
Object-Oriented Programming

 Objects in Python

We remember, that an object has
Methods and Attributes:

• To add METHODS, you must add them
to the CLASS definition.

• To add ATTRIBUTES, you typically add
them to the CLASS definition, but it is
possible to add them to the OBJECT
definition also. You must add the
values of the attributes to the OBJECT.

To declare a class in Python:

class <ClassName>:

 <Do stuff>

END Class

For example:

class Point:

 pass

END Class

p1 = Point()

p2 = Point()

To add attributes:

p1.x = 5

p1.y = 4

p2.x = 3

p2.y = 6

In Python the general form of declaring
an attribute is as follows:

OBJECT.ATTRIBUTE = VALUE

We call this dot notation.

To add a method, we can simply put it in the
class:

class Point:

 def reset(self):

 self.x = 0

 self.y = 0

 # END Reset

END Class

In this case the use of the term self refers to
the current instance of Point, so whichever
object of Point you call the reset method
with, is the self.

We can instantiate the class as follows:

p = Point()

p.x = 5

p.y = 4

We can call reset in two ways:

>> p.reset()

>> Point.reset(p)

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

 Objects in Python

The Initialization Method
Sometimes when a developer creates a new class they forget to declare all of the
attributes required, or forget to give those attributes a starting value (“initial value”). So
Python has a special method called “_ _init_ _()” which forces the developer to

make sure they declare and initialize all of the attributes that are required by each
program. It can also be declared in such a way as to set default values for all attributes.

This is an Initialization method
without any default values:

This is an Initialization method out default
values pre-set:

def __init__(self,x,y):

 self.move(x,y)

END Init

def __init__(self, x=0, y=0):

 self.move(x,y)

END Init

The Initialization method should be used in every class unless there is a very good reason.

Docstrings
One of the key motivations behind the object-oriented paradigm is the idea of “code
reuse”, so if you (or someone else) have already written a method or class, if it is at all
possible you should not rewrite the code again. Good documentation and labelling are an
important element of making the purpose and intent of programs clear. One feature that
Python provides to make this easier is the Doscstring feature, where you can add
descriptive sentence to each class and method, as the first line of that class or method.
class Point:

 “Represents a point in 2D space”

 def move(self,a,b):

 ‘Move the point to a new location’

 self.x = a

 self.y = b

 # END Move

END Class

In the Python shell, all you need to do is type “help” with the name of the class in
brackets, and you will see all the Docstrings.
>>> help (Point)

Help on class Point in module __main__:

class Point(builtins.object)

 | Represents a point in 2D space

 |

 | move(self, a, b)

 | Move the point to a new location

 | ---------------------------------------

So the purpose of all of the methods is made clear using the HELP command.

 Object Oriented Programming © Damian Gordon

