Object-Oriented Programming

 Handling Data in Java

Reading in Data

To get input from the user, Java has the Scanner class, so we need to do the following:
| import java.util.Scanner; // import the Scanner class |
And from there we can read the system input (System. in) by creating an object:
Scanner myObj = new Scanner (System.in);

String userName;

System.out.println ("Enter username: ");

userName = myObj.nextLine () ;

There are other methods as well as nextLine () which reads in the next string.

Reading Methods

Method Description
nextBoolean () Reads a boolean value from the user.
nextByte () Reads a byte value from the user
nextDouble () Reads a double value from the user
nextFloat () Reads a float value from the user
nextInt () Reads a integer value from the user
nextLong () Reads a long value from the user
nextShort () Reads a short value from the user

File Handling
To control files we need to import the Scanner class, as well as the File class:
| import java.io.File; // Import the File class

And then to read in a file, we do the following:

File myObj = new File("filename.txt");

Scanner myReader = new Scanner (myObj);

while (myReader.hasNextLine()) {
String data = myReader.nextLine();
System.out.println (data) ;

}

myReader.close () ;

File Methods
Method Description

getName () Returns the name of the file
getAbsolutePath () Returns the absolute pathname to the file
canWrite () Returns whether you can write to the file
canRead () Returns whether you can read from the file
length () Returns the length of the file
createNewFile () Creates a new file.

To write to a file, we import the FileWriter class, instead of thr the File class:
| import java.io.FileWriter; // Import FileWriter class
And we can use the method write (String) to add to the file.

Object-Oriented Programming

 Handling Data in Java

Arrays in Java
To declare an array in Java, get can do the following:
| int[] Age; |

To initialise the array:
| int[] Age = {44, 23, 42, 33, 16}; |

To access the first element in the array:
| System.out.println (Age[0]); |

A program to print out all of the values in an array can be as follows:

int[] Age = {44, 23, 42, 33, 16};

for (int i = 0; i < Age.length; i++) {
System.out.println (Ageli]);

}

For a String array it’s almost exactly the same:

String[] cars = {"Volvo", "BMW", "Ford"};

for (int 1 = 0; 1 < cars.length; i++) {
System.out.println(cars([i]);

}

Linked Lists in Java
Java has a linked list class to help in creating and accessing linked lists:
| import java.util.LinkedList; // Import LinkedList class

And we can create an linked list object as follows:

LinkedList<String> cars = new LinkedList<String>();

cars.add ("Volvo") ;

cars.add ("BMW") ;

There are also several methods to get, set, add and remove items from the linked list:

Method Description

get (index) Returns the item at location index.

set (index, value) Sets the item at location index to the value value.

remove (index) Removes the item at location index.

addFirst (value) Add an item to the start of the list with the value value.

addLast (value) Add an item to the end of the list with the value value.

removeFirst () Removes the first item from the list.

removeLast () Removes the last item from the list.

getFirst () Returns the first item of the list.

getLast () Returns the last item of the list.

clear () Clears the list.

Together this gives us a lot of functionality to manpulate linked lists.

