
Object-Oriented Programming

 Regular Expressions

Regular Expressions
A regular expression is a sequence of characters that define a search pattern, mainly for
use in pattern matching with strings, or string matching. Regular expressions originated
in 1956, when mathematician Stephen Cole Kleene described regular languages using his
mathematical notation called regular sets. Python has a library called re to help:
PROGRAM MatchingPatterns:

import re

SearchString = "hello world"

pattern = "hello world"

IsMatch = re.match(pattern, SearchString)

if IsMatch == True:

 print("regex matches")

ENDIF;

END.

This program compares SearchString to pattern, and if it matchs, it prints out the
phrase “regex matches”.

Basic Patterns

Logical OR: A vertical bar separates
alternatives. For example, gray|grey can
match "gray" or "grey".
Grouping: Parentheses are used to
define the scope and precedence of the
operators. For example, gr(a|e)y

?: indicates zero or one occurrences of
the preceding element. For example,
colou?r matches both "color" and
"colour".
*: indicates zero or more occurrences of
the preceding element. For example,
ab*c matches "ac", "abc", "abbc",
"abbbc", and so on.
+: indicates one or more occurrences of
the preceding element. For example,
ab+c matches "abc", "abbc", "abbbc",
and so on, but not "ac".

{n}: The preceding item is matched
exactly n times.
{min,}: The preceding item is matched
min or more times.
{min,max}: The preceding item is
matched at least min times, but not
more than max times.

Basic Pattern Matching
'hello world' matches 'hello world'
'hello world' matches 'hello worl'
'hello world' does not matche 'ello world'

Matching Single Characters

'hello world' matches 'hel.o world'
'helpo world' matches 'hel.o world'
'hel o world' matches 'hel.o world'
'helo world' does not match 'hel.o world'
'hello world' matches 'hel[lp]o world'
'helpo world' matches 'hel[lp]o world'
'helPo world' does not match 'hel[lp]o world'

'hello world' does not match 'hello [a-z] world'
'hello b world' matches 'hello [a-z] world'
'hello B world' matches 'hello [a-zA-Z] world'
'hello 2 world' matches 'hello [a-zA-Z0-9] world'

Special Characters

'.' matches pattern '\.'
‘[' matches pattern '\['
‘]' matches pattern '\]‘
‘(' matches pattern '\(‘
‘)' matches pattern '\)‘

Example Matches

'(abc]' matches '\(abc\]'
' 1a' matches '\s\d\w'
'\t5n' does not match '\s\d\w'
' 5n' matches '\s\d\w'

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

 Regular Expressions

Matching Multiple Characters

The asterisk (*) character says that the
previous character can be matched zero
or more times.

'hello' matches 'hel*o'
'heo' matches 'hel*o'
'helllllo' matches 'hel*o'

The pattern [a-z]* matches any
collection of lowercase words, including
the empty string:

'A string.' matches '[A-Z][a-z]* [a-z]*\.'
'No .' matches '[A-Z][a-z]* [a-z]*\.'
'' matches '[a-z]*.*'

The plus (+) sign in a pattern behaves
similarly to an asterisk; it states that the
previous character can be repeated one
or more times, but, unlike the asterisk is
not optional:

'0.4' matches '\d+\.\d+'
'1.002' matches '\d+\.\d+'
'1.' does not match '\d+\.\d+'

The question mark (?) ensures a
character shows up exactly zero or
one times, but not more.

'1%' matches '\d?\d%'
'99%' matches '\d?\d%'
'999%' does not match '\d?\d%'

If we want to check for a repeating
sequence of characters, by enclosing any
set of characters in parenthesis, we can
treat them as a single pattern:

'abccc' matches 'abc{3}'
'abccc' does not match '(abc){3}'
'abcabcabc' matches '(abc){3}'

Two Further Patterns
^: The start of a string.
$: The end of a string.

More Complex Patterns
Combining the patterns together allows us
to expand our pattern-matching repertoire:

'Eat.' matches
'[A-Z][a-z]*([a-z]+)*\.$'

'Eat more good food.' matches
'[A-Z][a-z]*([a-z]+)*\.$'

'A good meal.' matches
'[A-Z][a-z]*([a-z]+)*\.$'

RegEx for a Valid e-mail Format
The regular expression that can be used to
represent a valid e-mail is as follows:

pattern = "^[a-zA-Z.]+@([a-z.]*\.[a-z]+)$"

More re Methods

In addition to the match function, the re
module provides a couple other useful
functions, search(), and findall().

• The search() function finds the

first instance of a matching pattern,
relaxing the restriction that the
pattern start at the first letter.

• The findall()function behaves

similarly to search, except that it
finds all non-overlapping instances
of the matching pattern, not just the
first one.

>>> import re

>>> re.findall('a.', 'abacadefagah')
['ab', 'ac', 'ad', 'ag', 'ah']

>>> re.findall('a(.)', 'abacadefagah')
['b', 'c', 'd', 'g', 'h']

>>> re.findall('(a)(.)', 'abacadefagah')
[('a', 'b'), ('a', 'c'), ('a', 'd'), ('a', 'g'), ('a', 'h')]

>>> re.findall('((a)(.))', 'abacadefagah')
[('ab', 'a', 'b'), ('ac', 'a', 'c'), ('ad', 'a', 'd'),
('ag', 'a', 'g'), ('ah', 'a', 'h')]

 Object Oriented Programming © Damian Gordon

