
Object-Oriented Programming

 Design Patterns

The Iterator Pattern
The iterator pattern is a design pattern in which an iterator is used to traverse a
container and access the container's elements. Contaier types include lists, tuples,
dictionaries, and sets, and they can be structured in multiple ways:

Different Types of Collections

The general Iterator design pattern provides a way to access the elements of a collection
object sequentially without exposing its underlying representation. The Iterator design
pattern allows us to separate out all the logic for iterating over a collection. It allows an
object to traverse through a container (collection of objects) without having the
container to reveal how the data is structured internally. To achieve this the iterator
pattern is designed so that the container object provides a public interface in the form of
an interator object for different client objects to access its contents. It consists of two
main classes:

• Iterable is a class that provides a way to expose its data to the public.

• Iterator is a class that contains a pointer to the next element in the iteration.

Generic Iterator Pattern
class ITERABLE:

 def __init__(self, VALUE):

 self.VALUE = VALUE

 # END Init

 def __iter__(self):

 return ITERATOR(self.VALUE)

 # END Iter

END ITERABLE.

class ITERATOR:

 def __init__(self, VALUE):

 self.VALUE = VALUE

 self.index = 0

 # END Init

 def __iter__(self):

 return self

 # END Iter

 def __next__(self):

 if CONDITION:

 VALUE = SELF.VALUE

 self.index = self.index + 1

 return VALUE

 else:

 raise StopIteration()

 # ENDIF;

 # END Next

END ITERATOR.

This is the general design pattern, not the specific implementation.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

 Design Patterns

Python Iterator Pattern
To implement the Iterator Pattern, Python provides you with a pair of built-ins:

• iter() takes in a container object and builds and returns a new iterator object.

• next() takes in the iterator and, each time it is called, returns the next item
from the container.When there are no more objects to return, the exception
StopIteration is raised.

class MyCountIterable:

 def __init__(self, Value):

 self.Value = Value

 # END Init

 def __iter__(self):

 return MyCountIteration(self.Value)

 # END Iter

END MyCountIterable.

class MyCountIteration:

 def __init__(self, Value):

 self.Index = 0

 self.Value = Value

 # END Init

 def __iter__(self):

 # Iterators are iterables too.

 return self

 # END Iter

 def __next__(self):

 if self.Index < self.Value:

 # THEN

 Index = self.Index

 self.Index += 1

 return Index

 else:

 raise StopIteration()

 # ENDIF;

 # END Next

END MyCountIteration.

Here is the Python code to run the iterator program:
FirstCount = MyCountIterable(5)

list(FirstCount)

FirstCountIter = iter(FirstCount)

while True:

 try:

 print(next(FirstCountIter))

 except StopIteration:

 break

ENDWHILE

This is clearly not as easy as a simple FOR loop counting 0 to 4, but it is a standard, and
well-known pattern, and is readily recognisable by other programmers.

 Object Oriented Programming © Damian Gordon

