
Object-Oriented Programming 
 

 
 

 

 Unit Testing 
 

  

 
Python UnitTest Library 
Unit Testing is concerned with testing small chunks of a program, for example, testing a 
single class or a single method. Python has a library for unit testing called unittest. It 
provides several tools for creating and running unit tests.  
 
One of the most important classes in unittest is called TestCase which provides a 
set of methods to compare values, set up tests and clean up after tests are finished. To 
write unit tests, we create a subclass of TestCase and write methods to do the actual 

testing. Typically we start all of these methods with the name test. Here’s an example: 
import unittest 

class CheckNumbers(unittest.TestCase): 

    def test_int_float(self): 

        self.assertEqual(1, 1.0) 

    # END test_int_float 

# END CheckNumbers 

If the assertion is found to be true, it returns “.”, and if it fails, it returns “F”.  
 
Assetion Methods 

Methods Description 
assertEqual 

assertNotEqual 

Accept two comparable objects and ensure the named 
equality holds. 

assertTrue 

assertFalse 
Accept a single expression, and fail if the expression 
does not pass an IF test. 

assertGreater 

assertGreaterEqual 

assertLess 

assertLessEqual 

Accept two comparable objects and ensure the named 
inequality holds. 

asssertIn 

assertNotIn 

Ensure an element is (or is not) an element in a 
container object. 

assertIsNone 

assertIsNotNone 

Ensure an element is (or is not) the exact value None 
(but not another false value). 

assertSameElements Ensure two container objects have the same elements, 
ignoring the order. 

assertSequenceEqual 

assertDictEqual 

assertSetEqual 

assertListEqual 

assertTupleEqual 

Ensure two containers have the same elements in the 
same order. If there's a failure, show a code diff 
comparing the two lists to see where they differ. The 
last four methods also test the type of the list. 

assertRaises Ensure a specific function call raises a specific exception. 

To pass the assertFalse method the test should return False, None, 0, or an empty 

list, dictionary, string, set, or tuple. To pass the assertTrue method the test should 
return True, non-zero numbers, containers with values in. 

 

 

 

 Object Oriented Programming © Damian Gordon  

 



Object-Oriented Programming 
 

 
 

 

 Unit Testing 
 

  

 
The assertRaises Method 
Let’s look at an example of the assertRaises method: 
import unittest 

 

def MyAverage(seq): 

  return sum(seq) / len(seq) 

# END average 

 

class TestAverage(unittest.TestCase): 

    def setUp(self): 

        self.stats = StatsList([1,2,2,3,3,4]) 

    # END setUp 

 

    def test_mean(self): 

        self.assertEqual(self.stats.mean(), 2.5) 

    # END test_mean 

 

    def test_MyAverage(self): 

      self.assertRaises(ZeroDivisionError, MyAverage, []) 

    # END test_zero 

# END CLASS TestAverage 

The setUp is called individually before each test, so each test starts with a clean slate. 

 
Built-in Exceptions 
Some of the Python built-in exceptions are as follows: 

Methods Description 
AssertionError Raised when an assert statement fails. 
AttributeError Raised when an attribute reference or assignment fails. 
FloatingPointError Raised when a floating point operation fails. 
IOError Raised when an I/O operation (such as a print 

statement) fails for an I/O-related reason. 
IndexError Raised when a sequence subscript is out of range. 
MemoryError Raised when an operation runs out of memory but the 

situation may still be rescued by deleting some objects. 
OverflowError Raised when the result of an arithmetic operation is too 

large to be represented. 
RuntimeError Raised when an error is detected that doesn’t fall in any 

of the other categories. 
SyntaxError Raised when the parser encounters a syntax error. 
ZeroDivisionError Raised when the second argument of a division or 

modulo operation is zero. 

Test cases should never have side effects. 

 

 

 

 Object Oriented Programming © Damian Gordon  

 


