Dissertation Research Proposal

[image: image1.emf]
MSc in Computing (Advanced Software Development)

Dissertation Proposal Form

The form, fully completed, must be returned to:

Brendan Tierney
School of Computing
Dublin Institute of Technology

Kevin Street
Dublin 8.

Or by e-mail to:

brendan.tierney@dit.ie
For Office Use Only

Recommendation: Project Number:

Supervisor:

Second Reader:

	TITLE OF PROJECT
	An Evaluation Of The Performance Of Push Messaging Technologies from Cloud To Device On The Android Mobile Platform.

	STUDENT NAME:
	

	STUDENT NUMBER:
	

	NAME OF SCHOOL/DEPT:
	Computing

	PROGRAMME

Delete where appropriate
	MSc in Computing (Advanced Software Development)

	CONTACT TELEPHONE NO:
	

	CONTACT MOBILE NO:
	

	DIT EMAIL ADDRESS:
	

	OTHER EMAIL ADDRESS:
	

	CONTACT ADDRESS:
	

	
	

	
	

	
	

	HOME ADDRESS:
	

	
	

	
	

	
	

	SUMMARY OF PROJECT (not to exceed 350 words):
This project will evaluate the performance of different application layer push messaging technologies that may be used for sending notifications from cloud servers to mobile applications running on Android mobile devices. A push messaging system consists of an application server which generates the content of notifications, a push messaging server which delivers notifications and a client application which is the recipient of the push notifications. In this project, the application server and push messaging server will both reside on a cloud based platform. The energy efficiency of the same Android mobile application using different push messaging technologies will be evaluated and also the performance of each push messaging system, in terms of stability and response times, will be analysed.

Push Messaging technologies invariably use persistent TCP connections between a client application and a push server to enable the timely delivery of push notifications which originate from an application server. If these persistent TCP connections are not managed efficiently by a mobile application and/or mobile operating system it can quickly lead to a drain on a mobile device’s battery power.

This project will detail the various push messaging technologies currently available and current research in this area. Related research work in the area of measuring the energy consumption of Android mobile applications will also be reviewed and assessed.

The four push messaging technologies to be evaluated in this project include Google Cloud Messaging (GCM), Extensible Messaging and Presence Protocol (XMPP), Message Queuing Telemetry Transport (MQTT) and Deacon.
There are numerous performance metrics that may be measured for any given software system. Monitoring and assessing the energy consumption of mobile applications is especially important in the area of mobile application development as mobile devices have limited battery power. Current research in this area of mobile application energy efficiency will be reviewed and an appropriate tool will be selected to measure the energy consumption of the Android mobile application using each of the aforementioned push messaging technologies. The stability of each push messaging system as a whole and also the response time/latency of notifications pushed to each client Android mobile application over Wifi and 3G networks will also be evaluated

	OTHER INSTITUTIONS / DEPARTMENTS / PERSONNEL ASSOCIATED WITH THE PROJECT:

	None.

Push messaging services are provided by cloud platforms which enables notifications to be pushed to mobile devices. Some common cloud based push messaging services include Google Cloud Messaging (GCM), Apple Push Notification Service (APNS), Microsoft Push Noti

	fication Service (MPNS) and BlackBerry Push Notification Service (BPNS). Typical uses of push messaging in mobile applications would be weather notifications, social network notifications, news and email alerts. Servers can push notifications to mobile applications to inform them that new data exists on the server which can then be fetched. In this way, applications maintain up-to-date data without having to periodically poll a server to check for new data.
There are many research groups involved in the study of push messaging technologies and their performance and efficiency. Hansen et al. (2012) performed a case study performance analysis of Google’s C2DM push messaging service. They implement a client application on an Android mobile device and deployed an application server to Google App Engine and then conducted a simple performance analysis. They also created an open-source library named Simple-C2DM which is an extension of the C2DM API and makes tasks such as registration easier for software developers. The performance of the Simple-C2DM library was compared to the standard C2DM API. One push message per minute was sent over a 200 minute time period and the response times were recorded.
Hansen et al. (2012b) then proceeded to investigate different push messaging technologies where the servers can be deployed to a cloud platform and whose notifications can be received by client applications running on the Android mobile platform. They performed a benchmarking test using four push messaging technologies, namely, Cloud to Device Messaging (C2DM), XMPP, Urban Airship and Xtify. They identified three important performance metrics for push messaging technologies used in mobile applications which are stability, notification response times and energy consumption. For the benchmarking test, server applications were deployed to the Google App Engine platform. The research team wanted to include the MQTT and Deacon push messaging technologies in the benchmark test also but could not do so due to limitations on Google App Engine which did not provide support for them. They proceeded to create an Android mobile application and deployed a server for each push messaging technology on Google App Engine and then compared the results of the benchmark test using the aforementioned performance metrics. Each notification sent to the client had the same payload size and

	were sent using the same time intervals. The tests were performed using Wifi and 3G. For each push messaging technology, they recorded the response times of notifications and calculated average response time and standard deviation. Stability was calculated by noting if each notification sent was received by the mobile application and if the response times didn’t have a high standard deviation from the average. The energy consumption of a mobile application using each of the push messaging technologies was also measured.

Lee (2011) developed a push messaging framework for service providers which integrates different push messaging services e.g C2DM, APNS and also stores messages so that they may be sent again if they fail to reach their destination. The framework acts as a gateway to the various push messaging services. The advantage of this is that software developers only need to write code to interact with the framework and not have to write code for each specific push messaging service, each having it’s own Application Programming Interface (API).
Goyal (2013) evaluated the performance of a cloud based push messaging technology named Cloudtarun which they deployed on a cloud platform, namely Google App Engine. Cloudtarun uses the publish/subscribe paradigm to push messages to applications running on Android mobile devices. The research group noted that the Cloudtarun API was not very user friendly and repetitive tasks such as registration could be made simpler, so they developed a library named Simple-Cloudtarun which sought to simplify the API for software developers. In the performance test, they measured the response times and calculated the average response time and standard deviation.
Agarwal (2011) details some scalability issues and challenges associated with push messaging technologies. Push messaging involves maintaining long-lived TCP connections between push servers and client applications. Proxies through which the long-lived TCP connections are routed often have finite memory and TCP ports, which proxies recycle to facilitate new connections. As a result, long-lived TCP connections may often be dropped if there is no data sent for a period of time. When a connection is dropped, mobile applications have to re-create the connection with the push server and therefore consumes more energy and bandwidth. Agarwal (2011) also points out that active TCP connections can interfere with power saving modes inherent in the mobile operating system and can therefore further drain mobile battery power. To mitigate these issues the researcher implements a machine learning algorithm on the mobile device which observes previous push message patterns and closes long-lived TCP connections at times when the probability of receiving push messages is low. The researcher performed an analysis of his system using a publicly available push email service and dataset and found that 90% of push messages were delivered to the client in real-time when the machine learning algorithm kept long-lived TCP connections active for only 50% of the time.
Brüstel and Preuss (2012) conducted a thorough review of the most well known push messaging services namely C2DM, APNS and MPNS and compared each of their features and limitations. They also proposed a Universal Push Interface (UPI) similar to the framework implemented by Lee (2011) which acts as an interface to the C2DM, APNS and MPNS push messaging services. The UPI was implemented using the Façade software design pattern and is situated between the push notification application servers and each of the push messaging services. The push notification application servers send messages to the UPI via a simple REST API. A disadvantage of the UPI is that it can only provide functionality that is common to all the supported push messaging services and therefore some features that are unique to each service cannot be used. Another disadvantage is that the UPI introduces more complexity and another point of failure within the push messaging system.

	Lee et al. (2012) describe their abstract push messaging framework designed for Social Network Services such as Facebook and Twitter. The framework is suitable for use with what is termed Social Big Data which is the massive amounts of data generated by the Social Network Services. The researchers argue that existing push messaging services such as GCM or APNS are not suitable for Social Network Services due to not being efficient enough and also the limitation on the size of notification payloads. They propose using the Universal Push Interface (UPI) introduced by Brüstel and Preuss (2012) but with added message storage functionality to enable the re-transmission of messages that fail to reach their destination.
Quah and Lim (2012) claim that the future of service delivery over mobile networks will be push based. However, they concede that there are currently challenges associated with advancing push systems which include unreliable communication networks, finite resources on mobile devices, security and bandwidth issues. They propose a push messaging service that pushes sales information in real-time to multiple mobile devices : it was developed using the proprietary iBus messaging system which is based on the Java Message Service (JMS).
Zarko et al. (2013) have developed a publish/subscribe messaging middleware that enables the transmission of large amounts of data between sensors, mobile devices and application servers which reside on the cloud. They developed the middleware and tested it using a crowdsensing application that monitors air quality. Crowdsensing applications enable the collection of sensor data from sensors that people are wearing and data is then transmitted via a broker running on their mobile device to application servers which reside in the cloud. The data gathered in this way can then be shared and analysed. The middleware was designed to be energy efficient as both sensors and mobile devices have limited resources and battery power. The research team also point to current challenges in this area such as limited mobile and sensor energy supply and bandwidth and security issues which are similar to those identified by Quah and Lim (2012). In their experiment the research team tested the energy efficiency of their middleware running on an Android mobile smartphone using PowerTutor Zhang et al. (2010). Using PowerTutor they measured the energy consumed when sending 1000 notifications to the smartphone over Wifi and 3G.
Dinh and Boonkrong (2013) compare the energy efficiency of an Android mobile application using polling and push to enable syncing of up-to-date data from a server. In their experiment they measured the energy efficiency of the Android mobile application using PowerTutor Zhang et al. (2010). Polling data is a request/response paradigm whereby a client sends a request to a server for new data and the server sends the data in a response. It is simple to implement and is suitable for applications where data is constantly changing such as weather and news applications. However, polling is not suitable for situations where data is not changing constantly as an application will still poll the server for new data at specified time intervals regardless of whether there is new data available on the server or not. This scenario wastes resources and energy on a mobile device. Push messaging, on the other hand, is much more suitable for situations where data is not changing constantly on the server and notifications are pushed to the mobile device only when there is new data available. In their experiment, the research team created one version of an Android mobile application which fetched data using the polling technique from a web server using HTTP and another version of the Android mobile application which used C2DM to receive push notifications. They tested two scenarios, one where no data was transmitted between server and mobile application and another where 1 kilobyte of data was fetched in the case of polling and sent in the case of push, every five seconds. The results of their experiment indicated that push

	consumed less energy on the mobile device than polling.
Haverinen et al (2007) analyse the energy consumption of mobile applications which use persistent TCP connections within a WCDMA 3G cellular network. Mobile Operators can configure WCDMA networks to use different Radio Resource Control (RRC) parameters and the research team investigated how these parameters affected the energy consumption of mobile applications which use persistent TCP connections and also how the frequency of keep-alive messages can cause battery power drain in a mobile device. Keep-alive messages are necessary to maintain the state of persistent TCP connections routed through a Network Address Translator (NAT) or firewall and to prevent the connections being dropped due to an inactivity timeout when no data is transmitted. In their experiment they measured the energy consumed by a 3G phone with various configurations of RRC parameters and using different keep-alive intervals in the mobile application. The energy consumed by the mobile device was measured using a Yokogawa digital multimeter attached to the battery terminals.
Guo et al. (2013) propose a framework named Adaptive Message Push Strategy (AMPS) in which mobile device parameters provided by the mobile operating system are obtained and this information is then used to dynamically determine the best connection mode, either polling or push based. AMPS software modules are deployed to both the server and the mobile devices. AMPS may also switch between connection modes during a session if parameters change and it decides that the other connection mode would be more beneficial. In their experiment they considered four parameters, namely, server operating system support, network load, energy consumption of the mobile application and message delivery time. They used Android, iOS and Windows Mobile smartphones to test the mobile device software module. The server side module was implemented using a Tomcat 6.0 web server. They claim that their experiment results show that AMPS can work with many different types of mobile devices, can save energy consumption on those devices and can contribute to reducing network traffic.
Mobile smartphones and devices are ubiquitous nowadays and mobile applications are numerous and varied such as those for entertainment, banking, social networking etc.

However, Zhang et. al (2010) state that many mobile software developers have insufficient experience creating energy efficient mobile applications. As a result, mobile users may complain about the battery life of their mobile device and may have trouble identifying which mobile applications are causing the battery drain or they may falsely assign blame to the mobile device itself or the mobile operating system.

Research work in the area of mobile device energy consumption profiling and measurement is vast and diverse. Vallina-Rodriguez and Crowcroft (2013) identified six current research areas related to energy management on mobile handsets in their survey which included mobile operating systems, mobile resource management, the study of mobile device and mobile application user interaction patterns, mobile hardware component management and the use of mobile cloud computing. Profiling the energy consumption of software applications is especially important in the area of mobile application development as mobile devices have limited battery power and are becoming increasingly complex in terms of hardware components, some of which are high energy consumers e.g Accelerometer sensor. The Lithium ion battery is the standard type of battery currently used in mobile devices. Donohoo et al. (2011) claim that battery technology in general has failed to keep up with the energy demands of modern smartphones.

	Flinn and Satyanarayanan (1999) developed PowerScope which is a system that associates energy consumption with software code at the process and procedure level. The PowerScope system is quite complicated to setup as it involves installing a system monitor process on the mobile device and the mobile device battery terminals need to be connected to a Digital Multimeter. The Digital Multimeter is also connected to a “Data Collection Computer” which is running an energy consumption monitoring process which collects and stores data. Energy consumption per process is mapped using Program Counter, Process ID and Symbol Table information.
Park et al. (2003) implemented a mobile battery emulator which they named B#, that can be used to model energy consumption for mobile devices. It consists of a circuit board which a mobile device can plug into and a workstation reads and analyses the data collected by the B# circuit board. This is specialised hardware and is not readily available to Android software developers and users.

Balasubramanian et al. (2009) present a study of the power consumption of three radio communication interfaces commonly found on mobile devices, namely, GSM, 3G and Wifi. They describe the various energy states that a radio communication component undergoes during a data transmission in a mobile device : there is the initial switch from the idle state to the high power energy state, the data transmission occurs during the high power energy state and finally there is the ‘tail energy’ state which is the energy consumed while the radio communication component remains in the high power energy state after a transmission. The research group found that the switching of the idle state to the high power energy state in 3G accounted for 14% of the total energy required while “tail energy” accounted for 60%. In the case of GSM transmission, the switching of the idle state to the high power energy state had a similar energy rating to 3G but the “tail energy” only accounted for 30%. Generally, the “tail energy” period for a mobile GSM radio communication component is six seconds and is twelve seconds for 3G radio communication component.

Zhang et al. (2010) have developed PowerBooter which is an online service that generates unique power consumption models for different mobile devices and operating systems. They have also developed a software tool named PowerTutor which uses the models generated by PowerBooter to report the energy consumption of applications running on a mobile device. No external power measurement equipment, such as a digital multimeter, is required. Instead, PowerBooter and PowerTutor take advantage of battery voltage sensor components installed in modern smartphones and awareness of battery discharge behaviour. The power consumption model for a device is achieved by generating the battery discharge curve for each component in the device combined with determining the energy consumption for every power state of each component. Using this data, linear regression is then used to generate the power model for a device.

Pathak et al. (2011) introduce a system for measuring power consumption on mobile devices using system call tracing at the kernel level and modelling the power states of components using Finite State Machines (FSM). The power consumption of the entire device can then be modelled by combining the FSMs of each component in the device. They argue that utilisation based energy measurements (i.e only measuring the energy associated with the direct use of a hardware component) are insufficient as utilisation does not take into account the tail energy of components which exists for a time after a process has invoked the use of

	the component and can vary in different devices. Tail energy is an example of non-utilisation energy. Using this system on Android, events at the kernel level, framework level and virtual machine level are logged. A test application is used to exercise the various components in isolation on the mobile device while a Monsoon Power Monitor attached to the mobile device records the power consumed. FSMs are then constructed to represent the different power states of hardware components in the mobile device.

Ding et al. (2011) propose an energy monitoring system for Android mobile devices named SEMO. This system has three components, namely, an Inspector, Recorder and Analyser. The Inspector monitors the state of a mobile device’s battery and warns users when the level is low. The Recorder records information about all applications running on Android together
with the state of the battery at various intervals. The Analyser analyses the recorded data and ranks applications according to their energy consumption. Using the SEMO application the researchers have rated the download of data as the number one energy consumer, followed by Video Streaming apps. In third place was Gaming apps, web browsing was in fourth place and text messaging apps in fifth place, consuming the least amount of energy.
Thiagarajan et al. (2012) present an experiment they created for measuring the energy consumption required to display web pages in a browser running on an Android smartphone. To measure the energy consumption they attached a lab bench multimeter (Agilent 34410A) to the smartphone’s battery terminals while the phone was operating with the battery inside. This is a very accurate method of measuring power consumption, referred to as “ground truth” measurement but it carries risks such as the battery exploding or catching fire as detailed at ECG Wiki(2013). This method of measuring power consumption is not practical for mobile software developers who are unlikely to have access to a lab bench multimeter or the expertise to safely set up an experiment such as this.

Jung et al. (2012) have developed an online service named DevScope for analysing the power consumption of applications running on mobile devices. DevScope analyses the power states of the most significant hardware components in a mobile device (e.g GPS, Cellular, Display,

CPU, Wi-Fi) and constructs Device Power Models using this information.
Chen et al. (2012) created a framework, named Anole, which focuses on resource utilisation to support an energy efficient Android operating system and mobile applications which run on Android. Anole provides both an Application Programming Interface (API) for developers, a profiler and energy saving policies which modify the energy consumption states of applications when appropriate. Applications using the Anole framework must use the modified Android API Activity class provided by the Anole framework.

Trestian et al. (2012) have studied the energy consumption of video streaming on Android mobile devices and the impact that factors such as the amount of data transmitted and network signal strength have on battery drain. They performed their experiment using a HTC Google Nexus One smartphone which was attached to a specialised Arduino Duemilanove circuit board which recorded voltage measurements. A Java application running on a workstation attached to the same circuit board performed energy consumption calculations. This experimental setup recorded energy consumption to a high degree of accuracy but specialised equipment such as an Arduino Duemilanove circuit board is not readily available to Android developers who also need to acquire the expertise to use one.

Alvarez et al. (2012) have developed TestelDroid which is an application to enable the recording and analysis of what the researchers call Key Performance Indicators (KPI) of

	mobile applications running on Android mobile devices. It aims to provide an overall assessment of the performance of mobile applications including battery power consumption. TestelDroid uses the native API of mobile devices to retrieve battery information, in Android’s case it would be the PowerManager API.
Pathak et al. (2012) present Eprof which they claim is ‘the first fine-grained energy profiler for smartphone apps.’. Eprof runs on both Android and Windows Mobile. According to their test results using Eprof, third–party advertising software that is usually embedded in free mobile applications consumes between 65% - 75% of the total power consumed by an application. The Eprof test results show that most of the energy consumed by mobile applications is in input/output via the various communication components in a mobile device.
(e.g Wifi, 3G, GPS). The research group draw attention to three problems that affect the accuracy of capturing accurate power consumption data for individual applications, namely, Tail Energy, Wavelocks and the unpredictable use of device components by mobile applications. Tail Energy has been detailed previously. Wavelocks are a feature of the Android API that may be requested by applications in order to prevent the system entering low power or energy conserving states. Applications that fail to release Wavelocks can prevent the device conserving energy. The unpredictable use of device components by mobile applications refers to the usage pattern of mobile device components where one routine or application may activate a component and another may turn it off so it is difficult to attribute an accurate percentage of energy to each routine or application involved. Eprof operates by instrumenting an application and then monitoring the kernel/system calls that it makes.

	Project Description
Several research teams have evaluated the performance of Google’s C2DM cloud based push messaging service on the Android mobile platform Hansen et al. (2012), Hansen et al. (2012b), Brüstel and Preuss (2012), Dinh and Boonkrong (2013). However, Google have since deprecated C2DM (but it is still available to use) and replaced it with Google Cloud Messaging (GCM). I am not aware of any scholarly articles currently published which compare the performance of GCM to other push messaging technologies. Hansen et al. (2012b) have already compared the performance of C2DM, XMPP, Xtify and Urban Airship using Google App Engine as the cloud platform and a mobile application using each of the push messaging technologies running on an Android smartphone. They intended to include MQTT and Deacon push messaging technologies in their experiment but were unable to deploy them on Google App Engine due to restrictions on that platform.
I intend contributing to this body of research by comparing the performance of GCM, XMPP, MQTT and Deacon. As GCM is a cloud based push messaging service, a fair comparison will involve deploying XMPP, MQTT and Deacon servers on a cloud based platform such as Google App Engine. Google App Engine has built-in support for GCM and XMPP but the same restrictions may still apply which prevent MQTT and Deacon servers being deployed there. I intend investigating this further and if it’s still not possible than I will investigate the possibility of deploying the servers to another cloud platform for testing.
Current research in the area of mobile application energy consumption on the Android platform will be reviewed and assessed. An appropriate software tool will then be selected for use in the experimental part of the project. A question arises as to what constitutes an appropriate energy profiling and measurement tool. I have defined a few questions to determine this, which are as follows:

1) Is it publicly available?
2) Is it compatible with Android?
3) Is it accurate?
4) Does it measure energy consumption per mobile application (as opposed to global system energy measurements)?
5) Is it used by other research groups internationally?

If the answer is Yes to all of the questions above then the tool is a good candidate for use in my experiment. PowerTutor, Zhang et al. (2010), appears to be the most suitable candidate out of all the frameworks/tools reviewed thus far.
My experiment will be conducted in a similar fashion to that described by Hansen et al. (2012b). Four instances of the same Android mobile application will be created and each instance will use client libraries available for each of the push messaging technologies GCM, XMPP, MQTT and Deacon. I will then attempt to deploy/configure the push server for each technology to Google App Engine (or to another platform). Note that some push technologies have their own name for the push server, for example, in MQTT it is referred to as a broker. Essentially, each push server manages persistent TCP connections to clients and pushes notifications to them. An application servlet for each push technology will also be developed and deployed to a web server hosted on a cloud platform. This will consist of a simple Java servlet hosted on a web server instance on Google App Engine (or another platform) which when invoked will send a notification with a payload of 140 bytes to the push server. The push server will in turn forward this to the Android mobile application. The test will be automated so that the Android mobile application invokes the application servlet to send

	notifications. In each test run 200 messages will be sent to the mobile application, one per minute. The response times will be recorded and stored in a Sqlite database managed by the mobile application. Each message will be identified by a number so that it can be determined if it reached it’s destination. Using the response times I will calculate the average value, variance and standard deviation. The standard deviation values together with observing if all messages sent were received will be good indicators as to how stable the push messaging technology is. The response times for each push messaging technology can be analysed to see how the latency in each system compares.
While the test is running, an energy measurement software tool will also be running in the background on the mobile smartphone and recording measurements for the Android mobile application in each test run. The data logged by the energy measurement software tool will be used to plot graphs of mW values vs time which will provide useful visual information regarding the energy efficiency of each push messaging technology running on an Android smartphone.

Each test run will be performed using Wifi and 3G networks.
Development of the Android mobile applications and the application servlets will be done using Eclipse.

	Project Aim
Not to exceed 250 words
The aim of my project is to review and assess current push messaging technologies and to evaluate the performance of GCM, XMPP, MQTT and Deacon push messaging technologies in a cloud to device scenario. This project also aims to detail related work in this area by other research teams internationally and to also review and assess related research work in the area of energy consumption of Android mobile applications. A suitable energy measurement tool will be then be selected for the experimental part of the project.
My experimental work will provide up-to-date performance data for GCM, XMPP, MQTT and Deacon push messaging technologies.
The ultimate aim is to provide a report that Android mobile software developers can refer to if they are interested in using push messaging technologies in their mobile applications. They can assess the results of the experiment and make an informed choice as to how the performance of each push messaging technology compares. Other research groups involved in this area of research may also find this project helpful.

	Project Objectives
What are the main objectives of your research project? You should list between 3 and 6

- To review and assess related research work in the area of push messaging
 technology and energy consumption measurement of Android mobile applications.

 - Developing Android mobile applications and application servlets for testing.

 - Deploying application servlets and deploying/configuring push servers on a cloud

 platform for testing.

 - Recording and analysing experimental data obtained via testing.

 - Providing up-to-date performance data for GCM, XMPP, MQTT and Deacon push

 messaging technologies

	Evaluation Criteria
Discuss how you intend to implement and evaluate your research. Discuss any difficulties you may have in doing so and how these difficulties may be overcome.
I will create the Android mobile applications using the Eclipse IDE, the Android ADT plug-in for Eclipse and the Android SDK. Client libraries for each of the push messaging technologies will be downloaded and linked with the applications. Each application will have an identical simple GUI which allows a user to input the number of requests to send (to the application servlet) and the time interval between each request sent. The GUI will also display a count of the total number of requests sent and the number of notifications received. Each request is a HTTP request to the application servlet which in turn creates a message with a payload of 140 bytes and sends it to the push server. The push server in turn sends a notification containing the payload to the Android mobile device.

Ideally, to measure response time, the obvious solution would be to record the time in the application servlet when it sends the message to the push server and also record the time when the notification is received on the mobile device. Subtracting these values should then reveal the response time. However this approach is not recommended as the platform on which the application server is running could be within a different time zone and/or using different time formats. So, the solution used by both Hansen et al. (2012) and Goyal (2013) is to record the local time on the mobile device in the Android mobile application when each request is sent to the application servlet and to also record the local time in the mobile application when each notification is received.
Subtracting these two time values will not obtain an accurate response time however as the time to send the request to the application is included in it. To work around this problem Hansen et al. (2012) and Goyal (2013) suggest sending multiple ping requests to the application servlet and getting an average response time. This average response time of the ping request can then be deducted from the total time to obtain accurate response times.
For each push messaging technology the average response time will be calculated. Using this value the variance can be calculated and in turn the standard deviation. The standard deviation value will be a good indicator of the stability of the push messaging technology in terms of how uniform the response times are over a certain period of time. Additionally, each message sent from the application servlet to the mobile application (via the push server) will be numbered so it will be easy to determine if any messages fail to be delivered.
The application servlets will be coded using the Eclipse IDE. In the case of GCM, Google provide a plug-in for Eclipse that makes it easier to deploy applications to Google App Engine. An attempt will be made to deploy the Application servlets and push servers for each push messaging technology to Google App Engine. I do not foresee any problems with GCM or XMPP as Google App Engine supports them. However, Google App Engine restrictions may prevent the deployment of application servlets for MQTT and Deacon. If this is the case, I will search for other cloud platforms e.g Amazon EC2, that will support the deployments.

While each test is running, an energy measurement software tool will also be running and

logging measurements in the background for the Android mobile application. The data

logged by the energy measurement software tool will be used to plot graphs of mW values

vs time which will provide useful visual information regarding the energy efficiency of

each push messaging technology running on an Android smartphone.

	Deliverables
List what will be the key deliverables of your research
 - Thesis report
 - Source code for each Android mobile application
 - Source code for each application servlet

	Timeframes & Project Plan
Include key timeframe, milestones, grant chart, identify risk and an RMMM matrix (Risk, Measurement, Monitor, Mitigation)
Risks

Measurement

Monitor

Mitigation

Laptop Crash

Major
Operating System for strange behaviour and signs of instability
Regular backups of project material
Unable to find a suitable energy measurement software tool for Android
Major
Current research in this area.
Review all current research in this area. Investigate if there are commercial proprietary tools available if necessary.
Android OS restrictions
Minor
Release notes and documentation of Android Operating System
Join the Android Developer Community. Become more familiar with the Android Operating System
Android API restrictions
Minor
Release notes and documentation of Android API
Join the Android Developer Community. Become more familiar with the Android API
Learning curves

Major
My progress in acquiring new knowledge necessary to implement this project
Set sufficient time aside to read books, literature, tutorials etc before starting the project
Deployment of application servlets and push servers to cloud
Major
Google App Engine for restrictions and limitations
Investigate the possibility of hosting the application servlets and push servers on other cloud platforms e.g Amazon EC2
Inaccurate results

Major
Experiment results
Compare experiment results as soon as possible. Re-test if necessary
Software bugs in mobile applications or servers
Major
Mobile applications and servers
Design system carefully. Search online forums for similar problems that software developers have encountered before.
HTC Nexus One phone crash

Major
The device for strange behaviour and signs of instability
Ensure access to a backup device if required
Project Milestones
27/01/2014
10/02/2014
17/10/2014
21/02/2014
07/03/2014
10/03/2014
Design and implementation of Android mobile application for each push messaging technology
Design and implementation of application servlet for each push messaging technology
Deployment of application servlets and deployment/configuration of push servers on a cloud platform
Run experimental tests
Analyse experimental results
Write up thesis report

	Technical and Non-Technical Resources Required
What equipment etc you require, library resources, human resources etc you require to complete your research project

- My laptop

- HTC Google Nexus One smartphone

 - A 3G sim card
 - Access to internet via a Wifi network
 - Eclipse IDE

- Android SDK

- A suitable energy consumption measurement tool for Android applications

- Access to D.I.T library

- Project Supervisor

	References
[1] Hansen, J Grønli, T-M and Ghinea, G (2012b) Towards Cloud to Device Push Messaging on Android: Technologies, Possibilities and Challenges. Int'l J. of Communications, Network and System Sciences, 5(12), 839-49.
[2] Lee, D (2011) Designing the Multimedia Push Framework for Mobile Applications. International Journal of Advanced Science and Technology, 32.
[3] Goyal, T Agrawal, A Jain, S and Doshi, V (2013) Improved registration system of Cloudtarun over Android Devices. International Journal of Advanced Computer Research, 3(10), 151-58.

[4] Agarwal, S (2011) Toward a Push-Scalable Global Internet. Deutsche Telekom A.G., Laboratories and Technical University of Berlin, 1-6.
[5] Hansen, J Grønli, T-M and Ghinea, G (2012) Cloud to Device Push Messaging on Android: a Case Study. Advanced Information Networking and Applications Workshops (WAINA), 2012 26th International Conference, 1298-1303.

[6] Brüstel, J and Preuss, T (2012) A Universal Push Service for Mobile Devices . Complex, Intelligent and Software Intensive Systems (CISIS), 2012 Sixth International Conference, 40-45.

[7] Lee, Y Oh, J and Lee, B.G (2012) Logical Push Framework for Real-time SNS Processing. Computational Aspects of Social Networks (CASoN), 2012 Fourth International Conference, 47-51.
[8] Quah, J.T-S and Lim, G.L (2002) Push Selling – Multicast Messages to Wireless Devices

Based on Publish/Subscribe Model. Electronic Commerce Research and Applications, 1(3-4), 235-246.

[9] Eugster, P.T Felber, P.A Guerraoui, R and Kermarrec, A-M (2003) The Many Faces of Publish/Subscribe. ACM Computing Surveys (CSUR), 35(2), 114-131.
[10] Zarko, I.P Antonic, A and Pripužic, K (2013) Publish/Subscribe Middleware for Energy-Effcient Mobile Crowdsensing. Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing, 1099-1110.
[11] Dinh, P.C and Boonkrong, S (2013) The Comparison Of Impacts To Android Phone Battery Between Polling Data And Pushing Data. IISRO Multi-Conferences Proceeding.
[12] Haverinen, H Siren, J and Eronen, P (2007) Energy Consumption of Always-On Applications in WCDMA Networks. Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th, 964-968.

[13] Guo, K Liu, Y and Ma, J (2013) AMPS: An Adaptive Message Push Strategy for Ubiquitous Terminals. Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing, 731-736.
[14] Flinn, J and Satyanarayanan (1999) PowerScope: A Tool for Profiling the Energy Usage of Mobile Applications. Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications, 2 -10.

[15] Park, C Liu, J and Chou, P.H (2003) B#: A Battery Emulator and Power-Profiling Instrument. Low Power Electronics and Design. Proceedings of the 2003 International Symposium, 288-93.

[16] Balasubramanian, N Balasubramanian, A and Venkataramani (2009) Energy consumption in mobile phones: a measurement study and implications for network applications. Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, 280 - 293.

[17] Donohoo, B.K Ohlsen, C and Pasricha, S (2011) AURA: An Application and User Interaction Aware Middleware Framework for Energy Optimization in Mobile Devices. Computer Design (ICCD), 2011 IEEE 29th International Conference, 168-74.

	[18] Ding, F Xia, F Zhang, W Zhao, X and Ma, C (2011) Monitoring Energy Consumption of Smartphones. Internet of Things (iThings/CPSCom), 2011 International Conference on and 4th International Conference on Cyber, Physical and Social Computing, 610-13.

[19] Vallina-Rodriguez, N and Crowcroft, J (2013) Energy Management Techniques in Modern Mobile Handsets. Communications Surveys & Tutorials IEEE, 179-98.

[20] Thiagarajan, N Aggarwal, G Nicoara, A Boneh, D and Singh, J.P (2012) Who Killed My Battery: Analyzing Mobile Browser Energy Consumption. Proceedings of the 21st international conference on World Wide Web, 41-50.

[21] Pathak, A Hu, Y.C Zhang, M Bahl, P. Wang, Y (2011) Fine-Grained Power Modeling for Smartphones Using System Call Tracing. Proceedings of the sixth conference on Computer Systems, 153–68.

[22] Trestian, R Moldovan, A.N Ormond, O and Muntean, G.M (2012) Energy consumption analysis of video streaming to Android mobile devices. Network Operations and Management Symposium (NOMS), 2012 IEEE, 444-52.

[23] Alvarez, A Diaz, A Merino, P and Rivas, J (2012) Mobile application profiling with TestelDroid. Consumer Communications and Networking Conference (CCNC), 2012 IEEE, 36 - 37.

[24] Jung, W Kang, C Yoon, C Kim, D and Cha, H (2012) DevScope: A Nonintrusive and Online Power Analysis Tool for Smartphone Hardware Components. Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis, 353-62.

[25] Yoon, C Kim, D Jung, W Kang, C and Cha, H (2012) AppScope: Application Energy Metering Framework for Android Smartphones using Kernel Activity Monitoring. USENIX ATC’12 [Online]. Available: https://www.usenix.org/sites/default/files/conference/protected-files/yoon_atc12_slides.pdf [Accessed 29 November 2012]

[26] Oliner, A Iyer, A.P Stoica, I Lagerspetz, E Tarkoma, S (2012) Carat: Collaborative Energy Diagnosis for Mobile Devices. USENIX.

[27] Zhang, L Tiwana, B Qian, Z Wang, Z Dick, R.P Mao, Z.M and Yang, L (2010) Accurate Online Power Estimation and Automatic Battery Behavior Based Power Model Generation for Smartphones. Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference, 105 - 114.
[28] Broadwell, P (2004) Response Time as a Performability Metric for Online Services. Computer Science Division, University of California at Berkeley.
[29] Wang, X Wang, B and Huang, J (2011) Cloud Computing And Its Key Techniques. Computer Science and Automation Engineering (CSAE). 2011 IEEE International Conference Volume 2, 404-10.

[30] Guan, L Ke, X Song, M and Song, J (2011) A Survey of Research on Mobile Cloud Computing. Computer and Information Science (ICIS), 2011 IEEE/ACIS 10th International Conference, 387-392
[31] Rivera, J (2013) [Online]. Available: http://www.gartner.com/newsroom/id/2603623 [Accessed 20 October 2013]

[32] van der Meulen, R and Rivera, J (2013) [Online]. Available: http://www.gartner.com/newsroom/id/2623415 [Accessed 23 October 2013]

[33] AppScope (2013) [Online]. Available: http://mobed.yonsei.ac.kr/~appscope/ [Accessed 22 November 2013]

[34] Google Cloud Messaging For Android | Android Developers (2013) [Online]. Available: http://developer.android.com/google/gcm/index.html. [Accessed 29 November 2013]

[35] MQTT (2013) [Online]. Available: http://mqtt.org/ [Accessed 29 November 2013]

[36] The XMPP Standards Foundation (2013) [Online]. Available: http://xmpp.org/ [Accessed 29 November 2013]

[37] The Deacon Project (2013) [Online]. Available: http://deacon.daverea.com/ [Accessed 29 November 2013]

[38] asmack (2013) [Online]. Available: https://github.com/Flowdalic/asmack [Accessed 29 November 2013]

[39] Smack API (2013) [Online]. Available: http://www.igniterealtime.org/projects/smack/ [Accessed 29 November 2013]

[40] Google Cloud Messaging for Android (2013) [Online]. Available: http://code.google.com/p/gcm/ [Accessed 29 November 2013]

[41] Google Play Services (2013) [Online]. Available: http://developer.android.com/google/play-services/index.html [Accessed 29 November 2013]

[42]Android SDK | Android Developers (2013) [Online]. Available: http://developer.android.com/sdk/index.html. [Accessed 29 November 2013]

[43]Optimizing Battery Life | Android Developers (2013) [Online]. Available: http://developer.android.com/training/monitoring-device-state/index.html. [Accessed 29 November 2013]

[44]PowerManager | Android Developers (2013) [Online]. Available: http://developer.android.com/reference/android/os/PowerManager.html. [Accessed 29 November 2013]

[45]BatteryManager | Android Developers (2013) [Online]. Available: http://developer.android.com/reference/android/os/BatteryManager.html. [Accessed 29 November 2013]

[46] ADT Plug-in for Eclipse (2013) [Online]. Available: http://developer.android.com/sdk/eclipseadt.html. [Accessed 18 October 2013]

[47] Monsoon Power Monitor (2013) [Online]. Available: http://www.msoon.com/LabEquipment/PowerMonitor/ [Accessed 15 November 2013]

[48] Google Nexus One Specification (2013) [Online]. Available: http://www.htc.com/us/support/nexus-one-google/tech-specs/ [Accessed 20 November 2013]

[49]PowerTutor (2013) [Online]. Available: http://ziyang.eecs.umich.edu/projects/powertutor/ [Accessed 9 October 2013]

[50] ECG Wiki (2013) [Online]. Available:

http://wiki.ecg.rice.edu/doku.php?id=xzl:tutorial:battery_measurement [Accessed 2 October 2013]

Signed : _________________________________

Date : _____________________

 Page 22 of 23

