
#RegExThursday

Page 30

 6. EXAMPLES 2

 Examples with the Curly Braces

 Introduction
As we have already seen the curly braces are a repetition qualification that specifies
the number of instances of the preceding character (or grouping) in a RegEx.

And we will remember that we can use it in four ways, to indicate that the preceding
character (or grouping) appears the following times:

{num} Appears exactly num times.

• e.g. a{5} matches “aaaaa”.

{min,} Appears at least min times.

• e.g. a{4,} matches “aaaa”, “aaaaa”, “aaaaaa”, “aaaaaaa”, etc.

{,max} Appears up to max times.

• e.g. a{,4} matches “a”, “aa”, “aaa”, and “aaaa”.

{min,max} Appears between min and max times.

• e.g. a{2,5} matches “aa”, “aaa”, “aaaa” and “aaaaa”.

Some Common Examples
If we were searching my emails for “Yippee”, “Yippeee”, “Yippeeee”, and all
the way up to “Yippeeeeeeee”, we could do it simply as:
RegEx_Pattern = "Yippe{2,8}"

So this will match with “Yipp” and between two (2) to eight (8) “e”s.

If we were looking for “CamelCaseCamelCaseCamelCaseCamelCase”, we
can avoid a lot of typing (and avoid potential typos) by simply do the following:
RegEx_Pattern = "(CamelCase){4}"

And this will look for the phrase “CamelCase” repeated four (4) times.

Password Length
Let imagine we were writing a computer program to check if a user creates a
password that adheres to the following rules:

• The password has to have between 9 and 15 characters.

• The password cannot contain special characters (e.g. “%”, “@”, etc.).

• The password can be any combination of lowercase letters, uppercase letters,
and numbers.

We can express that as a Regular Expression as follows:
RegEx_Pattern = "[a-zA-Z0-9]{9,15}"

So, this matches any combination of lowercase letters, uppercase letters and
numbers, in a range of nine (9) to fifteen (15) characters. Additional rules for
passwords that might be added could be things like “the password should be hard to
guess”, and “the password should not be one you have used before”, but these rules
wouldn’t necessarily be implemented using Regular Expressions.

 #RegExThursday © Damian Gordon

