
Object-Oriented Programming

1

Object-Oriented
Programming

In Python
Workbook

Damian Gordon

2020

Feel free to use any of the content in the guide with my permission.

Any suggestions or comments are most welcome, email me Damian.X.Gordon@TUDublin

mailto:Damian.X.Gordon@TUDublin

Object-Oriented Programming

2

Table of Contents

1. Object-Oriented Design

2. Objects in Python

3. Modules and Packages

4. Inheritance and Polymorphism

5. Object-Oriented Programs

6. String Formatting

7. Regular Expressions

8. Object Serialization

9. Design Patterns

10. Comprehensions and Generators

11. Object-Oriented Testing

12. Development Models

Object-Oriented Programming

3

 Object-Oriented Design

What is a Class?

Creating a Class is like creating a variable, it’s just a definition of a data type until it gets
assigned a value, once you have an instance of a Class, we call it an Object. If our class is
“Dog”, we could have objects “Tiny”, “Rover”, “Rusty”, and “Fido”.

What is an Object?

An object has:
Attributes and Methods

• Attributes (or Features) are a collection of variables.

• Methods (or Behaviours) are a collection of functions.

• The Attributes and Methods are encapsulated or
contained in the object.

• The object can be configured so that some Attributes
and Methods are private to the object, and others are
visible to other objects, this is Information Hiding.

• The public elements (Attributes and Methods) of the
class are referred to as the Interface (or Public
Interface).

Object-Oriented Concepts

Abstraction
Abstraction means dealing with the
level of detail that is most appropriate
to a given task. For example, a driver
and a mechanic interact with a car at
different levels of abstraction.

Inheritance
Inheritance means that one class can inherit
attributes and methods from another class. So
we look for classes that have a lot in common,
and create a single class with those
commonalities.

Composition
Composition means collecting several
objects together to create a new one. It
is usually a good choice when one
object is part of another object.

Polymorphism
Polymorphism is the ability to treat a class
differently depending on which subclass is
implemented. The appropriate subclass is
determined based on parameters passed in.

We’ll look at these concepts in more detail later.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

4

 Object-Oriented Design

Class Diagrams

A Class Diagram shows the design of a system showing the classes, and their attributes
and methods. It also shows the relationship between classes, with a line (association)
between classes, with a verb to describe the relationship, and cardinality is indicated by
numbers, in this case 1…* indicates a one-to-many relationship.

Class Diagrams (composition)

A Class Diagram can show composition using a solid diamond to indicate that one class is
composed of another class, with the cardinality indicated by numbers.

Class Diagrams (Inheritance)

A Class Diagram can show inheritance using an arrowhead to indicate that one class
inherits from another class.

We’ll look at these concepts in more detail later.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

5

 Objects in Python

We remember, that an object has
Methods and Attributes:

• To add METHODS, you must add them
to the CLASS definition.

• To add ATTRIBUTES, you typically add
them to the CLASS definition, but it is
possible to add them to the OBJECT
definition also. You must add the
values of the attributes to the OBJECT.

To declare a class in Python:

class <ClassName>:

 <Do stuff>

END Class

For example:

class Point:

 pass

END Class

p1 = Point()

p2 = Point()

To add attributes:

p1.x = 5

p1.y = 4

p2.x = 3

p2.y = 6

In Python the general form of declaring
an attribute is as follows:

OBJECT.ATTRIBUTE = VALUE

We call this dot notation.

To add a method, we can simply put it in the
class:

class Point:

 def reset(self):

 self.x = 0

 self.y = 0

 # END Reset

END Class

In this case the use of the term self refers to
the current instance of Point, so whichever

object of Point you call the reset method
with, is the self.

We can instantiate the class as follows:

p = Point()

p.x = 5

p.y = 4

We can call reset in two ways:

>> p.reset()

>> Point.reset(p)

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

6

 Objects in Python

The Initialization Method
Sometimes when a developer creates a new class they forget to declare all of the
attributes required, or forget to give those attributes a starting value (“initial value”). So
Python has a special method called “_ _init_ _()” which forces the developer to

make sure they declare and initialize all of the attributes that are required by each
program. It can also be declared in such a way as to set default values for all attributes.

This is an Initialization method
without any default values:

This is an Initialization method out default
values pre-set:

def __init__(self,x,y):

 self.move(x,y)

END Init

def __init__(self, x=0, y=0):

 self.move(x,y)

END Init

The Initialization method should be used in every class unless there is a very good reason.

Docstrings
One of the key motivations behind the object-oriented paradigm is the idea of “code
reuse”, so if you (or someone else) have already written a method or class, if it is at all
possible you should not rewrite the code again. Good documentation and labelling are an
important element of making the purpose and intent of programs clear. One feature that
Python provides to make this easier is the Doscstring feature, where you can add
descriptive sentence to each class and method, as the first line of that class or method.
class Point:

 “Represents a point in 2D space”

 def move(self,a,b):

 ‘Move the point to a new location’

 self.x = a

 self.y = b

 # END Move

END Class

In the Python shell, all you need to do is type “help” with the name of the class in
brackets, and you will see all the Docstrings.
>>> help (Point)

Help on class Point in module __main__:

class Point(builtins.object)

 | Represents a point in 2D space

 |

 | move(self, a, b)

 | Move the point to a new location

 | ---------------------------------------

So the purpose of all of the methods is made clear using the HELP command.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

7

 Modules and Packages

MODULES

• If we have two python programs in
the same folder, and we want one
to use methods and attributes from
the other, all we need to do is say:

import <Filename>

Modules are files, Packages are folders

• To use specific class from a program (module) in the same folder, we can say:

o from <Filename> import <Classname>

• If there already is a class in the calling program as the name of the class we want
to import, we can import it with an alias:

o from <Filename> import <Classname> as <Alias>

• If we want to import two classes from the same program (module):

o from <Filename> import <Classname1>, <Classname2>

• If we want to import all the classes (which isn’t really a good idea), we can say:

o from <Filename> import *

PACKAGES

• If we feel there are too many programs (modules) in the current folder, we can
create a sub-folder (package) to put some in that. Then to make it possible to
access the programs in that subfolder we need to add a blank textfile into the
subfolder called the following:

_ _init_ _.py

• To import a full file from that subfolder:

o import <SubFolder>.<Filename>

• To import a specific class from a file in that subfolder:

o from <SubFolder>.<Filename> import <Classname>

• We can also say:

o from <SubFolder> import <Filename>

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

8

 Modules and Packages

Tips for Using Modules and Packages

We can use the full stop “.” to refer to the current directory.

We can put text in the _ _init_ _.py file to import code directly from a package as
opposed to a module.

The “global” command allows us to create a global variable, and we can make changes
to that variable in a local context.

If we want to check if a program is being called from another program, or is being run
as a stand-alone program, we can say:

if _ _name_ _ == “_ _main_ _”:

If this is true, it means the program is being called as a stand-alone.

These allow us to get the most out of modules and packages.

Access Control
Many object-oriented programming languages allow the programmer to specific the level
of access to the methods and attributes of an object, using Public, Protected, and Private.
Python does not have an equivant access control mechnaism, but by convention a
method or attribute with no underscores at the start of its name is consdiered to be
public (any object can access it), a method or attribute with a single underscore (_) at the
start of its name indcates it is protected (the object itself and subclasses can access it),
and a method or attribute with a double underscore (_ _) at the start of its name indcates
it is private (only the object can access it), but remember there is nothing in the
interpreter to stop external objects from access these methods or attributes.

We can also add a comment in the docstrings at the start of the class indicating which
methods or attributes are for internal use only.

Third-Party Libraries
Python comes with a very big Standard Library with lots of features, but we may be
looking for a feature that it doesn’t have, if so we have two options; we can write a new
package ourselves, or we can use somebody else’s code.

If we want to find packages that might be of use, we can use the Python Package Index
(PyPI) website: http://pypi.python.org.

Once we’ve found a package that we want to install, we can use the pip tool to install it.
Pip doesn’t come with the Python download, but we can download it from here:
https://pypi.python.org/pypi/pip

And once pip has been installed, we can install the software into our library using:

• pip install <package>

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

9

 Inheritance and Polymorphism

Basic Inheritance
We have mentioned before that software re-use is considered one of the golden rules of
object-orientated programming, and that generally speaking we will prefer to eliminate
duplicated code whenever possible. One mechanism to achieve this is inheritance, which
means that the attributes and methods of one class are available to another one in such
a way the it appears those attributes and methods were declared within the second
class. We call the first class, the parent class or the superclass, and the second class is
called the child class, or subclass. To declare that one clas is a subclass of another, when
you are declaring that class, just put the name of the superclass as a parameter in the
class declaration of the subclass:

class Subclass(Superclass):

<Class Declaration>

END Class.

Let’s look at an example in practice. Let’s say we have a simple address book that keeps
track of names and e-mail addresses. We’ll call the class Contact, and this class keeps the
list of all contacts, and initialises the names and addresses for new contacts:
 class Contact:

 contacts_list = []

 def _ _init_ _(self, name, email):

 self.name = name

 self.email = email

 Contact.contacts_list.append(self)

 # END Init.

END Class.

Now let’s say that the contact list is for our company, and some of our contacts are
suppliers and some others are other staff members in the company. If we wanted to add
an order method, so that we can order supplies off our suppliers, we need to do it in such
a way as we cannot try to accidently order supplies off other staff members. So we do:
class Supplier(Contact):

 def order(self, order):

 print(“The order is for”

 “’{}’ to ‘{}’”.format(order,self.name))

 # END order.

END Class.

So as a diagram, this looks like:

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

10

 Inheritance and Polymorphism

So we can declare objects of the classes:
 c1 = Contact("Tom StaffMember", "TomStaff@MyCompany.com")

 s1 = Supplier("Joe Supplier", "JoeSupplier@Supplies.com")

And if order something from our supplier by saying s1.order("Bag of sweets")
we get the following message back:
The order is for 'Bag of sweets' to 'Joe Supplier'

But if we tried to order from our contacts by saying c1.order("Bag of sweets")

we get an error message back:
Traceback (most recent call last):

 File "C:/Inheritance.py", line 64, in <module>

 c1.order("Bag of sweets")

AttributeError: 'Contact' object has no attribute 'order'

Because the method order exists only in the class Supplier, not in Contact.

Overriding and Super
Overriding means that Python allows a superclass and a subclass to have methods of the
same name, and objects of each particular class can use the method associated with that
class, by calling it in the normal way.

Super is a function, typically called as super(), that allows a subclass to call a method

in a superclass, by saying super().SuperclassMethod.

Multiple Inheritance
A subclass can inherit for more than one superclass in a very simple way:

class Subclass(Superclass1, Superclass2):

<Class Declaration>

END Class.

In this scenario, when a specific attribute or method is mentioned, the Python interpreter
first looks for it in the current class, and if it isn’t there the interpreter will check the first
superclass for the attribute or method, and if it isn’t found there the interpreter will
check if that superclass itself has a superclass, if so it will check that one, if not it will
move onto the second superclass (this is called a depth-first search).

Polymorphism
Polymorphism means that we can call the same method name with different parameters,
and depending on the parameters, it will do different things. For example:

 >>> print(6 * 5) [30]
 >>> print(“Hello” * 5) [HelloHelloHelloHelloHello]

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

11

 Object-Oriented Programs

Moving from Procedural to Object-Oriented Programs
One of the key goals of object-oriented programming is software reuse. To achieve this
we wrap methods and attributes in a class, and that makes it easier for other programs
to use those classes. If we are just modelling data, maybe an array is all we need, and if
we are just modelling behaviours, maybe some methods are all we need; but if we are
modelling both data and behaviours, an object-oriented approach makes sense.

In this example we are calculating the perimeter of a shape. The code in black is the
procedural version of the program, and the code in red is what we need to add in to
make it object-oriented. We need to add in an init method for each class, and we also
need to add in a method to take point values into the class, because with object-oriented
design we prefer to encapsulate the values, and change them through a method.
PROGRAM CalculatePerimeter:

import math

class Point:

 def _ _init_ _(self, x, y):

 self.x = x

 self.y = y

 # END init

 def distance(self, p2):

 return math.sqrt(

 (self.x – p2.x)**2 + (self.y – p2.y)**2)

 # END distance

END class point

class Polygon:

 def _ _init_ _(self):

 self.vertices = []

 # END init

 def add_point(self, point):

 self.vertices.append((point))

 # END add_point

 def perimeter(self):

 perimeter = 0

 points = self.vertices + [self.vertices[0]]

 for i in range(len(self.vertices)):

 perimeter += points[i].distance(points[i+1])

 # ENDFOR

 return perimeter

 # END perimeter

END class perimeter

END.

The object-oriented code in red, doubles the length of the program.

/

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

12

 Object-Oriented Programs

Running the Program
Below is how we would run the program procedurally, and how we would run it in an
object-oriented way. As we can see in the procedural version we input the perimeter
points directly, whereas in the object-oriented version we input them via a method. The
object-oriented version certainly isn’t more compact than the procedural version, but it is
much clearer in terms of what is happening, and makes reuse far easier.

Procedural Version
>>> square =

[(1,1),(1,2),(2,2),(2,1)]

>>> perimeter(square)

Object-Oriented Version
>>> square = Polygon()

>>> square.add_point(Point(1,1))

>>> square.add_point(Point(1,2))

>>> square.add_point(Point(2,2))

>>> square.add_point(Point(2,1))

>>> print(square.perimeter())

Getters and Setters
As we mentioned, we prefer to access attributes through methods instead of accessing
them directly.There are times when that applies to the internal code as well as to other
classes. For example, if we want to assign a variable called name to a particular value, we

would say something like Colour.name = “Red”, but, we could also write a method
as follows, and to assign a value we would say Colour.set_name(“Red”).
def set_name(self, name):

 self._name = name

END set_name.

We can do the same for the command print(Colour.name) which we can change

to become print(Colour.get_name() [We can do the same for a return]:
def get_name(self):

 return self._name

END get_name.

The real benefit of getters and setters is that we can add conditions and checking into the
getters and setters to make the code more robust and powerful:
def get_name(self):

 if self._name == "":

 return "There is a blank value"

 else:

 return self._name

 # ENDIF;

END get_name.

If we have code that already does assignments and prints, we can force them to run as
getters and setters using the property function as follows:
>>> name = property(_get_name, _set_name)

And now without having to change any code, the assignments, prints, and returns are
upgraded to become getters (aka accessor methods) and setters (aka mutator methods).

Manager Objects
Manager Objects are like managers in offices, they tell other people what to do. The
manager class and objects don’t really do much activity themselves, and instead they call
other methods, and pass messages between those methods.

.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

13

 String Formatting

String Declarations
There are a lot of different ways to declare a string in Python, you can use a set of double
quotes (“) or a set of single quotes (‘). You can also create a string be enclosing a number
of strings in round brackets (generators). To declare a sting over multiple lines all you
have to do is enclose the strings in three double quotes (“) or three single quotes (‘).

a = "Hello" String Hello

b = 'World' String World

c = ("Three " "Strings "

 "Together")

String Three Strings Together

d = '''a multiple

line string'''
String a multiple

line string

e = """More

Multiple Strings"""
String More

Multiple Strings

Counting and Searching for a Character
Python strings have a number of built-in methods, including count which counts how
often a particular chatacter or substring appears in a string. The find method locates

the first occurance of a particular chatacter or substring (starting at location zero). The
rfind (reverse find) method locates the last occurance of a character or substring.

s = "Hello World“

s.count('o‘) # How often does ‘o’ appear in s?
s.count(‘l‘) # How often does ‘l’ appear in s?

2 (‘o’ appears twice)
3 (‘l’ appears three times)

s.find('o‘) # What position is the first ‘o’ at?
s.find(‘l‘) # What position is the first ‘l’ at?

4 (starting at location zero)
2 (starting at location zero)

s.rfind('o‘) # What position is the last ‘o’ at?
s.rfind(‘l‘) # What position is the last ‘l’ at?

7 (starting at location zero)
9 (starting at location zero)

String Manipulation
Other built-in methods include the split method to split a string based on a specificed
parameter, the join method join substrings based on a specificed parameter, the
replace method replaces characters in a string with others, the partition method

divides the string into three parts based on the first occurance of a specificed parameter,
and finally the rpartition method splits on the last occurance of a parameter.

s = "Hello World, how are you?“

s2 = s.split(' ') ['Hello', 'World,', 'how', 'are', 'you?']
s3 = '#'.join(s2) Hello#World,#how#are#you?
s4 = s.replace(' ', '**') Hello**World,**how**are**you?
s5 = s.partition(' ') ('Hello', ' ', 'World, how are you?')
s6 = s.rpartition(' ') ('Hello World, how are', ' ', 'you?')

Python has many other built-in methods, including center(), endswith(),
isalpha(), isdigit(), isspace(), lower(), and upper().

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

14

 String Formatting

The format Method
Another built-in method that Python 3 provides is the format method. This allows you
to add text into a string using curly braces. There are a number of different ways of
persenting the arguments to the string.

Unindexed Arguments
If you put empty curly braces into the string with and have an equivalent number of
strings in the format command, Python will use positional substitution to repleace the
first set of braces with the first string in the format command, the second braces with

with the second string in the format command, etc.
MyText = "{}, you are currently {}"

print(MyText.format('Damian', 'teaching'))

Gives you the following output:
Damian, you are currently teaching

Indexed Arguments
If you put numbers in the curly braces and have a number of strings in the format
command, the Python intrepreter will substitute the arguments on the basis of the
numbers (starting at zero).
MyText = "{0}, you are currently {1}, thanks {0}"

print(MyText.format('Damian', 'teaching'))

Gives you the following output:
Damian, you are currently teaching, thanks Damian

Keywords Arguments
If you put labels in the curly braces and have a number of strings, each associated with
one of the labels, in the format command, the Python intrepreter will substitute the
arguments on the basis of the labels.
MyText = "{name}, you are currently {activity}"

print(MyText.format(name=”Damian”, activity=”teaching”))

Gives you the following output:
Damian, you are currently teaching

Mixing Argument Types
You are also allowed to mix together different types of arguments, so in the example
below the two unindex arguments are mixed with a keyword arguement. The two
unindexed arguments match with the strings “x” and “x+1” in the format command
which are also unlabelled. And the argument labelled as “Label” matches the string “=”:
print("{} {Label} {}".format("x", "x + 1", Label = "="))

Gives you the following output:
x = x + 1

This is a sampling of the range of ways you can use string arguments.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

15

 Regular Expressions

Regular Expressions
A regular expression is a sequence of characters that define a search pattern, mainly for
use in pattern matching with strings, or string matching. Regular expressions originated
in 1956, when mathematician Stephen Cole Kleene described regular languages using his
mathematical notation called regular sets. Python has a library called re to help:
PROGRAM MatchingPatterns:

import re

SearchString = "hello world"

pattern = "hello world"

IsMatch = re.match(pattern, SearchString)

if IsMatch == True:

 print("regex matches")

ENDIF;

END.

This program compares SearchString to pattern, and if it matchs, it prints out the
phrase “regex matches”.

Basic Patterns

Logical OR: A vertical bar separates
alternatives. For example, gray|grey can
match "gray" or "grey".
Grouping: Parentheses are used to
define the scope and precedence of the
operators. For example, gr(a|e)y

?: indicates zero or one occurrences of
the preceding element. For example,
colou?r matches both "color" and
"colour".
*: indicates zero or more occurrences of
the preceding element. For example,
ab*c matches "ac", "abc", "abbc",
"abbbc", and so on.
+: indicates one or more occurrences of
the preceding element. For example,
ab+c matches "abc", "abbc", "abbbc",
and so on, but not "ac".

{n}: The preceding item is matched
exactly n times.
{min,}: The preceding item is matched
min or more times.
{min,max}: The preceding item is
matched at least min times, but not
more than max times.

Basic Pattern Matching
'hello world' matches 'hello world'
'hello world' matches 'hello worl'
'hello world' does not matche 'ello world'

Matching Single Characters

'hello world' matches 'hel.o world'
'helpo world' matches 'hel.o world'
'hel o world' matches 'hel.o world'
'helo world' does not match 'hel.o world'
'hello world' matches 'hel[lp]o world'
'helpo world' matches 'hel[lp]o world'
'helPo world' does not match 'hel[lp]o world'

'hello world' does not match 'hello [a-z] world'
'hello b world' matches 'hello [a-z] world'
'hello B world' matches 'hello [a-zA-Z] world'
'hello 2 world' matches 'hello [a-zA-Z0-9] world'

Special Characters

'.' matches pattern '\.'
‘[' matches pattern '\['
‘]' matches pattern '\]‘
‘(' matches pattern '\(‘
‘)' matches pattern '\)‘

Example Matches

'(abc]' matches '\(abc\]'
' 1a' matches '\s\d\w'
'\t5n' does not match '\s\d\w'
' 5n' matches '\s\d\w'

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

16

 Regular Expressions

Matching Multiple Characters

The asterisk (*) character says that the
previous character can be matched zero
or more times.

'hello' matches 'hel*o'
'heo' matches 'hel*o'
'helllllo' matches 'hel*o'

The pattern [a-z]* matches any
collection of lowercase words, including
the empty string:

'A string.' matches '[A-Z][a-z]* [a-z]*\.'
'No .' matches '[A-Z][a-z]* [a-z]*\.'
'' matches '[a-z]*.*'

The plus (+) sign in a pattern behaves
similarly to an asterisk; it states that the
previous character can be repeated one
or more times, but, unlike the asterisk is
not optional:

'0.4' matches '\d+\.\d+'
'1.002' matches '\d+\.\d+'
'1.' does not match '\d+\.\d+'

The question mark (?) ensures a
character shows up exactly zero or
one times, but not more.

'1%' matches '\d?\d%'
'99%' matches '\d?\d%'
'999%' does not match '\d?\d%'

If we want to check for a repeating
sequence of characters, by enclosing any
set of characters in parenthesis, we can
treat them as a single pattern:

'abccc' matches 'abc{3}'
'abccc' does not match '(abc){3}'
'abcabcabc' matches '(abc){3}'

Two Further Patterns
^: The start of a string.
$: The end of a string.

More Complex Patterns
Combining the patterns together allows us
to expand our pattern-matching repertoire:

'Eat.' matches
'[A-Z][a-z]*([a-z]+)*\.$'

'Eat more good food.' matches
'[A-Z][a-z]*([a-z]+)*\.$'

'A good meal.' matches
'[A-Z][a-z]*([a-z]+)*\.$'

RegEx for a Valid e-mail Format
The regular expression that can be used to
represent a valid e-mail is as follows:

pattern = "^[a-zA-Z.]+@([a-z.]*\.[a-z]+)$"

More re Methods

In addition to the match function, the re
module provides a couple other useful
functions, search(), and findall().

• The search() function finds the

first instance of a matching pattern,
relaxing the restriction that the
pattern start at the first letter.

• The findall()function behaves

similarly to search, except that it
finds all non-overlapping instances
of the matching pattern, not just the
first one.

>>> import re

>>> re.findall('a.', 'abacadefagah')
['ab', 'ac', 'ad', 'ag', 'ah']

>>> re.findall('a(.)', 'abacadefagah')
['b', 'c', 'd', 'g', 'h']

>>> re.findall('(a)(.)', 'abacadefagah')
[('a', 'b'), ('a', 'c'), ('a', 'd'), ('a', 'g'), ('a', 'h')]

>>> re.findall('((a)(.))', 'abacadefagah')
[('ab', 'a', 'b'), ('ac', 'a', 'c'), ('ad', 'a', 'd'),
('ag', 'a', 'g'), ('ah', 'a', 'h')]

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

17

 Object Serialization

Serializing and Deserializing (Pickling andUnpickling)
We can store an object into a file, and retrieving it later from storage. Storing an object is
called serializing it, and retrieving it is called deserializing it. Python uses a function called
pickle to do this. So sometimes instead of saying we are serializing an object, we can

say we are pickling an object; and instead of deserializing an object, we can say we are
unpickling an object.

The Dump Method

To save an object to a byte file, pickle provides a dump method:
 pickle.dump(object, file)

For example:
 open("pickled_list.p", "wb") as MyFile:

 pickle.dump(MyObject, MyFile)

So we open a byte file ("pickled_list.p") for writing, as MyFile, and serialize that object
into MyFile.

The Load Method
To take a byte file and load it into an object, we have the load method:
object = pickle.load(file)

For example:
open("pickled_list.p", "rb") as MyFile:

MyNewObject = pickle.load(MyFile)

So open the byte file ("pickled_list.p") for reading, as MyFile, and load it into the object.

Example Program
import pickle

MyObject = ["a list", "containing", 5, "values including

another list", ["inner", "list"]]

with open("pickled_list.p", "wb") as MyFile:

 pickle.dump(MyObject, MyFile)

with open("pickled_list.p", "rb") as MyFile:

 MyNewObject = pickle.load(MyFile)

Using the with statement means that the file is automatically closed when finished.

The Dumps and Loads Methods

The dumps and loads behave much like their file-like counterparts, except they return
or accept byte strings instead of file-like objects. The dumps method requires only one
argument, the object to be stored, and it returns a serialized byte string object. The
loads method requires a byte string object and returns the restored object.
import pickle

MyString = ["a list", "containing", 5, "values"]

DumpedString = pickle.dumps(MyString)

LoadedString = pickle.loads(DumpedString)

The variable LoadedString is uploaded as a byte string.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

18

 Object Serialization

Serializing Web Objects
To transmit object data over the web you need to use a recognised standard so that the
sending and receiving classes will know what is being transmitted. There are many
common standards, but the most common one is JSON (“jason”). JSON stands for
JavaScript Object Notation, and is an open-standard format that uses human-readable
text to transmit data objects consisting of attribute–value pairs. JSON is a language-
independent data format, and the JSON filename extension is .json:
{

 "firstName": "John",

 "lastName": "Smith",

 "age": 25,

 "address": {

 "streetAddress": "21 2nd Street",

 "city": "New York"

 }

}

The Import Statement

To deal with JSON web objects, Python provides a json library, so we say:
import json

The Dump and Load Methods

The Dump and Load methods work almost exactly the same way as their pickle

counterparts, except that we are creating text files with valid JSON notation rather than
byte files. So to save an object to a JSON file, json provides a dump method:
json.dump(object, file)

For example:
 open("MyFile.json", "w") as WriteFile:

 json.dump(MyObject, WriteFile)

So we open a text file ("MyFile.json") for writing, as WriteFile, and serialize that object
into MyFile. And to take a text file and load it into a JSON object, we load:
object = json.load(file)

For example:
open("MyFile.json ", "r") as WriteFile:

MyNewObject = json.load(WriteFile)

So open the text file ("MyFile.json") for reading, as MyFile, and load it into the object.

The Dumps and Loads Methods
The dumps and loads behave much like their pickle counterparts:
import json

MyString = ["a list", "containing", 5, "values"]

DumpedString = json.dumps(MyString)

LoadedString = json.loads(DumpedString)

The variable LoadedString is uploaded as a byte string.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

19

 Design Patterns

What are Design Patterns?
Computer scientists got together and discussed the common types of problems they are
usually asked to solve, and realised that a lot ofcreated a set of generic solutions to those
problem. These are not full programs, and sometimes not even pseudocode, but
represent good ideas or good approaches to solving common problems. Types of Design
Patterns include: Algorithm strategy patterns, Computational design patterns,
Execution patterns, Implementation strategy patterns, and Structural design patterns

Some Common Design Patterns

The Iterator Pattern: A design pattern in which an iterator is used to traverse a
container and access the container's elements.

The Decorator Pattern: A design pattern which wraps an existing class and can alter
the functionality of the methods.

The Observer Pattern: A design pattern which monitors a core class and different
observers react different to changes in the core class.

The Strategy Pattern: A design pattern which presents different potential solutions to
the same problem, and allows the program to choose the most suitable one.

The State Pattern: A design pattern which represents a system that goes through
different states, and records the current state and the transitions between states.

The Singleton Pattern: A design pattern which allows only one object based on a
certain class to exist.

The Template Pattern: A design pattern which creates a common base class the can
be inherited by multiple class that share common states, these can override the base
class methods.

The Adapter Pattern: A design pattern which allows two pre-existing objects to
interact with each other, even if their interfaces are not compatible.

The Façade Pattern: A design pattern which presents a simple interface to complex
system but encapsulating typical usage into a new object.

The Flyweight Pattern: A design pattern which helps objects that share the same
state to use the same memory location.

The Command Pattern: A design pattern which creates an object (an execute object)
that can execute another object at a later time.

The Abstract Factory Pattern: A design pattern which returns a different class (or
implementation) of the same system, depending on the platform, local settings, or
current locale.

The Composite Pattern: A design pattern which allows complex tree-like structures to
be built easily from simple components.

These are some of the 23 classic design patterns.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

20

 Design Patterns

The Singleton Pattern
The Singleton Pattern is a design pattern which allows only one object based on a certain
class to exist. The general Singleton design pattern is as follows:
class Singleton:

 IsSingleton = None

 Method NewObject:

 If IsSingleton == None

 Then IsSingleton = super(Singleton).new_object

 EndIf;

 return IsSingleton

 # END NewObject

END Singleton.

In Python the Singleton design pattern can be implented as follows:
class OneOnly:

 _singleton = None

 def __new__(cls, *args, **kwargs):

 if not cls._singleton:

 # THEN

 cls._singleton = super(OneOnly, cls

).__new__(cls, *args, **kwargs)

 # ENDIF;

 return cls._singleton

 # END __new__

END OneOnly.

In Python we use the _ _new_ _ class to help ensure there’s only one instance of a class.
When the _ _new_ _ class is called, it typically creates a new instance of that class. When
we override it, we first check if our singleton instance has been created; if not, we create
it using a super() call.

A sample output would be as follows:
>>> o1 = OneOnly()

>>> o2 = OneOnly()

>>> o1 == o2

True

>>> o1

<__main__.OneOnly object at 0xb71c008c>

>>> o2

<__main__.OneOnly object at 0xb71c008c>

So even though it looks like two objects are created, in reality they are both at the same
address in memory.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

21

 Design Patterns

The Iterator Pattern
The iterator pattern is a design pattern in which an iterator is used to traverse a
container and access the container's elements. Contaier types include lists, tuples,
dictionaries, and sets, and they can be structured in multiple ways:

Different Types of Collections

The general Iterator design pattern provides a way to access the elements of a collection
object sequentially without exposing its underlying representation. The Iterator design
pattern allows us to separate out all the logic for iterating over a collection. It allows an
object to traverse through a container (collection of objects) without having the
container to reveal how the data is structured internally. To achieve this the iterator
pattern is designed so that the container object provides a public interface in the form of
an interator object for different client objects to access its contents. It consists of two
main classes:

• Iterable is a class that provides a way to expose its data to the public.

• Iterator is a class that contains a pointer to the next element in the iteration.

Generic Iterator Pattern
class ITERABLE:

 def __init__(self, VALUE):

 self.VALUE = VALUE

 # END Init

 def __iter__(self):

 return ITERATOR(self.VALUE)

 # END Iter

END ITERABLE.

class ITERATOR:

 def __init__(self, VALUE):

 self.VALUE = VALUE

 self.index = 0

 # END Init

 def __iter__(self):

 return self

 # END Iter

 def __next__(self):

 if CONDITION:

 VALUE = SELF.VALUE

 self.index = self.index + 1

 return VALUE

 else:

 raise StopIteration()

 # ENDIF;

 # END Next

END ITERATOR.

This is the general design pattern, not the specific implementation.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

22

 Design Patterns

Python Iterator Pattern
To implement the Iterator Pattern, Python provides you with a pair of built-ins:

• iter() takes in a container object and builds and returns a new iterator object.

• next() takes in the iterator and, each time it is called, returns the next item
from the container.When there are no more objects to return, the exception
StopIteration is raised.

class MyCountIterable:

 def __init__(self, Value):

 self.Value = Value

 # END Init

 def __iter__(self):

 return MyCountIteration(self.Value)

 # END Iter

END MyCountIterable.

class MyCountIteration:

 def __init__(self, Value):

 self.Index = 0

 self.Value = Value

 # END Init

 def __iter__(self):

 # Iterators are iterables too.

 return self

 # END Iter

 def __next__(self):

 if self.Index < self.Value:

 # THEN

 Index = self.Index

 self.Index += 1

 return Index

 else:

 raise StopIteration()

 # ENDIF;

 # END Next

END MyCountIteration.

Here is the Python code to run the iterator program:
FirstCount = MyCountIterable(5)

list(FirstCount)

FirstCountIter = iter(FirstCount)

while True:

 try:

 print(next(FirstCountIter))

 except StopIteration:

 break

ENDWHILE

This is clearly not as easy as a simple FOR loop counting 0 to 4, but it is a standard, and
well-known pattern, and is readily recognisable by other programmers.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

23

 Comprehensions and Generators

COMPREHENSIONS

• Comprehensions are a quick way of
generating or altering Lists, Sets or
Dictionaries. They provide a
powerful range of functionality
using a single line of code.

List [List of Values]

Set {Unique Values}

Dictionary {Label: Set}

List Comprehensions
Let’s imagine we had a list (or array) of strings, as follows:

• string_array = [“234", "75", "331", "73", "5"]

If we wanted to take each element and covert them into integers, we could do:
Output1 = [int(num) for num in string_array]

 ________/ ______________________/
 Convert num to integer for each number in the list
Which would give us:
[234, 75, 331, 73, 5]

If we wanted to only convert strings less than three characters long:
output2 = [int(num) for num in string_array if len(num) < 3]

 ________/ ______________________/ _______________/
 Convert num to integer for each number in the list if string length less than 3
Which would give us:
[75, 73, 5]

Set Comprehensions
A set is like a list but with no duplicate entries. We create a set is to use the set()
constructor to convert a list into a set, but we can also use a set comprehension.
f-authors = {b.author for b in books if b.genre == 'fantasy'}

 ______/ _____________/ _______________________/
 Add unique author for each book in list if genre attribute is “fantasy”

Which would give us the following output (removing any duplicate values):
{'Pratchett', 'Le Guin', 'Turner'}

Dictionary Comprehensions
A dictionary is a list that has a label at the start of it, we can use an existing dataset and
convert it into a dictionary using a dictionary comprehension.:
f-titles = {b.title: b for b in books if b.genre == 'fantasy'}

 _______/ _/ _____________/ ________________________/
 Add label set for each book in list if genre attribute is “fantasy”

Now we have a dictionary we can look up using title.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

24

 Comprehensions and Generators

GENERATORS

• Generators have a similar
synthax to Comprehensions, but
work on Tuples instead of Lists,
Sets and Dictionaries.

Generator (List of Values)

Generator Experssions
If we were processing a large log file that had lots of lines in it, some of which had the
word "WARNING" in it. If the log file was very big (terabytes) and we were looking only
for lines with the word “WARNING” in them, we shouldn’t use a List Comprehension in
this case because they would temporarily create a list containing every line and then
search for the appropriate messages.

Instead if we use a generator, we avoid that issue because generators don’t create a
temporary list, they only write content out when they are instructed to, this is sometimes
called Lazy Evaluation, and it allows you to start using the list immediately:
import sys

InName = "InputFile.txt"

OutName = "OutputFile.txt"

with open(InName) as infile:

 with open(OutName, "w") as outfile:

 warnings = (line for line in infile if 'WARNING' in line)

 for line in warnings:

 outfile.write(line)

 # ENDFOR;

END.

So the most important line in the program is as follows:
warnings = (line for line in infile if 'WARNING' in line)

 ___/ _________________/ ____________________/
 Add this line in for each line in the file if ‘WARNING’ is in line

If we wanted to remove the word “WARNING” out of each line, we could do:
W = (line.replace(' WARNING', ‘’) for line in file if 'WARNING' in line)

 _________________________/ ______________/ _________________/
 Replace ‘WARNING’ with blank for each line in the file if ‘WARNING’ is in line

If we wanted to do the same thing in a more object-oriented manner, we could use the
following code. Note that the yield command works exactly like the normal return

command (when you return a value from a method), but it temporarily returns control to
the calling method, and remembers where it was in a sequence in each new call.
def warnings_filter(insequence):

 for line in insequence:

 if 'WARNING' in line:

 yield line.replace(' WARNING', '')

This will return the same result as the previous code snippet.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

25

 Unit Testing

Python UnitTest Library
Unit Testing is concerned with testing small chunks of a program, for example, testing a
single class or a single method. Python has a library for unit testing called unittest. It
provides several tools for creating and running unit tests.

One of the most important classes in unittest is called TestCase which provides a
set of methods to compare values, set up tests and clean up after tests are finished. To
write unit tests, we create a subclass of TestCase and write methods to do the actual

testing. Typically we start all of these methods with the name test. Here’s an example:
import unittest

class CheckNumbers(unittest.TestCase):

 def test_int_float(self):

 self.assertEqual(1, 1.0)

 # END test_int_float

END CheckNumbers

If the assertion is found to be true, it returns “.”, and if it fails, it returns “F”.

Assetion Methods

Methods Description
assertEqual

assertNotEqual

Accept two comparable objects and ensure the named
equality holds.

assertTrue

assertFalse

Accept a single expression, and fail if the expression
does not pass an IF test.

assertGreater

assertGreaterEqual

assertLess

assertLessEqual

Accept two comparable objects and ensure the named
inequality holds.

asssertIn

assertNotIn

Ensure an element is (or is not) an element in a
container object.

assertIsNone

assertIsNotNone

Ensure an element is (or is not) the exact value None
(but not another false value).

assertSameElements Ensure two container objects have the same elements,
ignoring the order.

assertSequenceEqual

assertDictEqual

assertSetEqual

assertListEqual

assertTupleEqual

Ensure two containers have the same elements in the
same order. If there's a failure, show a code diff
comparing the two lists to see where they differ. The
last four methods also test the type of the list.

assertRaises Ensure a specific function call raises a specific exception.

To pass the assertFalse method the test should return False, None, 0, or an empty
list, dictionary, string, set, or tuple. To pass the assertTrue method the test should
return True, non-zero numbers, containers with values in.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

26

 Unit Testing

The assertRaises Method
Let’s look at an example of the assertRaises method:
import unittest

def MyAverage(seq):

 return sum(seq) / len(seq)

END average

class TestAverage(unittest.TestCase):

 def setUp(self):

 self.stats = StatsList([1,2,2,3,3,4])

 # END setUp

 def test_mean(self):

 self.assertEqual(self.stats.mean(), 2.5)

 # END test_mean

 def test_MyAverage(self):

 self.assertRaises(ZeroDivisionError, MyAverage, [])

 # END test_zero

END CLASS TestAverage

The setUp is called individually before each test, so each test starts with a clean slate.

Built-in Exceptions
Some of the Python built-in exceptions are as follows:

Methods Description
AssertionError Raised when an assert statement fails.
AttributeError Raised when an attribute reference or assignment fails.
FloatingPointError Raised when a floating point operation fails.
IOError Raised when an I/O operation (such as a print

statement) fails for an I/O-related reason.
IndexError Raised when a sequence subscript is out of range.
MemoryError Raised when an operation runs out of memory but the

situation may still be rescued by deleting some objects.
OverflowError Raised when the result of an arithmetic operation is too

large to be represented.
RuntimeError Raised when an error is detected that doesn’t fall in any

of the other categories.
SyntaxError Raised when the parser encounters a syntax error.
ZeroDivisionError Raised when the second argument of a division or

modulo operation is zero.

Test cases should never have side effects.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

27

 Development Models

Test-Driven Development
“Write tests first” is the key mantra of Test-Driven Development. The key concept is that
a developer shouldn’t write any code until they have written tests for that code first.
Test-Driven Development has two goals:

1. To ensure that tests are actually written, and written well. Too often developers
leave the design of tests until after the development process, and then don’t
bother because the code seems to work.

2. To help the developers envisage exactly what the code will do, and what
processes and modules it will interact with, thus testing becomes part of the
design process.

Test-Driven Development Cycle
A typical test-driven development cycle is as follows:

1. Add a test: Each new feature begins with writing a test.
2. Run all tests and see if the new test fails: This validates that the test harness is

working correctly.
3. Write the code: The next step is to write some code that causes the test to pass.
4. Run tests: If all test cases now pass, the programmer can be confident that the

new code meets the test requirements.
5. Refactor code: The growing code base must be cleaned up regularly during test-

driven development.
6. Repeat: Starting with another new test, the cycle is then repeated to push

forward the functionality.

Test-driven development offers more than just validation of correctness, it can also drive
the design of a program. By focusing on the test cases first, we have to imagine how the
functionality is used by end-users (in the first case, the test cases). So, we are concerned
with the interface before the implementation.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

28

 Development Models

Feature Driven Development
Feature Driven Development (FDD) is a framework that organizes the software
development process around developing one feature at a time until a complete system is
finished. It was originally developed for a large team, and as such is designed to
compensate for the range of skills that could be found in a large team.

Feature-Driven Development Cycle
A typical feature-driven development cycle is as follows:

1. Build a domain object model, in an intense, highly iterative, collaborative and
generally enjoyable activity involving “domain and development members under
the guidance of an experienced object modeller in the role of Chief Architect”.
While not mandatory, the object model is typically built using Peter Coad's
modelling in colour technique.

2. Build feature list, features are small, client-valued requirements. Feature typically
take 1-3 days to implement, occasionally 5 days but never 10 or more days to
implement.

3. Plan by Feature, the last initial phase involves constructing an initial schedule and
assigning initial responsibilities. The development team sequence the feature
sets based on activities that represent best relative business value.

4. Design by Feature, Each feature is tackled by a feature team (3-5 designers and
developers usually working together for 1-3 days).

5. Build by Feature, This involves the team members coding up the features, testing
them at both unit level and feature level, and holding a code inspection before
promoting the completed features into the project's regular build process.

FDD mandates code inspections is that research has shown time and again that when
done well, inspections find more defects and different kinds of defects than testing. Not
only that but by examining the code of the more experienced, knowledgeable developers
on the team and having them explain the idioms they use, less experienced developers
learn better coding techniques.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

29

Python Object-Oriented Programming Quiz

1. What is a method, and how do you declare it in Python?

2. What is an attribute, and how do you declare it in Python?

3. How do you declare a class, and how do you instantiate a class?

4. What is the purpose of the Initialization Method?

5. What are Docstrings?

6. What is the purpose of the __init__ method?

7. What are Docstrings?

8. What is a module and what is a package?

9. How does Access Controls work in Python?

10. Explain the purpose of the Python Package Index.

11. What is Inheritance, and how is it implemented in Python?

12. What is overriding?

13. What is super?

14. What is Multiple Inheritance, and how is it implemented in Python?

15. What is Polymorphism?

16. What is the purpose of Getters and Setters?

17. What are Manager Objects?

Object-Oriented Programming

30

Python Object-Oriented Programming Quiz

1. What do the following String functions do?

o count()

o find()

o rfind()

2. What do the following String Manipulation functions do?
o split()

o join()

o replace()

o partition()

o rpartition()

3. How are the following argument types used in the string Format method

o Unindexed arguments

o Indexed arguments

o Keyword arguments

4. What are regular expressions?

5. In Python, how is an object serialized (pickled) and deserialized (unpickled)?

6. In Python, how is a Web object serialized (pickled) and deserialized (unpickled)?

7. What is Unit Testing?

8. In Python, what is the purpose of the TestCase class?

9. What is the purpose of the assertEqual() method?

10. Give 5 examples of assert methods.

11. Explain the purpose of the assertRaises() method?

12. Give 5 examples of built-in exceptions.

13. Explain the goals of Test-Driven Development, and outline the TDD Cycle.

14. Explain the goals of Feature-Driven Development, and outline the FDD Cycle.

Object-Oriented Programming

31

Object-Oriented
Programming

In Java
Workbook

Damian Gordon

2020

Feel free to use any of the content in the guide with my permission.

Any suggestions or comments are most welcome, email me Damian.X.Gordon@TUDublin

mailto:Damian.X.Gordon@TUDublin

Object-Oriented Programming

32

Table of Contents

1. Introduction to Java

2. Handling Data in Java

3. Object-Oriented Java

Object-Oriented Programming

33

 Introduction to Java

Java Introduction
Java was developed by James Gosling, Mike Sheridan, and Patrick Naughton, starting in
1991, with Java 1.0 released in 1996. There have been 15 version of Java up to 2020.

Java was designed as a general-purpose programming language intended to let
developers write once, run anywhere (WORA) meaning that compiled Java code can run
on all platforms without the need for recompilation

The Java “Hello, World!” Program
Here’s how to we say hellow world, we have the print statement inside a method
called main, and that method is inside a class:

public class HelloWorld {

 public static void main(String []args) {

 System.out.print("Hello World\n");

 }

}

Here’s what each of those statements mean:

The Class The Method The Print
public: Public is an
access modifier for
classes and methods,
and means they are
accessible by any other
class.

class: Used to create

a class.

HelloWorld: This
can be whatever name
you want (except for
keywords and built-in
function names.

public: Public is an access
modifier for classes and
methods, and means they are
accessible by any other class.

static: There won’t be an
object created from the class
that this method is in.

void: means that this method
doesn’t return anything.

main: This is the first method

Java will visit, the main method.

String []args: Any
command line arguments are
put into the argument-string,
like parameters that go into the
program.

System: A class that
contains several useful
Input/Output attributes
and methods. It cannot be
instantiated.

out: An output class that
helps write content to the
screen.

print: Prints the string
enclosed in double
quotes.

The class and the method will be the same for most Java programs we are going to write,
so you can cut-and-paste it when you are writing new code (just change the classname).

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

34

 Introduction to Java

Java Comments
// A Single Line Comment

/* This is a multi-line

Comment */

Java Arithmetic Operators

+ Addition, 7 + 3

- Subtraction, 7 - 3

* Multiplication, 7 * 3

/ Integer Divsion, 7 / 3

/ Real Divsion, 7.0 / 3.0

% Division Remainder, 7 % 3

Java Variable Types
int x;

x = 15;

int x = 15;

double x;

x = 15.0;

double x = 15.0;

char x;

x = ‘s’;

char x = ‘s’;

String x;

x = “Hello, World!”;

String x = “Hello World!”;

boolean x;

x = false;

boolean x = false;

Java Conditional Operators

!= Is not equal to

== Is equal to

> Is greater than

< Is less than

>= Is greater than or equal to

<= Is less than or equal to

Java Logical Operators

&& Logical AND

|| Logical OR

! Logical NOT

These can be used in conditions.

Java String Formatting
length() Length of string
toUpperCase() Make upper case
toLowerCase() Make lower case
indexOf(Str) Find Str

Java IF Statement
if (condition) {

 // if condition is true

} else {

 // if condition is false

}

Java SWITCH Statement
switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

Java WHILE Statement
while (condition) {

 // code to be executed

}

Java FOR Statement
for (initial; cond; inc) {

 // code to be executed

}

Java Methods
public class Main {

 static void METHOD () {

 // code to be executed

 }

}

All methods are generally enclosed within a
class, and the method called main() is
executed first.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

35

 Handling Data in Java

Reading in Data
To get input from the user, Java has the Scanner class, so we need to do the following:
import java.util.Scanner; // import the Scanner class

And from there we can read the system input (System.in) by creating an object:
Scanner myObj = new Scanner(System.in);

String userName;

System.out.println("Enter username: ");

userName = myObj.nextLine();

There are other methods as well as nextLine() which reads in the next string.

Reading Methods

Method Description
nextBoolean() Reads a boolean value from the user.
nextByte() Reads a byte value from the user
nextDouble() Reads a double value from the user
nextFloat() Reads a float value from the user
nextInt() Reads a integer value from the user
nextLong() Reads a long value from the user
nextShort() Reads a short value from the user

File Handling
To control files we need to import the Scanner class, as well as the File class:
import java.io.File; // Import the File class

And then to read in a file, we do the following:
File myObj = new File("filename.txt");

Scanner myReader = new Scanner(myObj);

while (myReader.hasNextLine()) {

 String data = myReader.nextLine();

 System.out.println(data);

}

myReader.close();

File Methods

Method Description
getName() Returns the name of the file
getAbsolutePath() Returns the absolute pathname to the file
canWrite() Returns whether you can write to the file
canRead() Returns whether you can read from the file
length() Returns the length of the file
createNewFile() Creates a new file.

To write to a file, we import the FileWriter class, instead of thr the File class:
import java.io.FileWriter; // Import FileWriter class

And we can use the method write(String) to add to the file.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

36

 Handling Data in Java

Arrays in Java
To declare an array in Java, get can do the following:
int[] Age;

To initialise the array:
int[] Age = {44, 23, 42, 33, 16};

To access the first element in the array:
System.out.println(Age[0]);

A program to print out all of the values in an array can be as follows:
int[] Age = {44, 23, 42, 33, 16};

for (int i = 0; i < Age.length; i++) {

 System.out.println(Age[i]);

}

For a String array it’s almost exactly the same:
String[] cars = {"Volvo", "BMW", "Ford"};

for (int i = 0; i < cars.length; i++) {

 System.out.println(cars[i]);

}

Linked Lists in Java
Java has a linked list class to help in creating and accessing linked lists:
import java.util.LinkedList; // Import LinkedList class

And we can create an linked list object as follows:
LinkedList<String> cars = new LinkedList<String>();

cars.add("Volvo");

cars.add("BMW");

There are also several methods to get, set, add and remove items from the linked list:

Method Description
get(index) Returns the item at location index.
set(index, value) Sets the item at location index to the value value.
remove(index) Removes the item at location index.
addFirst(value) Add an item to the start of the list with the value value.
addLast(value) Add an item to the end of the list with the value value.
removeFirst() Removes the first item from the list.
removeLast() Removes the last item from the list.
getFirst() Returns the first item of the list.
getLast() Returns the last item of the list.
clear() Clears the list.

Together this gives us a lot of functionality to manpulate linked lists.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

37

 Object-Oriented Java

Basic Java Object-Oriented Programming
Declaring a class in Java is done as follows:
public class Main {

 int x = 5;

}

And to declare an object, we do:
public class ExampleObj {

 int x = 5;

public static void main(String[] args) {

 ExampleObj myObj = new ExampleObj();

 System.out.println(myObj.x);

 }

}

As you can see we’ve also creted an attribute in the above program.

To modify an attribute we do the following:
public class Main {

 int x = 10;

 public static void main(String[] args) {

 Main myObj = new Main();

 myObj.x = 40;

 System.out.println(myObj.x);

 }

}

If we change the declaration of “int x = 10;” to “final int x = 10;”, the

code to change X to 40 will produce an error.

Java Constructors
A constructor in Java is a special method that is used to initialize objects. The constructor
name must match the class name, and it cannot have a return type (like void). Also note

that the constructor is called when the object is created. All classes have constructors by
default: if you do not create a class constructor yourself, Java creates one for you.
public class ExampleObj {

 int x;

 public ExampleObj(int y) {

 x = y;

 }

 public static void main(String[] args) {

 ExampleObj myObj = new ExampleObj(5);

 System.out.println(myObj.x);

 }

}

The constructor sets x to y, and in this case we pass a parameter to the constructor (5).

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

38

 Object-Oriented Java

Java Interitance
Let’s look an example, the Car class (subclass) inherits the attributes and methods from
the Vehicle class (superclass):
class Vehicle {

 protected String brand = "Ford"; // Vehicle attribute

 public void honk() { // Vehicle method

 System.out.println("Tuut, tuut!");

 }

}

class Car extends Vehicle {

 private String modelName = "Mustang"; // Car attrib

 public static void main(String[] args) {

 // Create a myCar object

 Car myCar = new Car();

 // Call the honk() method on the myCar object

 myCar.honk();

/* Display the value of the brand attribute (from Vehicle

class) and the value of the modelName from the Car class*/

 System.out.println(myCar.brand + myCar.modelName);

 }

}

To inherit from a class, use the extends keyword.

Java Polymorphism
For example, think of a superclass called Animal that has a method called animalSound().
Subclasses of Animals could be Pigs, Cats, Dogs, Birds - And they also have their own
implementation of an animal sound (the pig oinks, and the cat meows, etc.):
class Animal {

 public void animalSound() {

 System.out.println("The animal makes a sound");

 }

}

class Pig extends Animal {

 public void animalSound() {

 System.out.println("The pig says: wee wee");

 }

}

class Dog extends Animal {

 public void animalSound() {

 System.out.println("The dog says: bow wow");

 }

}

Instances of Dog that call the method animalSound() will give a different anwswer

than instances of Pig that call the method animalSound().

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

39

Java Object-Oriented Programming Quiz

1. When declaring a java class what is the meaning of “public”?

2. When declaring a java method what is the meaning of “static”?

3. When declaring a java method what is the meaning of “void”?

4. When declaring the main method what is the meaning of “String []args”?

5. How are comments declared in java (both forms)?

6. List the 5 java variable types.

7. List the 6 conditional operators.

8. List the 3 logical operators.

9. List the 4 string formatting methods.

10. How is the IF statement declared in java?

11. How is the SWITCH statement declared in java?

12. How is the WHILE statement declared in java?

13. How is the FOR statement declared in java?

14. How are methods declared in java?

Object-Oriented Programming

40

Java Object-Oriented Programming Quiz

1. What is the purpose of the Scanner class?

2. What is the meaning of System.in?

3. What does the nextLine()method do?

4. What is the purpose of the File class?

5. What do the following methods do?

▪ getName()

▪ getAbsolutePath()

▪ canWrite()

▪ canRead()

▪ length()

▪ createNewFile()

6. What does the FileWriter class do?

7. How do you declare and initialise an array in Java?

8. Write a program to print out all of the values in an array.

9. What does the LinkedList class do?

10. How do you declare a Class in Java? How do you add attributes and methods?

11. How do you instantiate an object from a class in Java?

12. How do you write a Constructor in Java?

13. What is the purpose of the extends keyword?

14. Write a program that shows how polymorphism works in Java.

