
TSP: Software and Data Engineering2020: J Paul Gibson 1

PBL - The Ternary Weight System

TO DO: Develop this application (in whatever language you wish) and 
demonstrate your best Problem Solving Skills



TSP: Software and Data Engineering2020: J Paul Gibson 2

Hint 1 -Polya - How To Solve It

Step 1: Understand the problem.

Step 2:  Devise a plan (translate).  

Step 3:  Carry out the plan (solve). 

Step 4:  Look back (check and interpret). 

There are problem solving strategies (a tool box)

Requirements

Design

Implementation

Test

Can you validate a solution?



TSP: Software and Data Engineering2020: J Paul Gibson 3

Hint 1 -Polya - How To Solve It
Step 2:  Devise a plan (translate).  

https://garyhall.org.uk/maths-problem-solving-strategies.html



TSP: Software and Data Engineering2020: J Paul Gibson 4

Hint 1 -Polya - How To Solve It
Step 2:  Devise a plan (translate).  

https://garyhall.org.uk/maths-problem-solving-strategies.html



TSP: Software and Data Engineering2020: J Paul Gibson 5

Hint 1 -Polya - How To Solve It
Step 2:  Devise a plan (translate).  

https://garyhall.org.uk/maths-problem-solving-strategies.html



TSP: Software and Data Engineering2020: J Paul Gibson 6

Hint 1 -Polya - How To Solve It
Step 2:  Devise a plan (translate).  

https://garyhall.org.uk/maths-problem-solving-strategies.html



TSP: Software and Data Engineering2020: J Paul Gibson 7

Hint 1 -Polya - How To Solve It
Step 2:  Devise a plan (translate).  

https://garyhall.org.uk/maths-problem-solving-strategies.html



TSP: Software and Data Engineering2020: J Paul Gibson 8

Hint 1 -Polya - How To Solve It
Step 2:  Devise a plan (translate).  

https://garyhall.org.uk/maths-problem-solving-strategies.html



TSP: Software and Data Engineering2020: J Paul Gibson 9

Hint 1 -Polya - How To Solve It

Step 2:  Devise a plan (translate).  

https://garyhall.org.uk/maths-problem-solving-strategies.html

Solve an easier version



TSP: Software and Data Engineering2020: J Paul Gibson 10

Hint 2 -Polya - How To Solve It

Step 3:  Carry out the plan (solve) - code patterns. 

f(x) = g(h(x)) 

f(x) = g(h(x), i(x)) 

f(x) = h (g(x), f(x-1)) 

f(x) = if p(x) then g(x) else h(x) 

f(x) = repeat x times g() 

f(x) = g(x, y)

re-use sequence 

split and compose 

recursion 

partial solution(s) 

iteration 

generalise/specialise 

TDDf(1), f(2), f(3), … f(x)


