
Object-Oriented Programming

 String Formatting

String Declarations
There are a lot of different ways to declare a string in Python, you can use a set of double
quotes (“) or a set of single quotes (‘). You can also create a string be enclosing a number
of strings in round brackets (generators). To declare a sting over multiple lines all you
have to do is enclose the strings in three double quotes (“) or three single quotes (‘).

a = "Hello" String Hello

b = 'World' String World

c = ("Three " "Strings "

 "Together")

String Three Strings Together

d = '''a multiple

line string'''
String a multiple

line string

e = """More

Multiple Strings"""
String More

Multiple Strings

Counting and Searching for a Character
Python strings have a number of built-in methods, including count which counts how
often a particular chatacter or substring appears in a string. The find method locates

the first occurance of a particular chatacter or substring (starting at location zero). The
rfind (reverse find) method locates the last occurance of a character or substring.

s = "Hello World“

s.count('o‘) # How often does ‘o’ appear in s?
s.count(‘l‘) # How often does ‘l’ appear in s?

2 (‘o’ appears twice)
3 (‘l’ appears three times)

s.find('o‘) # What position is the first ‘o’ at?
s.find(‘l‘) # What position is the first ‘l’ at?

4 (starting at location zero)
2 (starting at location zero)

s.rfind('o‘) # What position is the last ‘o’ at?
s.rfind(‘l‘) # What position is the last ‘l’ at?

7 (starting at location zero)
9 (starting at location zero)

String Manipulation
Other built-in methods include the split method to split a string based on a specificed
parameter, the join method join substrings based on a specificed parameter, the
replace method replaces characters in a string with others, the partition method

divides the string into three parts based on the first occurance of a specificed parameter,
and finally the rpartition method splits on the last occurance of a parameter.

s = "Hello World, how are you?“

s2 = s.split(' ') ['Hello', 'World,', 'how', 'are', 'you?']
s3 = '#'.join(s2) Hello#World,#how#are#you?
s4 = s.replace(' ', '**') Hello**World,**how**are**you?
s5 = s.partition(' ') ('Hello', ' ', 'World, how are you?')
s6 = s.rpartition(' ') ('Hello World, how are', ' ', 'you?')

Python has many other built-in methods, including center(), endswith(),
isalpha(), isdigit(), isspace(), lower(), and upper().

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

 String Formatting

The format Method
Another built-in method that Python 3 provides is the format method. This allows you
to add text into a string using curly braces. There are a number of different ways of
persenting the arguments to the string.

Unindexed Arguments
If you put empty curly braces into the string with and have an equivalent number of
strings in the format command, Python will use positional substitution to repleace the
first set of braces with the first string in the format command, the second braces with

with the second string in the format command, etc.
MyText = "{}, you are currently {}"

print(MyText.format('Damian', 'teaching'))

Gives you the following output:
Damian, you are currently teaching

Indexed Arguments
If you put numbers in the curly braces and have a number of strings in the format
command, the Python intrepreter will substitute the arguments on the basis of the
numbers (starting at zero).
MyText = "{0}, you are currently {1}, thanks {0}"

print(MyText.format('Damian', 'teaching'))

Gives you the following output:
Damian, you are currently teaching, thanks Damian

Keywords Arguments
If you put labels in the curly braces and have a number of strings, each associated with
one of the labels, in the format command, the Python intrepreter will substitute the

arguments on the basis of the labels.
MyText = "{name}, you are currently {activity}"

print(MyText.format(name=”Damian”, activity=”teaching”))

Gives you the following output:
Damian, you are currently teaching

Mixing Argument Types
You are also allowed to mix together different types of arguments, so in the example
below the two unindex arguments are mixed with a keyword arguement. The two
unindexed arguments match with the strings “x” and “x+1” in the format command

which are also unlabelled. And the argument labelled as “Label” matches the string “=”:
print("{} {Label} {}".format("x", "x + 1", Label = "="))

Gives you the following output:
x = x + 1

This is a sampling of the range of ways you can use string arguments.

 Object Oriented Programming © Damian Gordon

