
Object-Oriented Programming

 Design Patterns

What are Design Patterns?
Computer scientists got together and discussed the common types of problems they are
usually asked to solve, and realised that a lot ofcreated a set of generic solutions to those
problem. These are not full programs, and sometimes not even pseudocode, but
represent good ideas or good approaches to solving common problems. Types of Design
Patterns include: Algorithm strategy patterns, Computational design patterns,
Execution patterns, Implementation strategy patterns, and Structural design patterns

Some Common Design Patterns

The Iterator Pattern: A design pattern in which an iterator is used to traverse a
container and access the container's elements.

The Decorator Pattern: A design pattern which wraps an existing class and can alter
the functionality of the methods.

The Observer Pattern: A design pattern which monitors a core class and different
observers react different to changes in the core class.

The Strategy Pattern: A design pattern which presents different potential solutions to
the same problem, and allows the program to choose the most suitable one.

The State Pattern: A design pattern which represents a system that goes through
different states, and records the current state and the transitions between states.

The Singleton Pattern: A design pattern which allows only one object based on a
certain class to exist.

The Template Pattern: A design pattern which creates a common base class the can
be inherited by multiple class that share common states, these can override the base
class methods.

The Adapter Pattern: A design pattern which allows two pre-existing objects to
interact with each other, even if their interfaces are not compatible.

The Façade Pattern: A design pattern which presents a simple interface to complex
system but encapsulating typical usage into a new object.

The Flyweight Pattern: A design pattern which helps objects that share the same
state to use the same memory location.

The Command Pattern: A design pattern which creates an object (an execute object)
that can execute another object at a later time.

The Abstract Factory Pattern: A design pattern which returns a different class (or
implementation) of the same system, depending on the platform, local settings, or
current locale.

The Composite Pattern: A design pattern which allows complex tree-like structures to
be built easily from simple components.

These are some of the 23 classic design patterns.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

 Design Patterns

The Singleton Pattern
The Singleton Pattern is a design pattern which allows only one object based on a certain
class to exist. The general Singleton design pattern is as follows:
class Singleton:

 IsSingleton = None

 Method NewObject:

 If IsSingleton == None

 Then IsSingleton = super(Singleton).new_object

 EndIf;

 return IsSingleton

 # END NewObject

END Singleton.

In Python the Singleton design pattern can be implented as follows:
class OneOnly:

 _singleton = None

 def __new__(cls, *args, **kwargs):

 if not cls._singleton:

 # THEN

 cls._singleton = super(OneOnly, cls

).__new__(cls, *args, **kwargs)

 # ENDIF;

 return cls._singleton

 # END __new__

END OneOnly.

In Python we use the _ _new_ _ class to help ensure there’s only one instance of a class.
When the _ _new_ _ class is called, it typically creates a new instance of that class. When
we override it, we first check if our singleton instance has been created; if not, we create
it using a super() call.

A sample output would be as follows:
>>> o1 = OneOnly()

>>> o2 = OneOnly()

>>> o1 == o2

True

>>> o1

<__main__.OneOnly object at 0xb71c008c>

>>> o2

<__main__.OneOnly object at 0xb71c008c>

So even though it looks like two objects are created, in reality they are both at the same
address in memory.

 Object Oriented Programming © Damian Gordon

