
Object-Oriented Programming

 Object-Oriented Java

Basic Java Object-Oriented Programming
Declaring a class in Java is done as follows:
public class Main {

 int x = 5;

}

And to declare an object, we do:
public class ExampleObj {

 int x = 5;

public static void main(String[] args) {

 ExampleObj myObj = new ExampleObj();

 System.out.println(myObj.x);

 }

}

As you can see we’ve also creted an attribute in the above program.

To modify an attribute we do the following:
public class Main {

 int x = 10;

 public static void main(String[] args) {

 Main myObj = new Main();

 myObj.x = 40;

 System.out.println(myObj.x);

 }

}

If we change the declaration of “int x = 10;” to “final int x = 10;”, the

code to change X to 40 will produce an error.

Java Constructors
A constructor in Java is a special method that is used to initialize objects. The constructor
name must match the class name, and it cannot have a return type (like void). Also note

that the constructor is called when the object is created. All classes have constructors by
default: if you do not create a class constructor yourself, Java creates one for you.
public class ExampleObj {

 int x;

 public ExampleObj(int y) {

 x = y;

 }

 public static void main(String[] args) {

 ExampleObj myObj = new ExampleObj(5);

 System.out.println(myObj.x);

 }

}

The constructor sets x to y, and in this case we pass a parameter to the constructor (5).

 Object Oriented Programming © Damian Gordon

Object-Oriented Programming

 Object-Oriented Java

Java Interitance
Let’s look an example, the Car class (subclass) inherits the attributes and methods from
the Vehicle class (superclass):
class Vehicle {

 protected String brand = "Ford"; // Vehicle attribute

 public void honk() { // Vehicle method

 System.out.println("Tuut, tuut!");

 }

}

class Car extends Vehicle {

 private String modelName = "Mustang"; // Car attrib

 public static void main(String[] args) {

 // Create a myCar object

 Car myCar = new Car();

 // Call the honk() method on the myCar object

 myCar.honk();

/* Display the value of the brand attribute (from Vehicle

class) and the value of the modelName from the Car class*/

 System.out.println(myCar.brand + myCar.modelName);

 }

}

To inherit from a class, use the extends keyword.

Java Polymorphism
For example, think of a superclass called Animal that has a method called animalSound().
Subclasses of Animals could be Pigs, Cats, Dogs, Birds - And they also have their own
implementation of an animal sound (the pig oinks, and the cat meows, etc.):
class Animal {

 public void animalSound() {

 System.out.println("The animal makes a sound");

 }

}

class Pig extends Animal {

 public void animalSound() {

 System.out.println("The pig says: wee wee");

 }

}

class Dog extends Animal {

 public void animalSound() {

 System.out.println("The dog says: bow wow");

 }

}

Instances of Dog that call the method animalSound() will give a different anwswer

than instances of Pig that call the method animalSound().

 Object Oriented Programming © Damian Gordon

