
Object-Oriented Programming

 Object-Oriented Programs

Moving from Procedural to Object-Oriented Programs
One of the key goals of object-oriented programming is software reuse. To achieve this
we wrap methods and attributes in a class, and that makes it easier for other programs
to use those classes. If we are just modelling data, maybe an array is all we need, and if
we are just modelling behaviours, maybe some methods are all we need; but if we are
modelling both data and behaviours, an object-oriented approach makes sense.

In this example we are calculating the perimeter of a shape. The code in black is the
procedural version of the program, and the code in red is what we need to add in to
make it object-oriented. We need to add in an init method for each class, and we also
need to add in a method to take point values into the class, because with object-oriented
design we prefer to encapsulate the values, and change them through a method.
PROGRAM CalculatePerimeter:

import math

class Point:

 def _ _init_ _(self, x, y):

 self.x = x

 self.y = y

 # END init

 def distance(self, p2):

 return math.sqrt(

 (self.x – p2.x)**2 + (self.y – p2.y)**2)

 # END distance

END class point

class Polygon:

 def _ _init_ _(self):

 self.vertices = []

 # END init

 def add_point(self, point):

 self.vertices.append((point))

 # END add_point

 def perimeter(self):

 perimeter = 0

 points = self.vertices + [self.vertices[0]]

 for i in range(len(self.vertices)):

 perimeter += points[i].distance(points[i+1])

 # ENDFOR

 return perimeter

 # END perimeter

END class perimeter

END.

The object-oriented code in red, doubles the length of the program.

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

 Object-Oriented Programs

Running the Program
Below is how we would run the program procedurally, and how we would run it in an
object-oriented way. As we can see in the procedural version we input the perimeter
points directly, whereas in the object-oriented version we input them via a method. The
object-oriented version certainly isn’t more compact than the procedural version, but it is
much clearer in terms of what is happening, and makes reuse far easier.

Procedural Version
>>> square =

[(1,1),(1,2),(2,2),(2,1)]

>>> perimeter(square)

Object-Oriented Version
>>> square = Polygon()

>>> square.add_point(Point(1,1))

>>> square.add_point(Point(1,2))

>>> square.add_point(Point(2,2))

>>> square.add_point(Point(2,1))

>>> print(square.perimeter())

Getters and Setters
As we mentioned, we prefer to access attributes through methods instead of accessing
them directly.There are times when that applies to the internal code as well as to other
classes. For example, if we want to assign a variable called name to a particular value, we

would say something like Colour.name = “Red”, but, we could also write a method
as follows, and to assign a value we would say Colour.set_name(“Red”).
def set_name(self, name):

 self._name = name

END set_name.

We can do the same for the command print(Colour.name) which we can change

to become print(Colour.get_name() [We can do the same for a return]:
def get_name(self):

 return self._name

END get_name.

The real benefit of getters and setters is that we can add conditions and checking into the
getters and setters to make the code more robust and powerful:
def get_name(self):

 if self._name == "":

 return "There is a blank value"

 else:

 return self._name

 # ENDIF;

END get_name.

If we have code that already does assignments and prints, we can force them to run as
getters and setters using the property function as follows:
>>> name = property(_get_name, _set_name)

And now without having to change any code, the assignments, prints, and returns are
upgraded to become getters (aka accessor methods) and setters (aka mutator methods).

Manager Objects
Manager Objects are like managers in offices, they tell other people what to do. The
manager class and objects don’t really do much activity themselves, and instead they call
other methods, and pass messages between those methods.

 Object Oriented Programming © Damian Gordon

