Monkey, a tool that intentionally

halted compute instances operating in their cloud infrastructure. Chaos Monkey assisted

Netflix in confirming the resilience of their workloads to abrupt and unanticipated

failures through the random termination of running systems. In 2014, Netflix further

advanced this concept with the introduction of their Failure Injection Testing (FIT)

platform, which provided a more advanced solution for orchestrating widespread failure

scenarios involving multiple teams. These pioneering tools established the foundational

principles of modern-day Chaos Engineering.

AWS Fault Injection Simulator (FIS) is a completely managed service that facilitates the

execution of fault injection experiments aimed at enhancing an application’s

performance, visibility, and robustness. FIS streamlines the setup and execution of

deliberate fault injection tests spanning various AWS services, enabling teams to gain

trust in their application’s behavior.

8 https://www.javatpoint.com/jmeter-tutorial

https://www.javatpoint.com/jmeter-tutorial

44

Figure 3.6: FIS explained (Amazon FIS9)

It is important to highlight the lack of freely available chaos engineered tools at the time

of writing this dissertation. Given the nature of the research and the fault injection

requirements, AWS FIS was the only free tool available that could interact with AWS

resources in the necessary way (i.e., terminating computing instances to simulate an

unexpected fault).

3.8 Expert Interview Design

Three interviews will be conducted with Industry experts in the field of software

engineering and cloud infrastructure. The interviews will be conducted separately, so

interviewees cannot influence each other and/or steer each other’s train of thought in a

specific direction. The interviewees will be asked not to speak to each other about this

project until after all the interviews are conducted.

The interview process will be as follows, the interviewees will each be presented with

an outline of the experiment, and the key results obtained. This will be in a neutral

manner. The interviewees will then be asked to comment on the experiment, in terms

of how it was designed, how it was implemented, and on the results. And specifically,

they will be asked to share their interpretation of the outcomes of the experiment.

The interviewees can be described as follows:

Description

I1 Interviewee 1 has over 25 years of experience in the Software

Engineering industry, including FinTech, medical systems and the public

9 https://aws.amazon.com/fis/

https://aws.amazon.com/fis/

45

 sector. They have also spent over 10 years working directly with cloud

infrastructure, including AWS, OpenShift, PCF and Azure.

I2 Interviewee 2 has 8 years of experience in the Software Engineering

industry, including FinTech and public sector. They have spent over 3

years working directly with cloud infrastructure, including AWS and

OpenShift.

I3 Interviewee 3 has over 10 years of experience in the Software

Engineering industry, including banking and public sectors. They have

spent over 6 years working directly with cloud infrastructure, including

AWS, Azure and OpenShift.

These interviews allowed for reflection and validation of the experiment design, metrics

extraction and drawn conclusions from an external perspective, as well as bringing ideas

and inspiration for future work. The interviews will be described in detail in chapter 5.8.

Zhang, et al. (2021) in their paper on ‘Microservice architecture in reality: An industrial

inquiry’, conducted a series of interviews with industry experts, therefore this paper found

inspiration in their work when planning the interviews. The full presentation used in the

interviews and questionnaire can be found in Appendix C, or in Power Point format at

https://github.com/brunorfranco/masterThesis/blob/main/mastersInterviewPresentation.p

ptx.

3.9 Experiment Design

This section will explore the conception of the experiment's design, detailing the

encountered challenges throughout the process and culminating in its final state.

3.1.1. Design Challenge

During the implementation of the experiment, multiple challenges were faced, and they

will be explored in this section.

Initially, the research intended to use a ‘black box’ AWS service named Elastic

Beanstalk, which is a platform designed for the deployment and expansion of web

applications and services. By uploading application code, Elastic Beanstalk would

seamlessly manage the deployment process, encompassing tasks like capacity

provisioning, load balancing, auto scaling, and continuous monitoring of application

https://github.com/brunorfranco/masterThesis/blob/main/mastersInterviewPresentation.pptx
https://github.com/brunorfranco/masterThesis/blob/main/mastersInterviewPresentation.pptx

46

health. However, Elastic Beanstalk does not offer fine-grained configuration, including

the Auto Scaling configuration required for the ideal experiment, so it could not be

utilized in this research. More specifically, Elastic Beanstalk only allows for the

minimum and maximum number of instances setup, while the envisioned experiment

requires the setup for ‘desired capacity’ and ‘maximum prepared capacity’:

Figure 3.7: Elastic Beanstalk Auto scaling group configuration (Author)

On the applications implementation plan, initially the Author envisioned creating an

‘Industry level standard’ architecture, including a highly resilient and available database

in AWS, a Multi AZ RDS MySQL database with an extra read-only replica, but after

further consideration, it came to light that for the purpose of this research, this database

setup would not help validate nor disprove the hypothesis, and it would incur extra costs

on the AWS billing.

A similar scenario was also faced in terms of the application setup. Initially, it was

envisioned that two Java applications would be created, a ‘frontend-application’, and a

‘backend-application’, but after further consideration, it was realized that when injecting

47

faults into instances for the same service, it would not matter having two different

services, so the author has elected to proceed with only the ‘backend-application’.

Both applications codes can be found at: brunorfranco/masterThesis: Folder to hold all

the necessary code and configuration for my personal Masters thesis (github.com)

Figure 3.8. Initial Design (Author)

The initial research design had scope that the AWS environment cannot satisfy.

A study by Portent (https://www.portent.com/blog/analytics/research-site-speed-

hurting-everyones-revenue.htm) discovered that the average website load time in 2023

is 2.5 seconds, therefore the initial research design visioned for AWS to upkeep a self-

healing SLO of two seconds. However, after the preliminary test, it became clear that

two seconds was too ambitious, so the time expectation was modified to sixty seconds,

which was inspired by Frincu, et al. (2011), where recovery time findings were around

60s for 10 modules using on-demand deployment.

https://github.com/brunorfranco/masterThesis
https://github.com/brunorfranco/masterThesis
https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm
https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm

48

Figure 3.9. Recovery time vs. number of failed modules (Frincu, et al., 2011)

3.9.1 Final Design

Given Elastic Beanstalk limitations and the advice from experts in the field, the overall

cloud architecture will manually be created as follows:

Figure 3.10. Final Design (Author)

For this experiment, a Test Plan will be created in Apache JMeter containing:

• One single Thread Group (as this is not a stress-test),

• HTTP Request Sampler pointing to the Elastic load balancer for the backend-

49

service,

• Graph and Table listeners.

• Constant Timer with 1000 milliseconds Thread Delay

Figure 3.11. JMeter Test Plan Configured (Author)

An AWS Fault Injector setup will also be created to disable both EC2 instances running

the backend-service application, and the JMeter Test Plan will then collect information

during the fault injection.

The JMeter will collect the time of the last successful request to the API before the fault

injection, and the first successful request after the fault injection. The delta of the two

will be used as the time that the cloud architecture needed to heal itself.

Figure 3.12. JMeter Result in Table view (Author)

Once the FIS setup is completed and the targeted EC2 instances are terminated, an extra

five minutes will be allowed for the Auto Scale policy to spin up extra compute

instances, then the JMeter test plan will be stopped.

Following Ali Naqvi, et al. (2022) experiment, their experiment was executed in two

phases, eight times each, our experiment will be executed in four different phases

50

(differentiated by auto-scaling configurations), eight times each as well:

5. No warm pooling.

6. Warm pooling with one instance on ‘Stopped’ state.

7. Warm pooling with one instance on ‘Running’ state.

8. Warm pooling with one instance on ‘Hibernated’ state.

Therefore, in total, the experiment will be executed thirty-two times, and any outliers

will be investigated carefully and re-executed. An experiment execution will be

considered an outlier if the cloud healing time has a 50% variation from the previous

two executions median (except for the first and second executions, which will be

evaluated against the following two executions). A final report will be produced from

the thirty-two results, separated by the four configuration variations.

3.10 Conclusions

This chapter has discussed the main technologies and steps necessary to conduct the

proposed experiment, collect the data and evaluate it.

The results should produce data to either support or contradict the notion that chaos

engineered techniques will degrade the proposed microservice architecture beyond a

sixty-seconds self-healing time, as well as compare results between various auto scaling

configurations.

Collecting data with an independent tool (JMeter), from outside of the AWS ecosystem,

will remove any bias regarding reliability of the results.

A fault injection tool from outside of the AWS ecosystem would have been preferred.

However, no free tool that could interact with AWS resources was found, therefore AWS

FIS was chosen as the only feasible tool.

51

4 DEVELOPMENT PROCESS

“Creating new paths requires moving old obstacles.”

– Anthony D. Williams, Inside the Divine Pattern

4.1 Introduction

In this chapter, the implementation of the microservice application, the cloud

architecture, the fault injection setup, and the API testing will be discussed. These are

all based on the designs outlined in Chapter 3. Following this implementation process,

four variations of the experiment are executed eight times each. The results these

experiments generate will be used for resiliency evaluation purposes. Finally, the

difference in results from the four experiment variations will be analyzed. Any problems

encountered during the development will be discussed and the technologies used will be

judged on their effectiveness during implementation. All of the code written for this

dissertation, as well as any generated configuration (user-data file, JMeter test plan, FIS

template, etc.) can be found at the following Github location:

https://github.com/brunorfranco/masterThesis.

The diagram below shows all the necessary steps in the correct sequence to achieve the

final state within the AWS platform to proceed with the experiment.

Figure 4.1. AWS Diagram with all steps (Author)

https://github.com/brunorfranco/masterThesis

52

4.2 Java Micro-service Implementation

The ‘backend-service’ Java application was developed and compiled in JavaSE-17, in

the Eclipse IDE version 2023-09 (4.29.0). It was built with maven, Spring Boot 3.1.2,

Spring Boot Starter Data JPA, Spring boot Starter Web and H2 database. It contains a

single model called RandomEntry, which maps to a database table named

‘RandomEntryTable’, with two columns, ‘id’ and ‘randomValue’. The application also

exposes a Rest API under port 8082, URL ‘/api/entries’ which returns all the rows of the

RandomEntryTable in JSON format. When the application starts up, it executes a

command to insert ten random rows into the in-memory database. Once the application

is running, the database can be interacted with from the ‘/h2-ui’ URL. The application

can be executed by running the ‘BackendServiceApplication.java’ class. The

application’s code can be found in its entirety at:

https://github.com/brunorfranco/masterThesis/tree/main/backend-service.

4.3 AWS Cloud Architecture implementation

This section will explore the steps to create the self-healing cloud architecture that will be

challenged by the fault injection tool of choice and note if such architecture will be able to

heal itself within sixty seconds. The main goal in this section is to configure the necessary

components mentioned in the diagram below:

Figure 4.2. AWS Cloud Architecture Designed (Author)

For more details on how to setup any of steps described from section 4.3.1 to 4.3.10, please

refer to Appendix B, section 2.

https://github.com/brunorfranco/masterThesis/tree/main/backend-service

53

4.3.1 VPC Creation

The objective of this step is to set up a virtual private cloud (VPC), so that other cloud

components can be created safely within it.

Once logged into the AWS console, the ‘Create VPC’ wizard steps were followed:

Figure 4.3. AWS Console – VPC (Author)

4.3.2 Key Pair Creation

The objective of this step is to create an AWS Key Pair, so that it can be used for users to

safely use the Secure Shell Protocol (SSH) to connect into compute instances. A key Pair

is a set of security credentials, consisting of a public key and a private key, and it is used

to verify users' identities when they connect to an Amazon EC2 instance. To proceed with

the setup, a key pair needs to be created. Once logged into the AWS console, navigate to

the ‘Key Pair’ section, and follow the ‘Create key pair’ wizard.

Figure 4.4. AWS Console – Key pairs (Author)

4.3.3 (Windows users) Install Putty

The objective of this step is to download and install Putty, so that it is possible to SSH

into compute instances remotely to run the Java application. If the format file in the

download was .pem, then Puttygen can be used to convert it to .ppk.

4.3.4 EC2 Creation

The objective of this step is to create EC2 (Elastic Cloud Compute) instances, so that they

can be used to deploy and execute the Java Application

54

From the EC2 dashboard, the ‘Launch Instance’ button was clicked and instructions within

the wizard were followed to launch an ‘Amazon Machine Image’:

Figure 4.5. AWS Console – EC2 Launch (Author)

This will spin up an Amazon Linx 2023 x86_64 HVM kernel-6.1. The key pair created on

step 4.3.2 was selected under the ‘Key pair (login)’ section. Under the ‘Network settings’,

the ‘Create security group’ option was selected to simplify the configuration, given that

comes with SSH traffic allowed by default. The tick-box to ‘Allow HTTP traffic from the

internet’ was also selected, as a Rest API endpoint will be exposed by the Java application.

Finally, the instance was launched.

55

4.3.5 Adding Java Application file into the EC2 instance.

The objective of this step is to copy the Java application .jar file into the EC2 instance, so

that it be deployed. To add the .jar file into the EC2 instance, the WinSCP tool was used,

version 6.1.2, build 13797 2023-09-19. For details on how to configure the use of a .ppk

key file into WinSCP and SSH into the EC2 instance from the previous step, please refer

to Appendix B, section 2.5. The backend-service-0.0.1-SNAPSHOT.jar file from the Java

application ‘target’ folder was then copied and pasted into the EC2 instance, under the

‘/home/ec2-user/’ folder:

Figure 4.6. WinSCP Console (Author)

4.3.6 Connecting into EC2 through Putty and running the application.

The objective of this step is to connect to the EC2 instance via the command line interface,

so that the Java application can be executed. Once the .jar file was loaded into the EC2

instance, then it was time to SSH into the instance through the Putty command line and

run it. To achieve that, Putty version 0.79 was used. To open a new session from Putty, the

Public IPv4 address from the instance in the AWS console was captured, then inserted into

the Putty Host Name with the port 22. Under ‘Connection’, the author opened ‘SSH’, then

‘Auth’, then ‘Credentials’, then browsed and selected the .ppk key file that was generated

on step 4.3.2. The SSH connection was established then:

56

Figure 4.7. Putty Console – Login (Author)

If the connection times out, please refer to Appendix B, section 6 for troubleshooting

advice. Once in, it was verified that the .jar file is in place and accessible by executing an

‘ls -l’ command:

Figure 4.8. Putty Console – Jar File (Author)

After that was confirmed, the application was started by executing “java -jar /home/ec2-

user/backend-service-0.0.1-SNAPSHOT.jar &”.

4.3.7 AMI Extraction

The objective of this step is to create a Machine Image, so that the image can be used

further on as part of the Auto Scaling group. That way, the Auto Scaling group will be able

create pre-configured instances from this AMI when spinning up new on-demand

instances.

57

That was achieved from the ‘EC2 Dashboard’ in the AWS console, by selecting the healthy

EC2 instance, then selecting ‘Actions’, then ‘Image and templates’, then ‘Create image’

and following the wizard:

Figure 4.9. AWS Console – Creating Image (Author)

4.3.8 Launch template

The objective of this step is to create a Launch Template, so that it can hold the necessary

configuration for the Auto Scaling group. A Launch Template can be created from the EC2

dashboard, then ‘Auto Scaling’, then ‘Auto Scaling Groups’, then the ‘Launch Templates’

option:

Figure 4.10. AWS Console – Launch Templates (Author)

4.3.9 Auto Scaling group and Elastic Load Balancer

The objective of this step is to create an Auto Scaling group and Elastic Load Balancer, so

that AWS can create compute instances on-demand and route incoming traffic from the

Load Balancer into said instances. With the Launch template in place, then the Auto

Scaling group can be created through the EC2 dashboard, ‘Auto Scaling’, ‘Auto Scaling

Groups’, ‘Create Auto Scaling group’ wizard:

58

Figure 4.11. AWS Console – Auto Scaling group (Author)

4.3.10 Warm Pooling

The objective of this step is to set up warm pools within the Auto Scaling group, so that

higher resilience is achieved.

As mentioned previously, Auto Scaling groups allow for different configuration variations,

which have effects on recovery time of the service, so they will be explored as part of the

experiment:

1. No warm pooling.

2. Warm pooling with one instance on ‘Stopped’ state.

3. Warm pooling with one instance on ‘Running’ state.

4. Warm pooling with one instance on ‘Hibernated’ state.

They can be configured under the ‘Auto Scaling Group’ section in the EC2 dashboard,

under the ‘Instance management’ tab. The details of each warm pooling setup will be

discussed under section 4.6 “Experiment Execution”.

59

4.4 JMeter Test Plan Implementation

For this experiment, a Test Plan was created in Apache JMeter version 5.6.2

Figure 4.12. JMeter Logo (Author)

This tool is maintained by the Apache Software Foundation and is free and open source.

At the time of this writing, the tool can be downloaded from

https://jmeter.apache.org/download_jmeter.cgi

The creation and configuration of the Test Plan can be seen on Appendix B, section 3.

The full configuration can be found in .jmx format for ease of importing at

https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx

4.5 AWS Fault Injection Simulator (FIS) Creation

The author has opted to utilize the AWS FIS as the chaos engineering tool of choice. The

tool can be accessed through the AWS FIS console:

Figure 4.13. AWS FIS Menu option (Author)

https://jmeter.apache.org/download_jmeter.cgi
https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx

60

The creation of a FIS experiment template was done through the ‘Create experiment

template’ wizard:

Figure 4.14. AWS FIS Console (Author)

The details of the FIS setup can be found at Appendix B, section 4.

The command line configuration can be found at the following link to facilitate the creation

of the FIS experiment:

https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate

4.6 Experiment Execution

As mentioned earlier, each warm pooling configuration was executed eight times each.

Before any experiment executions, it was verified that there were two healthy EC2

instances running and serving requests through the Load Balancer. A timer was initiated.

As soon as the timer reached thirty seconds, the JMeter Test Plan was initiated to start

collecting metrics:

Figure 4.15. JMeter View Results (Author)

Once the timer reached one minute, the FIS experiment was initiated to shut down

running EC2 instances:

https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate

61

Figure 4.16. AWS FIS – Starting experiment (Author)

The JMeter Test Plan would soon (~15 minutes after the FIS startup) indicate that the

requests were no longer responding successfully, so the author took note up to the

millisecond of the last time a request was successful before starting to fail, via the ‘View

Result in Table’ in JMeter.

Figure 4.17. JMeter – Last success before fault (Author)

AWS auto scaling realized that it did not have the minimum required number of

instances as part of its group, so it spun up a healthy instance, then subsequently a second

one separately (as a mechanism to avoid spinning up extra unnecessary instances).

62

As soon as the new instances were assigned to the Load Balancer and the JMeter Test

Plan stopped failing and started receiving successful responses back again, then the

author also took note of the time up to milliseconds of the first successful response after

the fault injection:

Figure 4.18. JMeter – First success after fault (Author)

With both entries noted, the simple following subtraction was used to calculate the time

it took for AWS to self-heal its system:

4.6.1 No Warm Pooling Configuration

Before starting the execution of the experiment, the warm pooling configuration was verified

under the EC2 console, Auto Scaling section, Instance management tab:

Figure 4.19. AWS Warm Pool Console (Author)

No warm pooling required no extra steps, given that it is the default setup for a newly created

Self-Heal Time = Time of the first successful request after fault injection –

Time of the last successful request before fault injection

63

Auto Scaling group.

4.6.2. Stopped Warm Pooling Configuration

From the Instance management tab, the ‘Create Warm Pool’ was clicked, and configured as

follows:

Figure 4.20. AWS Stopped Warm Pool Window (Author)

After a few minutes, the new instances that were part of the warm pool could be verified under

the ‘Warm pool instances’ section:

Figure 4.21. AWS Stopped Warm Pool Instances (Author)

4.6.3 Running Warm Pooling Configuration

From the Instance management tab, the ‘Create Warm Pool’ button was clicked, and

64

configured as follows:

Figure 4.22. AWS Running Warm Pool Console (Author)

After a few minutes, the new instances that were part of the warm pool could be verified under

the ‘Warm pool instances’ section:

Figure 4.23. AWS Running Warm Pool Instances (Author)

4.6.4 Hibernated Warm Pooling Configuration

Hibernated Warm Pooling was introduced in February 2022, and it required extra security

configuration10.

The AMI behind the auto scaling group is required to have its block storage (ELB) encrypted

for it to be able to be added to a hibernated warm pool:

Figure 4.24. EBS Encryption (Amazon Blog Posting11)

10 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/hibernating-prerequisites.html
11 Amazon EBS encryption - Amazon Elastic Compute Cloud

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/hibernating-prerequisites.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

65

It was initially decided to create an independent symmetric key under the KMS console (Key

Management Service):

Figure 4.25. AWS Console – Key Creation (Author)

From the AMIs console, the existing AMI that was used throughout the other experiments was

selected, then ‘Actions’, then ‘Copy’:

Figure 4.26. AWS Console – AMI Creation (Author)

On the setup page, the ‘Encrypt EBS snapshot of AMI copy’ was then selected and under the

KMS key field, the newly created symmetric key was selected:

66

Figure 4.27. AMI Creation Details (Author)

Once the AMI was created, the Launch Template was updated to use the newly created

encrypted AMI:

Figure 4.28. AWS Console – Creating new Launch Template (Author)

67

Figure 4.29. AWS Console – New Launch Template details (Author)

With that in place, the auto scaling started launching unhealthy instances that would terminate

as soon as they start up.

Figure 4.30. AWS Console – EC2 listing (Author)

The logs were verified so problem could be better understood, to no avail:

68

Figure 4.31. AWS Console – EC2 error logs (Author)

Unfortunately, the provided information did not have enough details, apart from ‘Client error

on launch’. The author suspects that the new symmetric key needed to be loaded as part of the

launch template, or the auto scaling group, or maybe there were privilege issues on the IAM, or

the security group and they were not able to access the new key when trying to mount the block

storage as part of the auto scaling group. Instead of continuing with the investigation of the

issue, instead it was decided to not progress with the independent KMS key, but rather use the

one provided and managed by AWS when encrypting the AMI.

69

Figure 4.32. AWS Console – AMI Creation with default key (Author)

That one change to the configuration allowed for the Auto Scaling group to be healthy and

launching working instances again:

70

Figure 4.33. AWS Console – EC2 Successful listing (Author)

Finally, the Hibernated Warm Pool was created with the following configuration:

Figure 4.34. AWS Hibernated Warm Pool Window (Author)

4.7 Conclusions

In conclusion, the development process embarked upon in this research has been a

critical phase in realizing the objectives set forth in our exploration of chaos engineering

71

techniques within a self-healing cloud-native microservice architecture. The systematic

approach employed throughout the development lifecycle aimed at creating a robust,

scalable, and resilient system capable of withstanding the rigors of chaos engineered

fault injections.

By leveraging state-of-the-art technologies and methodologies tailored to the unique

demands of cloud-native microservices, we successfully translated theoretical concepts

into a tangible and functional solution.

The incorporation of chaos engineering techniques into the cloud-based microservice

architecture played a pivotal role in assessing the system's ability to withstand

unforeseen challenges. Noteworthy findings indicate that while auto-scaling warm

pools, a commonly advocated approach, may not be the silver bullet on aiding the

architecture's recovery from chaos engineered fault injections. This insight prompts a

reevaluation of existing assumptions and highlights the need for a more nuanced

understanding of resilience in the context of cloud-native microservices.

AWS Well Architected Framework played a crucial role in the decisions taken when

creating this self-healing architecture, ensuring that the resulting solution aligns closely

with industry best practices.

In subsequent chapters, the focus will shift towards the evaluation and analysis of the

developed solution. Rigorous testing and experimentation will be employed to validate

the effectiveness of the chaos engineering techniques and to measure the system's

performance under diverse conditions. The insights garnered from this development

process not only contribute to the academic discourse surrounding self-healing

microservice architectures but also offer practical implications for industry professionals

seeking to enhance the resilience of their cloud-native applications.

72

5 RESULTS AND EVALUATION

“Research is formalized curiosity. It is poking and prying with a purpose.”

– Zora Neale Hurston.

5.1 Introduction

The culmination of the exploration into chaos engineering techniques in a self-healing

cloud-native microservice architecture brings this analysis to the pivotal stage of results,

evaluation, and discussion. This section represents the synthesis of theoretical insights,

practical implementations, and empirical observations, providing a comprehensive

understanding of the implications and outcomes of this research endeavor.

Throughout the preceding chapters, a discussion of the intricacies of designing and

implementing a resilient microservices architecture capable of withstanding chaos

engineered fault injections was presented. The development process, as detailed in

Chapter 4, laid the foundation for the investigation, leading to a tangible manifestation

of the theoretical principles governing self-healing systems in cloud-native

environments.

In this section, the outcome of the research is presented, employing a multifaceted

approach that encompasses quantitative metrics, qualitative assessments, and a thorough

exploration of the implications derived from the chaos engineering experiments based

on the various types of warm pooling configurations. The evaluation of the self-healing

microservices architecture will be underpinned by rigorous testing scenarios, allowing

for a scrutiny of its responsiveness, fault tolerance, and adaptability in the face of

orchestrated disruptions.

As the results are presented, the broader implications of the findings will be discussed

in the context of contemporary cloud-native application development. The discussion

will go beyond the immediate scope of the experiments, weaving in theoretical

perspectives, industry best practices, and the evolving landscape of cloud technologies.

Moreover, this section serves as a platform for critical reflection, offering insights into

the limitations of the approach used in this research, potential areas for further research,

and the applicability of the findings in real-world scenarios. Through a balanced and

73

comprehensive analysis, the aim is to contribute not only to the academic discourse on

chaos engineering and self-healing architectures but also to provide practical guidance

for professionals seeking to enhance the resilience and reliability of their cloud-native

microservices.

This chapter will evaluate the results of this exploration, present a thorough evaluation

of the developed solution, and engage in a nuanced discussion that contextualizes the

findings within the broader spectrum of cloud-native application development and chaos

engineering practices.

5.2 Calibration - Results and Evaluation

Throughout the experiment, the utilized broadband speeds were verified by testing it

eight times to ensure it was consistent and would not interfere with the results.

No. Download
(MB)

Upload
(MB)

Ping
Latency (secs)

Download
Latency (secs)

Upload
Latency (secs)

1 405 50 7 51 235

2 450 51 9 48 272

3 448 50 8 46 62

4 428 50 8 38 60

5 410 51 9 46 128

6 424 51 8 39 90

7 423 48 8 56 152

8 455 51 7 83 246

Avg. 430 50 8 51 156

Table 5.1. Broadband Details (Author)

The results above were recorded and the full details of these results can be found at:

https://github.com/brunorfranco/masterThesis/tree/main/experiments-

results/BroadbandSpeed

Timing each experiment step for the four different warm pooling variations was also

consistent, where a timer was utilized to initialize the JMeter test plan, and then the FIS

experiment with 30 seconds apart from each other. It was noted that across all the 32

executions of the experiment, it took an average of 13.68 seconds for the Fault Injector

to disable the application from responding to the JMeter requests. In the tables below

“TtU” is “Time to Unresponsiveness” in seconds.

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results/BroadbandSpeed
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results/BroadbandSpeed

74

Experiments 1-16:

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TtU 14 14 15 9 15 9 16 16 17 14 14 15 15 9 16 14

Experiments 17-32:

No. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

TtU 14 10 13 14 15 9 16 12 15 15 14 15 15 9 15 15

Average Time to Unresponsiveness:

 Over 32 experiments: 13.68 seconds
.

Table 5.2. Time to Unresponsiveness metrics (Author)

The numbers above were extracted from the experiments executions, by subtracting

thirty seconds from the last successful row’s ‘Sample #’ column in the JMeter View

Results in Table after the Fault Injection.

The results above were recorded and can be found at: masterThesis/experiments-results-

screenies at main · brunorfranco/masterThesis · GitHub

The next four upcoming sections will present the results of the executed experiments per

warm pooling configuration.

5.3 No Warm pooling Experiment

During the execution of the experiment while the Auto Scaling group had no warm pooling

setup, the results were as follows:

No. Last successful request

after fault

First successful request

after recovery

Elapsed time

1 16:29:28.433 16:32:07.260 02:38.827

2 16:37:21.088 16:39:59.916 02:38.828

3 16:44:46.607 16:46:14.237 01:27.630

4 16:51:41.303 16:54:01.630 02:20.327

5 16:58:59.813 17:00:30.580 01:30.767

6 17:05:48.506 17:08:27.393 02:38.887

7 17:13:14.345 17:16:11.756 02:57.411

8 17:20:24.474 17:22:16.195 01:51.721

Average 02:15.549

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies

75

Table 5.3. No Warm Pooling Details (Author)

Below is a bar graph to facilitate the visualization of the results:

Figure 5.1. No Warm Pooling Results Graph (Author)

The Delta between the slowest and fastest experiments was 89 seconds. It is worth noting

that after the first healthy instance started serving successful responses back to JMeter,

AWS took an extra minute to spin up a second instance (this is an expected mechanism

implemented by AWS to avoid creating unnecessary instances). It was noteworthy that

during the addition of the second instance to the Elastic Load Balancer, some of the

requests returned failures:

Figure 5.2. JMeter Intermittent Failures (Author)

76

This behavior would only present itself for a short time (~10 seconds), and the second

instance would soon serve successful responses. Given that the detailed algorithm for

adding instances into AWS Elastic Load Balancers is not publicly available, it has been

theorized that the second instance would pass the health check validation once the

computing instance is available, but the microservice application is not yet up and

running. Based on this theory, the first instance added to the Load Balancer is also

susceptible to this behavior, but unnoticeable, given that all requests were failing up to

the point where the first microservice application is up and running.

5.4 Stopped Warm Pooling Experiment

During the execution of the experiment while the Auto Scaling group had a stopped

warm pooling setup, the results were as follows:

No. Last successful request

after fault

First successful request

after recovery

Elapsed time

1 12:21:14.040 12:23:53.779 02:39.739

2 14:18:39.652 14:20:16.130 01:36.47

3 14:27:41.048 14:30:02.658 02:21.610

4 14:36:24.950 14:38:00.258 01:35.308

5 14:44:04.283 14:46:00.484 01:56.201

6 14:51:21.225 14:54:21.301 03:00.076

7 15:01:16.763 15:04:03.782 02:47.019

8 15:09:03.961 15:12:19.420 03:15.459

Average 02:23.986

Table 5.4. Stopped Warm Pooling Details (Author)

Below is a bar graph to facilitate the visualization of the results:

Figure 5.3. Stopped Warm Pooling Results Graph (Author)

77

The Delta between the slowest and fastest experiments was 100 seconds. Regarding the

issue discussed in section 5.3 where the second computing instance added to the load

balancer fails for around 8 seconds, this behavior can also be noticed when using stopped

warm pools.

Figure 5.4. Stopped Warm Pooling JMeter failures (Author)

5.5 Hibernated Warm Pooling Experiment

During the execution of the experiment while the Auto Scaling group had a hibernated warm

pooling setup, the results were as follows:

No. Last successful request

after fault

First successful request

after recovery

Elapsed time

1 18:08:25.344 18:09:48.567 01:23.223

2 18:15:08.020 18:17:42.913 02:34.893

3 18:22:12.935 18:23:47.238 01:34.303

4 18:29:12.944 18:31:43.360 02:30.416

5 18:39:44.713 18:41:51.029 02:06.316

6 18:46:36.257 18:48:14.913 01:38.656

7 18:54:54.811 18:55:57.026 01:02.215

8 19:01:58.829 19:03:51.875 01:53.046

Average 01:50.383

Table 5.5. Hibernated Warm Pooling Details (Author)

78

Below is a bar graph to facilitate the visualization of the results:

Figure 5.5. Hibernated Warm Pooling Results Graph (Author)

The Delta between the slowest and fastest experiments was 93 seconds. Hibernated warm

pools would not present failed responses when adding instances into the load balancer.

This is likely due to the nature of hibernated instances. When the instance is started again,

the root volume is restored to its previous state and the RAM contents are reloaded,

therefore the application will be up and running as soon as the instance is pulled from the

pool.

5.6 Running Warm Pooling Experiment

During the execution of the experiment while the Auto Scaling group had a running warm

pooling setup, the results were as follows:

No. Last successful request

after fault

First successful request

after recovery

Elapsed time

1 17:37:44.065 17:39:35.936 01:51.871

2 17:45:18.922 17:47:34.990 02:16.068

3 17:52:46.518 17:53:48.744 01:02.226

4 18:02:41.585 18:03:43.793 01:02.208

5 18:10:01.389 18:11:29.012 01:27.62

6 18:16:43.552 18:17:45.765 01:02.213

7 18:30:05.661 18:31:34.408 01:28.747

8 18:37:05.916 18:38:08.136 01:02.220

Average 01:24.147

Table 5.6. Running Warm Pooling Details (Author)

Below is a bar graph to facilitate the visualization of the results:

79

Figure 5.6. Running Warm Pooling Results Graph (Author)

The Delta between the slowest and fastest experiments was 74 seconds. As expected,

running warm pools would also not present failed responses when adding instances into

the load balancer, given that the instance is already running, therefore the application is

already up.

During the execution of this part of the experiment, one outlier was observed (screenshots

can be found at masterThesis/experiments-results-screenies/RunningWarmPool/7-outlier

at main · brunorfranco/masterThesis · GitHub).

Even though the overall time to recover was 1 minute and 35 seconds (slightly above the

average but still within range of acceptance), an unusual behavior was observed after the

3 minutes mark into the experiment. The first successful request after the fault injection

was followed by a failure that held the thread for an average of 10 seconds. This ‘success-

into-10-seconds-failure’ pattern repeated itself three times in total, and after that, all

requests started succeeding again:

Figure 5.7. JMeter Running Warm Pool Outlier (Author)

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies/RunningWarmPool/7-outlier
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies/RunningWarmPool/7-outlier

80

It appears that the issue occurred when adding the second instance into the load balancer

(as observed for the experiments with no warm pooling and stopped warm pooling).

However, this should not have happened for running warm pooling, given that the

instances are supposed to be already running when pulling from the warm pool, and what

makes it more interesting is that this is the first and only time in all the 32 executions of

the experiment that the response took ten seconds before returning with a failure.

The explanation for such an event can be vague, given the error logs are limited at best. It

could had been an issue with the network connection for that specific EC2 instance, or

possibly the load balancer recruited the instance at the same time that the instance was

commissioned and prepared, and was sent to the warm pool itself causing a recruiting

conflict between the warm pool and the load balancer, or it could simply that the instance

misbehaved due to unexpected issues in hardware/software but was healed in around 30

seconds.

5.7 Conclusions

This chapter presented the outcomes of the research, using a multifaceted approach that

encompasses quantitative metrics, qualitative assessments, and a thorough exploration

of the implications derived from the chaos engineering experiments based on the various

types of warm pooling configurations. The evaluation of the self-healing microservices

architecture is be underpinned by rigorous testing scenarios, allowing for a scrutiny of

its responsiveness, fault tolerance, and adaptability in the face of orchestrated

disruptions. All the data presented in chapter 5 can be verified from the screenshots

presented at: https://github.com/brunorfranco/masterThesis/tree/main/experiments-

results-screenies.

Four separate experiments were undertaken (eight times each), and the average time for

each type of experiment was:

Experiment Type Average Time

1 No warm pooling recovery time 02:15.549

2 Stopped warm pooling recovery time 02:23.986

3 Hibernated warm pooling recovery time 01:50.383

4 Running warm pooling recovery time 01:24.147

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies
https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies

81

Given that the average metrics were collected in the ‘mm:ss.mmm’ format, they were

converted to seconds to facilitate comparisons.

No. No Pool Stopped Hibernated Running

1 159 160 83 112

2 159 96 155 136

3 88 142 94 62

4 140 95 150 62

5 91 116 126 88

6 159 180 99 62

7 177 167 62 89

8 112 195 113 62

Avg. 136 144 110 84

Table 5.7. Result Conversion to Seconds (Author)

The following vertical bar graph compares the recovery time in seconds per warm

polling configuration:

Figure 5.8. Recovery Time Comparison Graph (Author)

When visualizing the data through a pie chart, this is the outcome:

Figure 5.9. Recovery Time Comparison Chart (Author)

82

The following table presents the warm pooling recovery time comparison between one

another:

No WP Stopped Hibernated Running

No WP +5.88% -23.64% -61.9%

Stopped
-30.91% -71.43%

Hibernated
-30.95%

Running

Table 5.8. Warm Pooling Performance Comparison (Author)

Unexpectedly, the results show that having no warm pools was 5.88% faster than setting

up Stopped Warm pools, contrary to popular belief. This could have been caused by the

effects of the overhead created in the Auto Scaling group when the computing instances

are small sized machines (t2.micro – one of the smallest machine offered by AWS at the

time of this writing) and the start-up time of the application is also minimal (averaging

3.47 seconds).

The remaining results are in accordance with what was expected by this paper and the

AWS documentation12, where running warm pools should outperform all of the other’s

options, and hibernated warm pools should outperform stopped warm pools and having

no warm pools.

As mentioned in section 4.6, it is important to note that only the hibernated and running

warm pooling configurations did not present failed responses when adding the second

instance into the Load Balancer. That can be explained by the fact that hibernated

instances pre-initialize the entire EC2 instance state, not just the disk state, therefore

when they are requested from the pool, they already have the Java application in running

state, and running warm pool, as the name suggests, already has the instances fully

running, so they are ready to serve incoming requests. That concludes that when

prioritizing availability over performance, it is best to use hibernated or running warm

pools to avoid intermittent failed responses when requesting instances from the warm

pool.

12 https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-warm-pools.html

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-warm-pools.html

83

The delta between fastest and slowest recovery times for the four experiments also

conclude that Stopped Warm Pooling is the most irregular of the four, with 100 seconds

of delta, while Running Warm Pooling only has 74 seconds, therefore is has a more

stable behavior.

When comparing the experiment findings with Frincu, et al. (2011), the AWS

architecture self-healed slower than Frincu’s multi agent system for inter-provider task

scheduling enhanced with self-healing capabilities.

Figure 5.10. AWS Recovery Time compared to Frincu and friends (Author)

It is worth mentioning that each pooling configuration has different financial costs, and

requires different levels of expertise to configure:

Configuration
Type

Financial

Costs

Configuration
Complexity

No WP None None

Stopped Low – EBS Volume Low (simple UI wizard)

Hibernated Medium – EBS Volume (including RAM) High (requires encrypted AMI)

Running High – EBS and compute time Low (simple UI wizard)

Table 5.9. Warm Pooling Cost/Complexity Comparison (Author)

84

Given the nature of each warm pooling option, some conclusions can be drawn. Warm

pooling in general is known to help decrease latency for application with long boot times,

based on the AWS Warm Pooling documentation. Given that the current experiment had

an application with an average time of 3.47 seconds, a separate experiment with a longer

boot time application will likely wield different results.

It is also important to note that the running warm pool option is not financially advised.

If one is already willing to pay for a compute instance and its corresponding block

storage, it would be best to simply add such instance to the load balancer and use it,

rather than keep it in warm pool running and incurring costs.

When looking back into the research question, the results presented in this paper confirm

that AWS could not self-heal its microservice architecture within the defined timeframe

of sixty seconds. By utilizing auto scaling group with running warm pools, the AWS

platform came close to achieving it, but it missed the mark by extra 24 seconds, totaling

84 seconds to get back to a healthy state.

5.8 Expert Interviews Conclusions

Three interviews were undertaken with industry experts specializing in Cloud-based

Software Engineering. The forthcoming subsections will comprehensively outline and

expound upon the feedback provided by these experts.

5.8.1. First Interview

I1 has suggested for the experiment to be conducted again with the Elastic Load Balancer

reconfigured with a shorter time-out (which is defaulted to 60 seconds). They concluded

that the default time-out could cause performance issues by overloading instances with

throttled requests while the Auto Scaling group works to spin up more instances.

I1 has wondered how AWS would cope with a scenario where the deployed application

holds the requests for 5 seconds but JMeter continues to fire requests every second, so

that there will always be a growing queue of unattended requests.

I1 agreed with the paper when concluding that if the experiment had used larger compute

85

instances, the warm pooling results would have been vastly different, likely much better

than no warm pooling.

I1 has also stated that in many industries segments, the 2 minutes, and 16 seconds

necessary for AWS to self-heal itself without any warm pooling is acceptable and the

return in investment for setting up and maintaining warm pooling might not be justified.

Overall, I3 was satisfied with how the experiment was conducted and the tools/platforms

chosen.

5.8.2. Second Interview

I2 have challenged the paper’s choice of having 60 seconds SLO as part of the Research

Question, given that Frincu, et al. (2011) experiment has many different aspects from

this paper (i.e., optimal number of agents and number of idle clones).

They also suggested that instead of utilizing the FIS tool, a different approach where the

Java application itself would cause the error and bring the instance down with it.

During the experiment, when the Auto Scaling group is spinning up the first and second

instances after the fault injection, I2 has queried what is the average time between the

instantiation of the first and second instances, which unfortunately was a metric that was

not collected during the experiment execution.

I2 suggested for the experiment to be executed more times with variations on the start-

up time of the Java application, to correlate the start-up time with the warm pooling

results and infer if the relation between the two is linear or exponential.

I2 agreed that the findings of the experiment where no warm pooling outperformed

stopped warm pooling are interesting and valuable. They have stated that it is likely that

many companies have implemented Stopped Warm Pooling without knowing that this

is worsening their resilience rather than helping them.

I2 has approved the design the of experiment and the chosen tools and platforms,

however, they have said they would ensure JMeter is accurately recording the findings,

by having a second tool (for example Postman or Karate API testing) to compare it with.

86

I2 was satisfied with how the metrics were calculated, but they have stated that given

the human interactions when clicking buttons to start JMeter and the FIS tool, as well as

the JMeter one second delay per request, there will be a margin of error in the results.

The interviewee would have liked to have the experiment executed with more variables,

for example more instances in the auto scaling group, or more instances in the warm

pool, to understand better if the resilience would grow linearly or exponentially with

more instances.

They have also suggested that the paper could present the delta between the slowest and

fastest recovery times for each warm pooling configuration. This suggestion was heard

and implemented.

I2 has concluded that they would recommend the use of Hibernated warm pools for most

cases, given that it has substantial performance gains over no warm pools, and it is

budget friendly (cheaper than running warm pool).

Overall, I2 was satisfied with how the experiment was conducted and the tools/platforms

chosen.

5.8.3. Third Interview

I3 has reviewed the experiment design and suggested that more than one AWS region

should be used to achieve higher resilience.

I3 expected AWS to recover in less time than the experiment has shown. They have also

agreed that if the Auto scaling group had more frequent health checks, the recovery time

would decrease significantly.

I3 also agrees that if the application start-up time was longer or the compute instances

were larger, warm pools would have performed better than no warm pools.

Overall, I3 was satisfied with how the experiment was conducted and the tools/platforms

chosen.

87

6 CONCLUSIONS AND FUTURE WORK

“If we knew what we were doing, it would not be called research, would it?”

– Albert Einstein.

6.1 Introduction

Within the ever-evolving landscape of cloud-native microservice architectures, this MSc

thesis has embarked on a pioneering expedition, delving deep into the realm of chaos

engineering techniques and their application in fostering resilience within self-healing

systems. As this comprehensive exploration nears its denouement, this conclusion serves

as a compass, directing attention towards the cardinal discoveries, implications, and

future trajectories illuminated throughout this odyssey.

Throughout the preceding chapters, a meticulous examination of chaos engineering

techniques has unfolded, strategically applied to the intricate web of a self-healing cloud-

native microservice architecture. This pursuit has not only unraveled the intricate

interplay between chaos and resilience but has also underscored the significance of

proactive measures in fortifying systems against unforeseen adversities.

In the crucible of this investigation, the synthesis of empirical data, the evaluation of

resilience patterns, and the validation of chaos engineering methodologies have all

converged to unveil a tapestry of insights. Moreover, this conclusion serves as the nexus

where the synergistic amalgamation of theoretical frameworks and practical applications

within the realm of self-healing architectures is encapsulated.

As the thesis approaches its crescendo, the far-reaching implications of this exploration

within the broader context of cloud-native ecosystems are elucidated. The ramifications

extend beyond theoretical frameworks, transcending into the realm of real-world

implementation, where the principles elucidated herein hold the potential to redefine

practices, guide strategic decision-making, and reshape the paradigms of system

reliability and robustness.

This conclusion, however, does not signify an endpoint but rather a pivotal juncture. It

88

beckons a contemplation of the expedition thus far—a testament to the rigor, innovation,

and resilience inherent in the pursuit of advancing technological frontiers. Furthermore,

it propels the discourse forward, inviting continued investigation, refinement, and

application of chaos engineering techniques within the ever-evolving tapestry of cloud-

native microservice architectures.

6.2 Conclusions

6.2.1. Experiment Design

The experimental design conducted in this exploration of Chaos Engineering techniques

within a self-healing Cloud Native Microservice Architecture has yielded profound

insights into the resilience and adaptability of complex systems.

Through a meticulously structured methodology, deliberate faults were injected into the

system to understand its response under stress. This experimentation revealed invaluable

information about the system's behavior, vulnerabilities, and the efficacy of its self-

healing mechanisms. The findings not only validated the importance of Chaos

Engineering but also highlighted its pivotal role in fortifying system robustness against

unforeseen disruptions.

The fault injections provided unique perspectives on system resilience, aiding in the

identification of weaknesses and the enhancement of recovery strategies. This granular

understanding forms a cornerstone for refining existing practices and forging innovative

approaches to bolster Cloud Native Microservice Architectures.

Moreover, the experiments underscored the dynamic nature of system resilience. The

adaptive nature of self-healing mechanisms was observed, showcasing their ability to

learn from and adapt to disruptions, further strengthening the architecture's overall

robustness.

The insights gleaned from this experiment design offer a roadmap for future endeavors

in Chaos Engineering. They emphasize the need for continual exploration and evolution,

advocating for a proactive stance towards system reliability within modern architectures.

As technology progresses, the lessons learned here provide a solid foundation for

89

advancing the field and ensuring the resilience and dependability of Cloud Native

Microservice Architectures in an ever-changing landscape.

In conclusion, the experiment design undertaken in this exploration has not only

validated the importance of Chaos Engineering but has also illuminated its potential in

fortifying the resilience of Cloud Native Microservice Architectures. The findings serve

as a catalyst for future research, shaping a more robust and adaptive technological

landscape through the application of proactive Chaos Engineering techniques in Self-

healing architectures.

6.2.2. Tools and Platforms

This paper discussed in detail the options for conducting the experiment, from the cloud

provider to the application, the architectural design, the API testing tool, and the fault

injection tool. The chosen tools and platforms were proven to be fit for purpose,

delivering on their promises, and facilitating the realization of the experiment.

The key findings for chapter 3 were:

• The JMeter API testing tool proved itself to be highly configurable, facilitating

the setup of HTTP requests waiting times, delay per request, number of active

threads, and multiple options for visualizing collected data.

• The AWS FIS service offers a variety of options to inject faults into multiple

AWS services. For this experiment, only the EC2 termination action was used,

but other options could had been leveraged.

• The choice of AWS as the cloud provider allowed for low level configuration

on compute instances, auto scaling groups, warm pools, and load balancers.

6.2.3. Experiment Execution

The choices made for the experiment execution had either strong reasonings or were

inspired by other papers in the field. The number of executions (inspired by Ali Naqvi,

et al. (2022)) summed up to 32 in total, which gives high confidence in the results. They

were conducted in a controlled environment, started each time from a stable state, timed

accordingly and recorded in details (masterThesis/experiments-results-screenies at main

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies

90

· brunorfranco/masterThesis · GitHub).

The key findings were:

• The timing system applied to the experiment helped infer more data than initially

envisioned (i.e., time to unresponsiveness from the start of the fault injection)

• Broadband variation was negligible, given that the fault injection occurred within

the AWS network.

• The choice to terminate instances via instance ID in AWS FIS proved to be time

consuming and manual, given that the FIS template needed to be updated with

new IDs for each experiment execution. The author regrets not having used

‘tags’.

• The number of executions was satisfactory for high confidence in the results.

6.2.4. Results Evaluation

The results presented in this paper confirm that AWS could not self-heal its microservice

architecture within the defined timeframe of sixty seconds. Some specific configurations

in the auto scaling groups performed better than others, but none reached the pre-defined

time window SLO.

AWS presented its best results by utilizing running warm pools, missing the SLO mark

by 24 seconds, totaling 84 seconds to self-heal.

Also, the results show that having no warm pools was 5.88% faster than setting up

Stopped Warm pools, contrary to expectations.

It is worth noting that for this experiment, JMeter was configured to submit one request

per second, therefore there is a small margin of error for each experiment (i.e., AWS

could had healed itself just after a request went off and waited close to 1000 milliseconds

for the subsequent request to arrive and return successfully).

https://github.com/brunorfranco/masterThesis/tree/main/experiments-results-screenies

91

When evaluating the delta between fastest and slowest recovery times for the four

experiments, it can be concluded that Stopped Warm Pooling is the most unpredictable

of the four, with 100 seconds of delta, while Running Warm Pooling is the most

predictable, with a variation of 74 seconds.

As mentioned in section 4.6, it is important to note that only the hibernated and running

warm pooling configurations did not present failed responses when adding the second

instance into the Load Balancer. Therefore, when prioritizing availability, it is best to

use hibernated or running warm pools to avoid intermittent failed responses.

It is worth reiterating that when comparing the experiment findings with Frincu, et al.

(2011), the AWS’s best results self-healed 40% slower than Frincu’s multi agent system

for inter-provider task scheduling enhanced with self-healing capabilities, which

averaged 60 seconds.

Warm pooling in general is known to help decrease latency for application with long

start-up times. Given that the current experiment had an application with an average

start-up time of 3.47 seconds, a separate experiment with a longer start-up time

application will likely wield different results.

It is also important to note that it is not financially advised to configure running warm

pools. If one is already willing to pay for a compute instance and its corresponding block

storage, it would be best to simply add such instance to the load balancer and use it,

rather than keep it in warm pool running and incurring costs.

6.2.4. Experts Interviews Summary

The validity of the experiment and the accuracy of the selected tools and platforms were

affirmed by the three interviewees. However, I2 highlighted certain inherent fluctuations

in the collected metrics, indicating a variance of a few seconds. This was attributed to

JMeter's triggering of requests every second, potential request throttling due to timeouts,

and observed fluctuations in broadband performance on different days during the

experiments.

92

All interviewees expressed a desire for the experiment to incorporate more variations,

enabling a broader range of conclusions. For instance, I1 proposed varying the Load

Balancer timeout configuration, I2 suggested altering the cluster size and warm pool

dimensions, while I3 recommended varying the number of AWS regions. Regrettably,

implementing these suggestions would significantly expand the paper's scope and

require substantial time and effort to set up the proposed experiments.

A consensus was reached among the interviewees regarding a bottleneck in AWS's

time to recover, which is the time window in which the Auto Scaling group runs health-

checks against instances. Both I1 and I3 acknowledged the unalterable nature of this

configuration at the time of writing. However, I2 expressed uncertainty about the

feasibility of changing the health-check time window and opted to refrain from

providing a definitive response.

Despite the wealth of suggestions and insights offered during the interviews, the experts

expressed satisfaction with the experiment's execution and the credibility of the obtained

results.

6.3 Contributions and Impact

The research project incorporates contributions that augment the existing body of work,

encompassing:

• The research explored the various options provided by the AWS platform when

it comes to auto scaling groups warm pooling configuration.

• The research compared how warm pooling options compare with one another

when under stress.

• The research investigated various tools and technologies to implement a

successful chaos engineered experiment against a cloud-based architecture.

• The study highlights both the advantages and limitations of utilizing auto scaling

groups and elastic load balancers.

• The research described in detail how to create a highly available architecture in

AWS by following the Well Architected Framework.

• The research examined how resilient and available the AWS platform can be

93

when under chaos engineered fault injections.

6.4 Future Work

Upon concluding this research project, numerous prospects for future research emerged.

6.4.1 Long Start-up time applications

Further work on executing a similar experiment, with an application that requires longer

start-up time than the 3.47 seconds used in this research, could be carried out.

Based on the AWS documentation, warm pools would be more beneficial in such

scenarios. Therefore, the results should vary substantially from the results in this paper.

If a similar Java/Spring application were used in this scenario, then the longer start-up

time could be accomplished by adding a Thread.sleep() in the main method, or in a

CommandLineRunner ‘run’ method.

Here is an example that could be used, with a ‘three minutes delay’:

Figure 6.1. Java Thread Sleep Example (Author)

It would be beneficial to verify if there is a linear or exponential correlation between

start-up time and self-healing capabilities when using warm pools.

6.4.2 AWS Tag-Based Resources

When creating compute instances in AWS, the use of ‘tags’ could have been leveraged.

94

That way, the AWS FIS tool would be able to randomize the termination of instances by

tag, allowing for a wider variation of experiments, instead of the chosen path in this

paper, where the FIS experiment had to be updated with each instance ID for every

execution.

Tags can be added when creating resources in AWS, including EC2 instances:

Figure 6.2. AWS EC2 Console – Name and tags (Author)

During the experiment creation in AWS FIS, such tags can be referenced to define

targets in the fault injection:

95

Figure 6.3. AWS FIS Console – Tagging targets (Author)

6.4.3 Compute-Size Instance Variation

Further work could also be carried out by executing a variation of this experiment, by

changing the compute size of the instance from a t2.micro to a larger instance (i.e.,

t2.2xlarge or higher).

That can be accomplished by choosing the desired instance size during the EC2 Launch

setup:

96

Figure 6.4. AWS EC2 Creation – Compute options (Author)

It can be theorized that larger instances will benefit more from warm pools, as they take

longer to be commissioned. Therefore, the results will differ from this paper.

6.4.4 Cloud Provider Variation

97

Future work could be done by executing similar experiments within other cloud

providers (i.e., Microsoft Azure and Google Cloud) to compare the results and challenge

the providers claims.

The scope of the research would be much broader, given that an initial mapping of

corresponding services between cloud providers would need to be carried out, to ensure

the comparisons are reasonable and fair.

The research would be more technically challenging, as it would require in-dept

knowledge in various cloud providers to successfully set up the experiments.

6.4.5 Multiple Microservices Variation

The current experiment had one microservice application running when injecting faults.

Future work where multiple services interact with each other when faults are injected

could be carried on. That would elucidate how to implement lowly coupled services to

promote high availability when under stress.

Figure 6.5. Microservice Architecture example (MongoDB website13)

6.4.6 Performance-based Research

Performance was not covered in this paper, therefore future work could explore how

cloud-based infrastructure would behave when under stress load (i.e., heavy number of

13 https://www.mongodb.com/databases/what-are-microservices

https://www.mongodb.com/databases/what-are-microservices

98

users that exceed the system’s breaking point).

For instance, similar research could be carried out where the AWS Auto Scaling group

is created with an ‘Average CPU Utilization’ Target tracking scaling policy:

Figure 6.6. Auto Scaling – CPU utilization (Author)

Then the JMeter Test Plan would perform load testing with hundreds of simultaneous

threads and verify how fast AWS can scale up.

6.4.7 Application Internal Faul Injection

Further work on executing a similar experiment, where the difference lies on how the

Chaos Engineered fault is injected, could be conducted. Rather than using AWS FIS, the

fault would come from the deployed application itself. For example, the following

99

Java/Spring code could be used to bring down a compute instance after a pre-defined

number of minutes after the application was deployed:

Figure 6.7. Java/Spring Example – Shutting down instances (Author)

6.4.8 Future Work Conclusions

In conclusion, while this dissertation has made significant contributions to the

understanding of self-healing systems, there exist several unexplored paths and

opportunities for future researchers to continue building upon this work, advancing the

fields of chaos engineering, microservice paradigm, cloud providers and self-healing

architecture.

100

BIBLIOGRAPHY

Stubbs, J., Moreira, W., & Dooley, R. (2015). Distributed Systems of Microservices Using Docker and

Serfnode. 7th International Workshop on Science Gateways, 34-39.

https://doi.org/10.1109/IWSG.2015.16

Naqvi, M. A., Malik, S., Astekin, M., & Moonen, L. (2022). On Evaluating Self-Adaptive and Self-

Healing Systems using Chaos Engineering. 3rd IEEE International Conference on Autonomic Computing

and Self-Organizing Systems, 1-10. https://doi.org/10.1109/ACSOS55765.2022.00018

Wang, Y. (2019). Towards service discovery and autonomic version management in self-healing

microservices architecture. Proceedings of the 13th European Conference on Software Architecture,

2(13), 63-66. https://doi.org/10.1145/3344948.3344952

Mendonca, N. C., Jamshidi, P., Garlan, D., & Pahl, C. (2019). Developing Self-Adaptive Microservice

Systems: Challenges and Directions. IEEE Software, 38(2), 70-79.

https://doi.org/10.48550/arXiv.1910.07660

Filho, M., Pimentel, E., Pereira, W., Maia, P. H. M., & Cortes, M. I. (2021). Self-Adaptive Microservice-

based Systems - Landscape and Research Opportunities. International Symposium on Software

Engineering for Adaptive and Self-Managing Systems, 167-178.

https://doi.ieeecomputersociety.org/10.1109/SEAMS51251.2021.00030

Garriga, M. (2018). Towards a Taxonomy of Microservices Architectures. In A. Cerone & M. Roveri

(Eds.), Software Engineering and Formal Methods. SEFM 2017. Lecture Notes in Computer Science, vol

10729. Springer. https://doi.org/10.1007/978-3-319-74781-1_15

Petrenko, S. A. (2021). Self-Healing Cloud Computing. Voprosy kiberbezopasnosti, 80-89.

https://doi.org/10.21681/2311-3456-2021-1-80-89

Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., & Tilkov, S. (2018). Microservices: The Journey So

Far and Challenges Ahead. IEEE Software, 23(3), 24-35. https://doi.org/10.1109/MS.2018.2141039

Basiri, A., Behnam, N., Rooij, R. C., Hochstein, L., Kosewski, L., Reynolds, J., & Rosenthal, C. (2016).

Chaos Engineering. IEEE Software, 33(3), 35-41.

https://doi.ieeecomputersociety.org/10.1109/MS.2016.60

Villamizar, M., Garces, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., ... Lang, M. (2016).

Infrastructure Cost Comparison of Running Web Applications in the Cloud Using AWS Lambda and

Monolithic and Microservice Architectures. 16th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), 179-182. https://doi.ieeecomputersociety.org/10.1109/MS.2016.60

Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., & Deardeuff, M. (2015). How Amazon

Web Services uses formal methods. Communications of the ACM, 58(4), 66-73.

https://doi.org/10.1145/2699417

Verbitski, A., Gupta, A., Saha, D., Brahmadesam, M., Gupta, K., Mittal, R., ... Bao, X. (2017). Amazon

Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases. Proceedings of

the 2017 ACM International Conference on Management of Data, 1041-1052.

https://doi.org/10.1145/3035918.3056101

Kotas, C. W., Naughton III, T. J., & Imam, N. (2018). A comparison of Amazon Web Services and

Microsoft Azure cloud platforms for high performance computing. IEEE Cloud Summit.

https://doi.org/10.1109/ACSOS55765.2022.00018
https://doi.org/10.1145/3344948.3344952
https://doi.org/10.48550/arXiv.1910.07660
https://doi.ieeecomputersociety.org/10.1109/SEAMS51251.2021.00030
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.21681/2311-3456-2021-1-80-89
https://doi.org/10.1109/MS.2018.2141039
https://doi.ieeecomputersociety.org/10.1109/MS.2016.60
https://doi.ieeecomputersociety.org/10.1109/MS.2016.60
https://doi.org/10.1145/2699417
https://doi.org/10.1145/3035918.3056101

101

https://doi.org/10.1109/ICCE.2018.8326349

Sen, A., & Skrobot, I. (2021). Implementation of DevOps paradigm to deployment and provisioning of

microservices. Issues in Information Systems, 22(1), 136-148. https://doi.org/10.48009/1_iis_2021_136-

148

Borge, S., & Poonia, N. (2020). Review on Amazon Web Services, Google Cloud Provider and Microsoft

Windows Azure. International Journal of Advance and Innovative Research, 7(3), 49-54.

Zhang, H., Li, S., Jia, Z., Zhong, C., & Zhang, C. (2019). Microservice Architecture in Reality: An

Industrial Inquiry. IEEE International Conference on Software Architecture (ICSA), 51-60.

https://doi.org/10.1109/ICSA.2019.00014

Blinowski, G., Ojdowska, A., & Przybylek, A. (2022). Monolithic vs. Microservice Architecture: A

Performance and Scalability Evaluation. IEEE Access, 10, 20357-20374.

https://doi.org/10.1109/ACCESS.2022.3152803

Yussupov, V., Breitenbucher, U., Krieger, C., Leymann, F., Soldani, J., & Wurster, M. (2020). Pattern-

based Modelling, Integration, and Deployment of Microservice Architectures. 2020 IEEE 24th

International Enterprise Distributed Object Computing Conference (EDOC), 40-50.

https://doi.org/10.1109/EDOC49727.2020.00015

Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yadwadkar, N. J., Popa, R. A., ...

Patterson, D. A. (2021). What serverless computing is and should become: the next phase of cloud

computing. Communications of the ACM, 64(5), 76-84. https://doi.org/10.1145/3406011

Jindal, A., Podolskiy, V., & Gerndt, M. (2019). Performance Modelling for Cloud Microservice

Applications. Proceedings of the 2019 ACM/SPEC International Conference on Performance

Engineering (ICPE '19), 25-32. https://doi.org/10.1145/3297663.3310309

Dashofy, E. M., Hoek, A. V. D., & Taylor, R. N. (2002). Towards architecture-based self-healing

systems. Proceedings of the first workshop on Self-healing systems (WOSS '02), 21-26.

https://doi.org/10.1145/582128.582133

Frincu, M. E., Villegas, N. M., Pectu, D., Muller, H. A., & Rouvoy, R. (2011). Self-Healing Distributed

Scheduling Platform. 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

225-234. https://doi.org/10.1109/CCGrid.2011.23

Rios, E., Iturbe, E., & Palacios, M. C. (2017). Self-healing Multi-Cloud Application Modelling.

Proceedings of the 12th International Conference on Availability, Reliability and Security (ARES '17),

Article 93, 1-9. https://doi.org/10.1145/3098954.3104059

Seeger, J., Broring, A., & Carle, G. (2020). Optimally Self-Healing IoT Choreographies. ACM

Transactions on Internet Technology, 20(3), 1-20. https://doi.org/10.1145/3386361

Dias, J. P., Sousa, T. B., Restivo, A., & Ferreira, H. S. (2020). A Pattern-Language for Self-Healing

Internet-of-Things Systems. Proceedings of the European Conference on Pattern Languages of

Programs, Article 25, 1-17. https://doi.org/10.1145/3424771.3424804

Colombo, V., Tundo, A., Ciavotta, M., & Mariani, L. (2022). Towards self-adaptive peer-to-peer

monitoring for fog environments. Proceedings of the 17th Symposium on Software Engineering for

Adaptive and Self-Managing Systems, 156-166. https://doi.org/10.1145/3524844.3528055

Eismann, S., Shang, W., Bezemer, C. P., & Okanovic, D. (2020). Microservices: A Performance Tester's

https://doi.org/10.1109/ICCE.2018.8326349
https://doi.org/10.48009/1_iis_2021_136-148
https://doi.org/10.48009/1_iis_2021_136-148
https://doi.org/10.1109/ICSA.2019.00014
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1109/EDOC49727.2020.00015
https://doi.org/10.1145/3406011
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/582128.582133
https://doi.org/10.1109/CCGrid.2011.23
https://doi.org/10.1145/3098954.3104059
https://doi.org/10.1145/3386361
https://doi.org/10.1145/3424771.3424804
https://doi.org/10.1145/3524844.3528055

102

Dream or Nightmare?. International Conference on Performance Engineering, 1-13.

http://dx.doi.org/10.1145/3358960.3379124

Mendonca, N. C., Garlan, D., Schmerl, B., & Camara, J. (2018). Generality vs. reusability in architecture-

based self-adaptation: the case for self-adaptive microservices. Proceedings of the 12th European

Conference on Software Architecture: Companion Proceedings, Article 18, 1-6.

https://doi.org/10.1145/3241403.3241423

Migirditch, S., Asplund, J., & Curran, W. (2022). Chaos engineering: stress-testing algorithms to

facilitate resilient strategic military planning. Proceedings of the Genetic and Evolutionary Computation

Conference Companion, 2160-2167. https://doi.org/10.1145/3520304.3533962

Basiri, A., Hochstein, L., Jones, N., & Tucker, H. (2019). Automating Chaos Experiments in Production.

IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP), 31-40. https://doi.org/10.1109/ICSE-SEIP.2019.00012

Velepucha, V. and Flores, P., 2023. A survey on microservices architecture: Principles, patterns and

migration challenges. IEEE Access.

Ghosh, D., Sharman, R., Rao, H.R., & Upadhyaya, S. (2007). Self-healing Systems - Survey and

Synthesis. Decision Support Systems, 42(4), 2164-2185.

Jernberg, H., Runeson, P., & Engström, E. (2020). Getting Started with Chaos Engineering-design of an

implementation framework in practice. In Proceedings of the 14th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement (ESEM), 1-10.

Qian, L., Luo, Z., Du, Y., & Guo, L. (2009). Cloud Computing: An Overview. In Cloud Computing: First

International Conference, CloudCom 2009, Beijing, China, December 1-4, 2009. Proceedings 1, 626-631.

Springer Berlin Heidelberg.

Rosenthal, C., & Jones, N. (2020). Chaos Engineering: System Resiliency in Practice. O’Reilly Media.

Zhang, M. (2023, January 1). Top 10 Cloud Service Providers Globally in 2023. DgtlInfra.

https://dgtlinfra.com/top-10-cloud-service-providers-2022/

Amazon Web Services. (2023, April 10). AWS Well-Architected Framework. AWS.

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html

Estes, A. (2023). AWS Certified Solutions Architect - Associate (SAA-C03) [MOOC]. Pluralsight. AWS

Certified Solutions Architect - Associate (SAA-C03) | Pluralsight

Ellis, F. (2023). Hands-On Chaos Engineering with AWS Fault Injection Simulator [MOOC]. Pluralsight.

Hands-On Chaos Engineering with AWS Fault Injection Simulator (pluralsight.com)

http://dx.doi.org/10.1145/3358960.3379124
https://doi.org/10.1145/3241403.3241423
https://doi.org/10.1145/3520304.3533962
https://doi.org/10.1109/ICSE-SEIP.2019.00012
https://dgtlinfra.com/top-10-cloud-service-providers-2022/
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://www.pluralsight.com/paths/aws-certified-solutions-architect-associate-saa-c03
https://www.pluralsight.com/paths/aws-certified-solutions-architect-associate-saa-c03
https://www.pluralsight.com/cloud-guru/courses/hands-on-chaos-engineering-with-aws-fault-injection-simulator

103

APPENDIX A: MY JOURNEY

I would like to take the time to describe my personal journey, and what led me to the

decision of writing this dissertation.

I graduated in Software Engineering in 2014, but my career as a programmer started in

2011, when got my first job as an intern programmer at a small IT company

developing software for advocacy agencies.

Since then, I’ve come a long way, certifying myself in many different programming

languages, cloud platforms, agile methodologies, IT services standardizations, as well

as getting exposure to different companies, different business domains, and different

organizational cultures. I’m currently a Lead Software Engineer at a major FinTech

company.

I’ve started this master’s course back in 2017 and finished all the credits except for the

dissertation by 2019, however, due to personal issues I was not able to submit the

dissertation’s proposal in 2019 and had to take a study break.

Once my personal life got back on track, in late February of 2023 I’ve made the decision

to finish the masters.

At the time, I was very interested in cloud architecture and microservices and would

love to have my thesis in this field, so I have decided to recertify myself as an AWS

Architect, to make sure I was up to date with the latest services, options, and

configurations offered by AWS.

I already had previously certified myself in 2017 as an AWS Associate Solutions

Architect, as well as an AWS Associate Developer, however these certifications expire

every 3 years, so I saw it as the perfect opportunity to get recertified.

I have covered the ‘A Cloud Guru – AWS Certified Solutions Architect – Associate

(SAA-CO3)’ course, read through the recommended AWS whitepapers, covered

multiple mock exams from ‘Tutorials Dojo, sat the exam and passed:

104

With that out of the way, I’ve started my literature review in June 2023 to look for

inspiration on what type of pioneering research I could conduct in the cloud space.

That’s when I came across the academic concepts of self-adaptive and self-healing, as

well as Chaos Engineering, and I thought that together, these concepts had a lot of

potential for research.

It was challenging to find a Chaos engineering tool freely available, especially one that

could interact with AWS resources. That’s when I came across the AWS FIS service.

I’ve enrolled myself on the course ‘Hands-On Chaos engineering with AWS Fault

Injection Simulator’ by A Cloud Guru, and by the end of the course I had a clear idea on

how to use this tool to help me with the research.

Given my previous years of experiences as a Software Engineer, I naturally selected

JMeter for the task of independently health-check the Elastic Load Balancer. Therefore,

my review of JMeter was less structured. I’ve found a few good tutorials on YouTube,

did a couple of exploratory tests with it, ensured it would be fit for purpose and settled

for it. In hindsight, I could have used two separate tools to ensure the metrics collected

in the experiment were validated by another independent tool (this idea was also brought

up by an expert in the field during the interviews).

I’ve also written all the necessary Java code for the experiment in August 2023, in

preparation for the dissertation, so I could hit the ground running when the time came

for the experiment execution and the dissertation writing.

That can be confirmed by the dates shown in the contribution activities in my GitHub,

105

where I stored all the material for this dissertation:

As can be seen, the initial code was pushed on the 13th of August.

Once the dissertation proposal was approved in September, I already had a clear path to

follow. I knew that the experiment design was feasible, and the chosen tools were fit for

purpose, so I only had minor challenges when implementing the experiment and

collecting data.

APPENDIX B: EXPERIMENT USER GUIDE

Please note that this user guide was revised, reedited, and reviewed when a complete

redevelopment of the system infrastructure was undertaken to assess the effectiveness

of these instructions.

1. Java Micro-service Implementation

The ‘backend-service’ Java application was developed and compiled in JavaSE-17, in

the Eclipse IDE version 2023-09 (4.29.0). It was built with maven, Spring Boot 3.1.2,

Spring Boot Starter Data JPA, Spring boot Starter Web and H2 database.

106

It contains a single model called RandomEntry, which maps to a database table named

‘RandomEntryTable’, with two columns, ‘id’ and ‘randomValue’. The application also

exposes a Rest API under port 8082, URL ‘/api/entries’ which returns all the rows of

the RandomEntryTable in JSON format. When the application starts up, it executes a

command to insert ten random rows into the in-memory database. Once the application

is running, the database can be interacted with from the ‘/h2-ui’ URL:

107

Login details can be found at the ‘application.properties’ file:

The application can be executed by running the ‘BackendServiceApplication.java’ class:

The application’s code can be found in its entirety at

https://github.com/brunorfranco/masterThesis/tree/main/backend-service.

2. AWS Cloud Architecture implementation

2.1 VPC Creation

https://github.com/brunorfranco/masterThesis/tree/main/backend-service

108

The first step towards creating the cloud architecture is setting up a virtual private cloud.

Once logged into the AWS console, open the VPC section, click on ‘Create VPC’:

When doing it through the UI wizard, select ‘VPC and more’, by default that will create

four subnets (one public and one private for two separate availability zones). It will also

create three route tables (one public and two private), as well as two network connections:

Also provide the IPv4 CIDR, enter ’10.0.0.0/24’. The default values for the other fields are

sufficient to proceed with the setup:

109

2.2 Key Pair Creation

Once logged into the AWS console, navigate to the ‘Key Pair’ section, click ‘Create key

pair’.

Once logged into the AWS console, navigate to the ‘Key Pair’ section, click ‘Create key

pair’. Type a unique name, leave the default options for RSA and .ppk format, and click

on ‘Create Key pair’:

110

That will automatically trigger a download, save this file in a secure location as this cannot

be found anywhere else.

2.3 (Windows users) Install Putty

To prepare for the next steps, the download and installation of Putty to be able to SSH into

remote machines is necessary. If users have downloaded in .pem format file, then use

Puttygen to convert it to .ppk.

2.4 EC2 Creation

Navigate to the EC2 dashboard, click on ‘Launch Instance’, enter a name, quick select the

Amazon Linux AWS option under ‘Amazon Machine Image’:

111

This will spin up an Amazon Linx 2023 x86_64 HVM kernel-6.1.

Select the key pair created on step 2 under the ‘Key pair (login)’ section:

112

Under ‘VPC – required’, select the VPC created in step 2.1 and select one of the subnets

created with it:

Under the ‘Network settings’, select ‘Create security group’, this will simplify the setup

steps as it will be created with SSH traffic already allowed. Also tick the box to ‘Allow

HTTP traffic from the internet’, as a Rest API endpoint will be exposed by the Java

application:

113

Make sure that the ‘Auto-assign public IP’ option is enabled so that is assigned to the

primary network interface of the instance.

Launch Instance:

114

2.5 Adding Java Application file into the EC2 instance

To add the .jar file into the EC2 instance, use the WinSCP tool, version 6.1.2, build 13797

2023-09-19:

115

Once in WinSCP, click ‘New Tab’ to start a new connection, then provide the EC2 IPv4

address (found in the EC2 details as per image below) into the Host name field, port 22.

The default username is ‘ec2-user’.

Before trying to connect, the .ppk key file generated on step 2 needs to be referenced, so

go to ‘Advanced…’, then ‘Advanced…’ again:

116

Under ‘SSH’, ‘Authentication’, provide the location of the private key under the field

‘Private key file’:

117

Once this is in place, continue to click ‘Login’ and the connection will be established.

Copy the backend-service-0.0.1-SNAPSHOT.jar file from the Java application ‘target’

folder, and paste it inside the EC2 instance, under the ‘/home/ec2-user/’ folder:

118

2.6 Connecting into EC2 through Putty and running the application

Once the .jar file is loaded into the EC2 instance, then it is time to SSH into the instance

through the Putty command line and run it.

To achieve that, use Putty version 0.79:

To open a new session from Putty, go back to the AWS console and get the Public IPv4

address from the instance, then insert it into the Putty Host Name and use port 22.

Under ‘Connection’, open ‘SSH’, then ‘Auth’, then ‘Credentials’, then browse and select

the .ppk key file that was generated on step 2.

119

Go back to the ‘Session’ section, select a unique name and save the session, that way this

configuration can be reused in the future. Click ‘Open’ and the SSH connection will be

established:

120

If the connection times out, go back to the EC2 console, go to ‘Security’, and click on the

‘Security groups’ link:

121

Make sure there is an inbound rule for SSH, with Source 0.0.0.0/0 (Anywhere).

This is not a safe approach, as anyone holding the private key could connect to the instance,

so the key should be kept in a safe place.

Once in, ensure that the .jar file is indeed there and accessible by executing an ‘ls -l’

command:

122

These Linux instances do not come with Java pre-installed, therefore please execute the

commands in this order:

1. sudo su

2. yum update -y

3. sudo yum install java-17-amazon-corretto-headless

After that, then the application can be started by executing “java -jar /home/ec2-

user/backend-service-0.0.1-SNAPSHOT.jar &”:

123

Once the application is up and running, then verify that the Rest endpoint is available

through a browser via {IPADDRESS}:8082/api/entries:

If the response is unavailable, check the security group assigned to the EC2 instance and

make sure the following inbound rules exist:

124

2.7 AMI Extraction

With a healthy EC2 instance fully setup, then it is time to create an Amazon Machine

Image (AMI), so that other instances can be spun up from the same setup.

From the ‘EC2 Dashboard’ in the AWS console, select the healthy EC2 instance, then

select ‘Actions’, then ‘Image and templates’, then ‘Create image’:

A name for the image needs to be selected, the click the ‘Create Image’ button:

125

2.8 Launch template:

To create a Launch template, go into the EC2 dashboard, then ‘Auto Scaling’, then ‘Auto

Scaling Groups’.

126

From there, then click on ‘Launch Templates’:

Then ‘Create Launch Templates’:

A name must be specified, then the ‘Auto Scaling guidance’ checkbox must be selected:

127

Under the ‘Launch template contents’, go into ‘My AMIs’, and select the AMI created on

step 7.

128

Under ‘Network Settings’, select the security group created previously, then under

‘Advanced network configuration’, select ‘Auto-assign public IP’ as ‘Enable’:

129

All the other fields can be left with the default values, except for one. Under ‘Advanced

details’, the ‘User data’ field must be provided so that the java executable runs every time

a new instance is created, restarted or rebooted.

The required script to be added is as follows:

It can be also found at: https://github.com/brunorfranco/masterThesis/blob/main/user-

https://github.com/brunorfranco/masterThesis/blob/main/user-data%20file.txt

130

data%20file.txt

Once this is in place, then click the ‘Create launch template’ button:

2.9 Security Group configuration

Go to the Security Group tab under the EC2 dashboard and make sure you include inbound

and outbound rules for the port 8080, as well as 8082 into the newly created security group:

https://github.com/brunorfranco/masterThesis/blob/main/user-data%20file.txt

131

That is a very important step to allow for the Elastic Load balancer to be able to connect

to the instances.

2.10 Auto Scaling group and Elastic Load Balancer

With the Launch template in place, then it was time to create the Auto Scaling group. That

was achieved through the EC2 dashboard, ‘Auto Scaling’, ‘Auto Scaling Groups’, ‘Create

Auto Scaling group’ button:

Once there, provide a name for the Auto scaling group, and select the Launch template

defined on step 8:

132

Tick the boxes for no minimum nor maximum vCPUs and Memory (GiB):

133

Click ‘Next’, and select two different Availability Zones and subnets, to ensure higher

availability of the solution:

134

After clicking ‘Next’, select ‘Attach a new load balancer’, then selected ‘Application Load

Balancer (HTTP, HTTPS), selected a name for the load balancer, selected ‘Internet-facing:

135

Under ‘Health checks’, select ‘Turn on Elastic Load Balancing health checks’ and left the

health check grace period at the 300 seconds’ default.

Under ‘Listeners and routing, in the dropdown ‘Default routing (forward to)’, select

‘Create a target group:

136

Click ‘Next’ once again, then it is time to setup the Group sizing with two desired capacity,

two minimum capacity and four maximum capacities:

Review all the details provided and created the Auto Scaling group:

137

With that in place, double check if the Auto scaling group and the load balancer were

created appropriately and are healthy:

138

Once that is verified, get the Elastic Load Balancer DNS and access it by adding

“/api/entries” and that should return a successful response:

Add Listeners and Rules to the newly created Elastic Load Balancer for port 80 and 8082

from the ‘Load Balancers’ tab:

2.11 Warm Pooling

As mentioned previously, auto Scaling groups allow for different configuration variations,

which have effects on recovery time of the service, so they will be explored as part of the

experiment:

5. No warm pooling.

6. Warm pooling with one instance on ‘Stopped’ state.

7. Warm pooling with one instance on ‘Running’ state.

8. Warm pooling with one instance on ‘Hibernated’ state.

They can be configured under the ‘Auto Scaling Group’ section in the EC2 dashboard,

under the ‘Instance management’ tab:

139

2.12 Setup Diagram

3. JMeter Test Plan Implementation

For this experiment, create a Test Plan in Apache JMeter version 5.6.2

140

This tool is maintained by the Apache Software Foundation and is free and open source.

At the time of this writing, the tool can be downloaded from

https://jmeter.apache.org/download_jmeter.cgi

To create a test plan, click on ‘File’, then ‘New’:

Then create a Thread Group by right-clicking the Test Plan, then going into ‘Add’,

‘Threads (Users)’, then selecting ‘Thread Group’:

https://jmeter.apache.org/download_jmeter.cgi

141

The default configuration for the Thread Group is enough for the purpose of this

experiment, given that a single Thread will be used to check the health of the service

running in AWS.

Add a HTTP Request into the Thread Group by right-clicking the Thread Group, then

selecting ‘Add’, ‘Sampler’, ‘HTTP Request’:

The HTTP Request needs to be configured to point to the Elastic Load Balancer address,

therefore the Protocol, Server Name, HTTP Request and Path need to be configured as

per the image below:

Given that by default JMeter’s requests are fired every 300 milliseconds, that would

142

generate excessive entries in the result set, therefore configure a ‘Constant Timer’ so

only a single request was fired per second, facilitating the result’s readings.

That can be achieved by right-clicking on the Thread Group, then going into ‘Add’,

‘Timer’, ‘Constant Timer’:

The Constant Timer Thread Delay needs to be set to 1000 milliseconds:

To view the results of the requests, two different listeners need to be created:

6.4.8.1 View Results Tree

6.4.8.2 View Results in Table

Listeners can be added by right-clicking ‘Thread Group’, then navigating to ‘Add’, then

‘Listeners’:

143

The full configuration can be found in .jmx format for ease of importing at

https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx

4. AWS Fault Injection Simulator (FIS) Creation

The author has opted to utilize the AWS FIS as the chaos engineering tool of choice.

The tool can be access through the AWS FIS console:

The first step is to create an experiment template:

https://github.com/brunorfranco/masterThesis/blob/main/JMeterTests/APITesting.jmx

144

Provide a Description, then add an action of ‘Action type’ of ALL, and

‘aws:ec2:terminate-instances’:

Targets also need to be setup, so click on ‘Edit’ under the ‘Targets’ section, keep the

Resource type as ‘aws:ec2:instance’, also keep the Target method as ‘Resource IDs’,

then select the Resource IDs of the EC2 instances currently running:

145

The Resource IDs can be double checked by going back to the EC2 console, then

accessing the Instances (running):

146

Select the ‘Create a new role for the experiment template’ option under ‘Service access’,

so an IAM role can be automatically created with correct permissions to conduct the

experiments:

Click on ‘Create experiment template’.

The command line configuration can be found at the following link to facilitate the

creation of the FIS experiment:

https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate

5. Experiment Execution

Ensure that before any of the experiment executions there are two healthy EC2 instances

running and serving requests through the Load Balancer.

Initiate a timer. As soon as the timer reaches thirty seconds, initiate the JMeter Test Plan to

start collecting metrics:

https://github.com/brunorfranco/masterThesis/tree/main/FISExperimentTemplate

147

Once the timer reaches one minute, initiate the FIS experiment to shut-down running EC2

instances:

The JMeter Test Plan would soon (~15 minutes after the FIS startup) indicate that the requests

were no longer responding successfully, so take note up to the millisecond of the last time a

request was successful before starting to fail, via the ‘View Result in Table’ in JMeter.

148

AWS auto scaling will realize that it does not have the minimum required number of instances

as part of its group, so it will spin up a healthy instance, then subsequently a second one

separately (as a mechanism to avoid spinning up extra unnecessary instances).

As soon as the new instances are assigned to the Load Balancer and the JMeter Test Plan will

stop failing and start receiving successful responses back again, then take note of the time up

to milliseconds of the first successful response after the fault injection:

With both entries noted, the simple following subtraction can be used to calculate the time it

takes for AWS to self-heal its system:

Time of the first successful request after fault injection – time of the last successful request before fault injection

APPENDIX C: INTERVIEW PRESENTATION

149

150

151

152

153

154

155

156

157

158

159

