
#RegExThursday

Page 2

 1. INTRODUCTION

 History of Regular Expressions

 History of Regular Expressions
In 1943, Warren McCulloch (an American cybernetician) and Walter Pitts (an
American logician) developed a computer-based model of learning, modelled on
how human brains learn. These types of models are generally referred to as artificial
neural networks (ANNs), and their specific model is called a McCulloch-Pitts neural
network, whose goal was to learn and recognise patterns. In 1951, American
mathematician Stephen Cole Kleene created a formal mathematical language to
describe these neural networks, and this language eventually evolved into a general
pattern matching notation, which we know as Regular Expressions. This notation can
be used to explore the structure of any type of text-based patterns.

BIOGRAPHY: Stephen Cole Kleene

Stephen Cole Kleene was born on January

5th, 1909 in Hartford, Connecticut, and

died on January 25th, 1994 in Madison,

Wisconsin. He is a notable mathematician

who helped develop some of the foundations

of theoretical computer science (often

together with his thesis supervisor,

Alonzo Church). He is a founder of the

branch of mathematical logic known as

recursion theory, and as we know, he

invented Regular Expressions in 1951 to

describe the McCulloch-Pitts neural net.

The Church–Turing thesis
In the 1930s, Alonzo Church (Kleene’s dissertation supervisor) developed a general
system of logic, that he called Lambda calculus (λ-calculus), to explore the limits of
what it is possible to calculate. At around the same time, British mathematician, Alan
Mathison Turing, was working on the same problem using his computation model,
that later became known as the “Turing Machine”, and he identified an approach
that would also help explore the limits of what can be calculated, or computed. In
1952, Stephen Cole Kleene published “Introduction to Metamathematics” where he
showed that Lambda calculus and Turing Machines are strictly equivalent, and that
they are also equivalent to a third approach by Kurt Gödel called “Recursive
Functions”. He called this the “Church–Turing” thesis, and it serves as a foundational
principle in computer science and helps to establish the limits of computability.

The Church–Turing thesis is part of the broader theory of Computation, which looks
at the general question of whether a problem can be solved by a computer; and if it
can be solved, is it an approximate solution or a very precise one? We can express
these questions in a mathematical language, and when looking at problems that
examine pattern matching, we can use Regular Expressions to represent them.

 #RegExThursday © Damian Gordon

