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1 Background, Context and Scope

This research falls within the domain of reinforcement
learning (RL). Reward seeking and past experiences
will be modelled in a human behaviour psychology
simulation to observe unhealthy decision making in
an RL model.

The model’s output is a decision not a prediction or
clustering. There are no ground-truth decisions from
a supervisor with a labelled dataset and although
it can employ Supervised/Unsupervised learning to
make decisions, it must learn from trial and error.
Decisions are structured as a Markov Decision Pro-
cess (MDP), based on the bellman equation where an
agent performs an action in an environment of states
(collections of features) to receive a new reward and
a new set of states (Bellman, 1957; van Otterlo &
Wiering, 2012).

Policy π(s, a) maps actions to states. RL can use
On-Policy or Off-Policy methods to learn while doing
or learn, plan, then following that plan. Its goal is to
maximise reward by updating a value function, which
summarises the long-term effect of taking actions
(Sutton & Barto, 2018).

RL can look for either the optimal state-action pair
(Policy Based) or actions that give maximum reward
(Value Based). It can also be Model-Based where a
structured problem is given or Model-Free where the
agent has no prior experience of the environment.

The model uses Temporal Difference to learn from
each environment episode with no prior knowledge
(Sutton, 1988).

Deep Q-Learning is a popular off-policy, value-
based, model-free, RL method, where environment

states combined with actions are given an estimated
quality value or Q-value by a neural network. Actions
with highest Q-values are selected as per equation
below: (Schaul, Quan, Antonoglou, & Silver, 2015;
Tokic, 2010).

Qt(s, a) = Qt−1(s, a) + α(R(s, a)γMaxaQ(s′, a′)−Qt−1(S,A)) (1)

RL is used in autonomous driving, recommendation
systems, robotics, energy grid optimisation, fraud
detection, pricing, and healthcare.(Li, 2019).

2 Problem Description

In healthcare, substance use disorders (addictions)
are chronic, relapsing conditions that lead to clini-
cally significant impairment or distress. Addictions
take up 35.3% of a person’s lifetime, costing $700
billion in USA alone. Symptoms, two of which are
needed to classify addiction, include impaired con-
trol, physiological alterations and cravings. Many
mathematical and brain based models of drug use
and addition exist. However most models focus on
the effects of drug use not addiction, have not been
tested or supported by human data and few mod-
els capture multiple stages and addiction symptoms.
To improve patients’ lives, educate the public de-
velop more efficient treatments and reduce the cost
of addiction on the healthcare system, a better un-
derstanding of addiction neural circuitry is required
(Mollick & Kober, 2020).

Brain behaviour to rewards (Serenko & Turel,
2020) can be modelled using Deep Q-Learning (DQL)
in a lever pulling environment, grounded in exten-
sive animal cocaine testing experiments (Keramati,
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Durand, Girardeau, Gutkin, & Ahmed, 2017) and
based on MDP (White, 1993), where hormones affect
memory which can affect level of addiction (Popescu,
Marian, Miruna, & Costea, 2021) and where stress
can influence relapse in dopamine system’s response
to drugs (Dayan, 2009).

Traditional epidemiological methods for data col-
lection such as follow-up surveys used to identify
onset of substances abuse, are limited by resources,
non-responses and social desires (Mak, Lee, & Park,
2019). EEG data is also too expensive to capture.
Exposing real test subjects to hazardous substances
to compare findings is not practical for safety rea-
sons. Instead simulated reward score data will be
used based on observations of real world lever-pulling
experiments conducted with pigeons and rats. Ac-
tions (levers) in this simulation will be limited to
between six and ten.

2.1 Approaches to solve the problem

(Dayan, 2009) identified that some people suffer more
from addiction than others and both vulnerability
to addiction and relapse were not well understood.
Lab rats with low levels of dopamine showed more
sensitivity to compulsive cocaine abuse, abstinence
then relapse. Relapse occurred when re-exposed to
cocaine, this was attributed to increased stress during
the relapse period. (Dayan, 2009) used reinforcement
learning to recreate this behaviour to better under-
stand how dopamine influenced drug initiation and
compulsion. However due to the complex unlearning
process happening during abstinence, RL did not
demonstrate relapse well.

(Popescu et al., 2021) stated that addiction was
classified as a disease since the late 1800s due to its
negative impact on individuals and society. Since
then, Neuroscientists have used genetics and reward
neurology to explain addiction, while Behavioural
Scientists have used behavioural models but both
have not agreed on its cause. However, both agreed
hormones affected memory which affected the level
of addiction. (Popescu et al., 2021) further noted
that several models were rendered obsolete when
the American Psychiatric Association (APA) which
created the Diagnostic and Statistical Manual of
Mental Disorders (DSM) updated Gambling from
an impulse control disorder to an addictive disor-
der. ’Substance-Related Disorders’ was changed to
’Substance-Related and Addictive Disorders’. More
types of substance addictions were added notably
cannabis, opioids and stimulants with the Inter-
national Statistical Classification of Diseases and

Related Health Problems (ICD) mirroring these
changes.
(Mak et al., 2019) surveyed addiction literature

noting two recent studies that used Deep Q-Learning
to model addiction. The first assessed the relation-
ships between cigarette smoking and a reward signal
among twenty-five university students who were mod-
erate smokers. Softmax action selection was used to
control the relative levels of exploration and exploita-
tion. They correlated positive reward rate differences
between cigarette consumption with carbon monox-
ide. Negative reward was significantly enhanced for
smoking abstinence when compared with cigarette
consumption. These suggested that smoking states
(abstinence and cigarette consumption) were related
to positive probabilistic selection task reward sig-
nals, RL, and decision making. The second con-
ducted a randomised cross-over study that included
twenty-two USA adult cocaine addicts who were non-
treatment seekers. Cocaine levels were assessed by
urine test. Participants performed probabilistic loss-
learning tasks during MRI scans. Results suggested
that cocaine dependent participants showed higher
positive probabilistic reward rates during depriva-
tion, which may attribute to their inability to control
the dopamine hormone.
(Keramati et al., 2017) built a homeostatic regula-

tion simulator based on homeostatic reinforcement
learning, a current addiction theory which frames
addiction as a homeostatic disorder where chronic
drug use induces long-lasting maladaptation in the
brain to maintain a homeostatic setpoint. In this
view drug seeking is not habitual, but goal-directed
aimed at fulfilling the intensely escalated need for
the drug. They trained a Deep Q-Learning agent
inside the simulated environment which resembled
observational data from real rat cocaine experiments.
Their study suggested that drug addiction hijacks
the brain’s goal directed associative learning system,
which defends the physiological stability of an organ-
ism. Their model also implied that in experimental
animals and people, a prior deviation exists. They
wondered what factors caused the majority of ex-
perimental animals to have pre-existing homeostatic
deviations that rendered them sensitive to the re-
warding effects of cocaine. They suggested it was
poor environmental stimulation of the laboratory
animal’s brain reward system. They also suggested
that at least in the majority of individual, increas-
ing and/or diversifying access to non-drug options
should reduce cocaine use and risk of escalation.

Regarding how options are selected from memory
in Deep Q-Learning (Hayes et al., 2021) stated, a
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method used to sample and store data from the
environment called Experience Replay was inspired
by observing biological neural networks during sleep,
primarily in the hippocampus. Experience Replay
in humans is now thought to play a critical role in
memory formation, retrieval, and consolidation. For
example, Prioritisation in Experience Replay was
shown to be motivated by fear due to old experiences
overlapping with new memories, as they were most
in danger of being damaged by new learning and
were preferentially replayed.

(Zhang & Sutton, 2017) stated Experience Replay
was first introduced by Lin in 1992 to train an RL
agent with the transitions sampled from a buffer of
previously experienced transitions. Now widely used
in Deep Q-Learning it is still poorly understood and
the buffer size hyperparameter is underestimated in
the community. Most set it to the default one mil-
lion transition value that (Mnih et al., 2016) used.
(Zhang & Sutton, 2017) experimented with changing
the hyperparameter and discovered that both small
and large replay buffer sizes can heavily hurt the
learning process. They claimed the effect of impor-
tant transitions are delayed in Experience Replay
but increasing the buffer size partially controlled this
negative effect. (Fedus et al., 2020) held other com-
ponents of the Deep Q-Learning architecture fixed
and studied the effects of modifying Experience Re-
play. They discovered that the value approximator
(neural network) improves with large replay capacity,
so increasing the buffer size with a fixed replay ratio
has varying improvements.

2.2 Gaps in Research

The cause of addiction is not well understood
(Popescu et al., 2021) nor is the pre-existing homeo-
static deviation in animals that makes them sensitive
to cocaine. Although Deep Q-Learning can model
homeostatic regulation (Keramati et al., 2017), no
current model can explain all stages and symptoms
of addiction (Mollick & Kober, 2020), such as re-
lapse (Dayan, 2009). Although hormones such as
dopamine and stress can affect memory (Mak et al.,
2019; Dayan, 2009; Popescu et al., 2021; Hayes et
al., 2021), it is not well understood what happens to
memories after consolidation from the hippocampus
to the neocortex (Hayes et al., 2021). Reinforcement
Learning can help narrow these gaps if the next di-
rection of research continues from (Zhang & Sutton,
2017; Fedus et al., 2020) and varies the buffer size
hyperparameter, to see what happens in Experience
Replay when used by a neural network of a Deep Q-

Learning architecture to update its Q-value weights
to maintain a homeostatic setpoint.

3 Research Question

To what extent does changing the size hyperparam-
eter for Experience Replay in a deep Q-Learning
architecture influence compulsive selection, despite
negative reward scores received from the action, and
the extent to which compulsive action selection intro-
duces prediction errors in the neural network model
responsible for long term reward score estimation,
any of which lead to overvaluation of bad actions even
with long term abstinence from bad action selection?

4 Hypothesis

Alternative Hypothesis (H1): If the buffer size hy-
perparameter is reduced for ’experience replay’ of
a Deep Q Learning Architecture, trained on the
reward scores for pulling levers inside a simulated en-
vironment then when compared to the actual reward
scores returned by the simulator for pulling a lever, a
statistical significant difference (α: 0.05) is expected
between the distribution of predicted reward scores
for the reduced buffer size model, to one where the
buffer size is held at a default 1 million transitions.
Null Hypothesis (H0): there is no significance in
reward scores.

5 Design and Implementation

5.1 Objective 1: Build a Simulated
Environment to conduct experiments;
8 weeks

1. Create a Deep Q-Learning (DQL) agent; An en-
semble comprising of a PyTorch neural network
model and an array for the event replay memory
model that are both used by the agent to sample
data from the environment, perform the Bell-
man Equation then stochastic gradient descent
with the Adam’s optimiser to update the neural
network via backpropagation for value approxi-
mation then perform action selection based on
Softmax for exploration/exploitation behaviour.
The DQL value estimator predicts dopamine
reward score for performing an action. h is a
brain internal variable (dopamine) that increases
during drug use then decreases. Memory of ac-
tions that increase h accumulate over time in
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the memory buffer and are sampled to train the
model.

2. Create a lever pulling environment; comprising
of a custom Openai-gym environment based on
the CartPole environment (Kumar, 2020) to
represent a homeostatic regulation mechanism.
Each Lever-press initiates cocaine use for 4 sec.
dopamine (h) is set high (e.g 45 units). After
4 seconds the lever is inactive for 20 sec. h
reduces until zero after 45 secs unless another
lever is pressed. H∗ is a homeostatic setpoint
and H is an internal state (an array that contains
dopamine along with other hormone variables).
The amount of reward (r) given for action (k)
will be equal to the reduced distance from the
internal state H to the homeostatic setpoint H∗.
Each bad action sets H∗ to a new setpoint H∗u
unless no bad action is taken then H∗ resets
automatically back to its original setpoint (H∗l).
In each state information about H and H∗ are
given to the agent to estimates how much r is
needed to reach H∗ given current H and selects
an action that brings it closer to H∗.

3. Create a simple user interface; use either a bash
terminal, command prompt or Jupyter notebook
to allow users to set parameters and observe the
agent selecting actions in the environment.

Figure 1: Homeostatic Regulation Simulator (Keramati
et al., 2017)

5.2 Objective 2: Conduct Experiments on
Experience Replay hyperparameter to
understand reward variance and test
hypothesis; 4 weeks

1. Experiment 1: Set Experience Replay to default
1 million transitions and run simulation. Let
agent learn, first by sampling randomly from en-
vironment to explore then exploiting actions to
gain the most dopamine reward that maintains
its homeostatic setpoint.

2. Experiment 2: Repeat Experiment 1 with, first
50% reduction in memory.

3. Experiment 3: Repeat Experiment 1 but dynam-
ically change memory (50% smaller if further
away from homeostatic setpoint and 50% larger
if closer)

4. Evaluate DQL Agent; compare DQL agent ac-
tions and reward given memory size with an
Analysis of Variance (ANOVA) to see which are
statistically significant then post hoc test (e.g
Tukey’s method) to identify the top group.

5.3 Objective 3: Build a Data Visualisation
& Explainability Portal for Educating
the Public and Independent
Assessment of hypothesis; 3 weeks

1. Host the environment and DRL agent on the
web; Implementing a Django REST API with a
PostgreSQL database and connect bash terminal
or command prompt to it so others can recreate
experiments to independently test hypothesis or
test their own hypotheses.

2. Create a Web Portal for user access; Implement
a Vue or React Javascript front end for users, for
mobile and laptop devices to interact with the
agent and environment, visualise the DQL agent
in the environment both via live and historical
logs. Finally allow datasets from logs to be
downloaded for further analysis or comparison
to real world data.

5.4 Objective 4: Research Writing to
communicate results and future work;
5 weeks

1. Write three drafts and review; Introduction, Lit-
erature Review, design & methodology, results
and discussion, conclusion and future work
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2. Issue final; allow contingency for any requested
revisions or repeated experiments.

6 Performance Metrics

Each experiment conducted will allow the Deep Q-
Learning agent’s reward scores to be divided into
three different groups of behaviour, where each re-
ceive an initial memory buffer size for the experiment
period. The control buffer size will be default 1 mil-
lion transitions. The reward scores will be a list set
containing state presented, reward predicted, action
selected and actual reward received. At the end of
the experiment, reward scores are measured. Then
for each group, the mean reward scores are calcu-
lated. Analysis of variance (ANOVA) will be used
to compare these group means to find out if they
are statistically different or if they are similar. For
performance the lowest memory size should be sta-
tistically significant, so a Post Hoc Test (e.g Tukey’s
method) will be performed after ANOVA to confirm
this.
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