The
Unified Modeling Language
for Object-Oriented Development

Documentation Set
Version 0.9a Addendum

Grady Booch
James Rumbaugh
lvar Jacobson

Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 2

Copyright ©1996 Rational Software Corporation

RATIONAL

SOFTWARECORPORATION

2800 San Tomas Expressway
Santa Clara, California 95051-0951
Telephone: 408-496-3600

Fax: 408-496-3636

E-mail: product-info@rational.com
URL.: http://www.rational.com

Sales (U.S. and Canada)
(800) 728-1212
International offices

Australia +61-2-419-8455
Brazil +55-021-571-2978
Canada 613-599-8581
France +33-1-30-12-09-50
Germany +49-89-797-021
India +91-80-553-8082
Korea +82-2-579-8926
Sweden +46-8-703-4530
Taiwan +886-2-720-1938
UK +44-1273-624814

International representatives

Israel +972-3-531-3333
Japan +81-3-3779-2541

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 3

1. Overview

1.1 Purpose

This document is an addendum to the version 0.8 documentation set for the Unified Method, re-
leased in October 1995. The purpose of this version 0.9 document is to provide an update to our
work which has evolved due to continued efforts at unification, public feedback, and research ad-
dressing new elements of modeling, namely, the issues of distribution, concurrency, and interfaces.

Much has happened since the release of the version 0.8 documentation set. Most importantly, lvar
has joined our team. The 0.8 documentation set, written by Grady and Jim, had addressed some
elements of use case modeling, but now with Ivar as an equal partner we have been able to fully
assimilate his work. This effectively means that the scope of our activities has grown to encompass
the unification of the Booch, OMBnd OOSE methods. As part of this growth we have also re-
named our work, changing it from the Unified Method (UM) to the Unified Modeling Language
(UML). This name change reflects the fact that we have chosen to decouple our work on notation
and semantics from that of process. Section 2.1 explains this change in more detail.

As part of our continued efforts at unification, we have worked hard to make the UML simpler.

This means that we have collapsed some related concepts into more general ones, we’ve made the
notation more regular and even eliminated some symbols, and we’'ve made the metamodel cleaner
and smaller. Along the way, we've also found opportunities to reuse existing UML semantics in
creative ways. This has enabled us to attack the problems of distribution, concurrency, and inter-
faces with minimal increase in the size of the UML

1.2 Organization

This document is an addendum to the version 0.8 documentation set, and as such does not provide
a complete metamodel for the UML. Rather, it concentrates upon what'’s changed, what’s new and
different, and what'’s left to accomplish. Our version 1.0 documentation set, which we expect to
deliver in late 1996/early 1997 in conjunction with our OMG submission, will provide a complete
metamodel.

The core of this document is organized in three major sections:

2. What's Changed This section addresses various naming changes (including the
change to the UML designation), changes to the syntax of stereo-
types, and changes to the syntax and semantics of packages and
nodes.

3. What's New This section addresses the semantics of stereotypes and the integra-
tion of use cases (two improvements to the UML) as well as the se-
mantics of interfaces, distribution, and real time modeling (new
features to the UML).

4. Tentative Proposals This section includes some proposals that are not yet final, but are
being considered for inclusion in the UML. Readers are invited to
comment on these proposals.

5. What's Left This section provides a schedule of UML developments over the
next several months and the work that remains to be done.

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 4

1.3 Acknowledgments

Since the publication of the 0.8 documentation set for the Unified Method, we have distributed sev-
eral thousand copies and have received feedback from hundreds of individuals from around the
world. Thank you: your comments have given us much valuable guidance. Not only have you told
us what you'‘ve liked, but you've told us what we’ve needed to fix, and what we were missing. Be-
cause of the volume of comments, we simply have not been able to respond to every message per-
sonally, but be assured that we are still tracking every comment we have received, and we are
striving to address all substantial issues. Unfortunately, we can’t acknowledge every contribution
personally, but we'd like to give special thanks to a few individuals for their detailed feedback,
namely, Michael Chonoles, Peter Coad, Bruce Douglas, Don Firesmith, Martin Fowler, Paul Kyzi-
vat, Jim Odell, Dan Tasker, Jeff Sutherland, and various groups of developers at AG Communica-
tion Systems and Andersen Consulting.

1.4 Points of Contact

Comments on any aspect of the UML should be sent directly to all three of its authors, ly eferab
via e-mail. Our individual addresses are:

Grady Booch egb@rational.com
James Rumbaugh rumbaugh@rational.com
Ilvar Jacobson ivar@rational.com
You can also post a message to all three of us at once using the following address:
amigos@rational.com

Finally, you can send comments to us via snail mail, using the address for Rational’s corporate of-
fices as listed on the copyright page of this document.

1.5 Copyright

The UML is an open standard; it is not a proprietary Rational language. As such, the UML may be
used freely by anyone, anywhere. We are actively encouraging other tool vendors, training firms,
consulting firms, authors, and developers to adopt the UML so that there will be wide-spread sup-
port for all users of the UML. We have a copyright notice on this and other UML documents simply
to prevent commercial for-profit reproduction. If you want to share copies of this document with a
colleague, then simply make a complete copy and acknowledge its source. If you want to make
hundreds of copies and then sell them or use them for a training course, then please talk to us first.
If you want to use this material to build a tool, develop a new training course, write a book, or use
in your projects for development, then we encourage you to do so, but please again acknowledge
its source, and remember that the UML is almost (but not totally) finished and therefore some
things might change. It is in the best interests of the market for there to be consistent support for
and use of the UM; if you find holes or areas of ambigt in using the UML, please contacl. us

Now is the time to addrethe remaining loose ends.

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 5

2. What's Changed

2.1 Name Changes

There are two major name changes since the version 0.8 documentation set: the name of the UML
itself, and the names of certain diagrams.

In the 0.8 documentation set, we referred to our work as the “Unified Method.” We have decided
to change the name to the “Unified Modeling Language,” or “UML” for short. We made this
change for three reasons:

» Feedback from the market indicated that we would add the most value by focusing on sta-
bilizing the artifacts of software development and not the process.

 Our unification efforts were already focusing upon the graphical modeling language and
its semantics and far less so on the underlying process.

* The UML is intended to be a universal language for modeling systems, meaning that it
can express models of many different kinds and purposes, just as a programming lan-
guage or a natural language can be used in many different ways. Thus, a single universal
process for all styles of development did not seem possible or even desirable: what works
for a shrink-wrap software project is probably wrong for a one-of-a-kind globally distrib-
uted, human-critical family of systems. However, the UML can be used to express the ar-
tifacts of all of these different processes, namely, the models that are produced.

Our move to the UML does not mean that weignoring the issues of process. Indeed, the UML
assumes a process that is use case driven, architecture-centered, iterative and incremental. Itis our
observation that the details of this general development process must be adapted to the particular
development culture or application domain of a specific organiz We are also working on pro-

cess issues, but we have chosen to separate the modeling language from the process.

By making the modeling language and its process nearly independent, we therefore give users and
other methodologists considerable degrees of freedom to craft a specific proceswuse icom-

mon language of expression. This is not unlike blueprints for buildings: there is a commonly un-
derstood language for blueprints, but there are a number of different ways to build, depending upon
the nature of what is being built and who is doing the building. This is why we say that the UML

is essentially the language of blueprints for software.

The names of four diagrams have been changeversion0.8, we referred to “message trace di-
agrams” and “object message diagrams.” In the UML, we now refer to these two diagrams as “se-
guence diagrams” and “collaboration diagrams” respectively. We chose the name “sequence
diagram” because it was a more general term (such diagrams involve more than just events) and
because it emphasized its focus on the time-ordered sequence of transactions. We chose the name
“collaboration diagram” because it was a more general term (the term “object diagram” had gotten
terribly overloaded) and because it emphasized its focus on the patterns of collaboration among
sets of objects.

Additionally, inversion0.8, we referred to “module diagrams” and “platform diagrams.” In the

UML, we now refer to these two diagrams as “component diagrams’ and “deployment diagrams”
respectively. In the case of component diagrams we have made the name change because ongoing
use has led us to realize that these diagrams are more generally useful in modeling all sorts of phys-
ical components (such as dynamic libraries) as well as more static files. In the case of deployment
diagrams, we have made the name change because the term “platform’ turned out to be highly over-

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 6

loaded, and the term “deployment” reflected the diagram’s true semantics, namely, the topology of
the deployed system.

2.2 Syntax of Stereotypes

In the UML, the role of stereotypes and propeihas leen greatly expanded, for they have proven

to be powerful mechanisms that are both general and extensible. Section 3.2 explains how the se-
mantics of stereotypes and properties have been impiAlso, tte syntax of stereotyphas been
changed. In the 0.8 documentation set, we designated a stereotype by enclosing the stereotype
name in parenthesis. Because pareles are used in many other places and are not visually dis-
tinctive, we have changed the notation for stereotypes to guis («») , which bracket the ste-

reotype name as «exception» . For convenience guillemet can be typed itwo engle-

brackets bumost typefacesupport them asingle charactes. The stereotype notation can be used

to mark an element, such as a class, package, or association. It can also be used within a list (such
as a list of attributes or operations) in which case it applies to the succeeding elements in the list
until countermanded.

We had considered the use of the exclamation point (!) to introduce a stereotype, but we eventually
dropped this idea, for too many people confused it with the not operator found in many program-
ming languages.

Figure 1 provides an example of the syntax for stereotypes.

«exception»
BadSocket

throw()

log(String)
«helper»
setSocket(Socket)
«access»
getID():SocketID
setlD(SocketID)

Figure 1: The Syntaof Stereotypes

In this figure, we see a class nanBadSocket whose stereotype exception . By stylistic
convention, we put the name of the class in bold face, while other elements of the class are written
in normal face.

The same stereotype notatimay be useto group operations. For example, the operaiget-

ID andsetlD are classified eaccess operations, and the operatsetSocket is ahelper
operationAccess andhelper both qualify as operation stereotypes, because they are in effect
metaclassifications of each operation and describe how the operations are used within the model.
For example, access operations can be generated automatically from the attributes and helper op-
erations are meant for internal use only. Operathrow andlog have no stereotype; they are

just ordinary public operatio.as

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 7

2.3 Generalization

Figure 2 llustrates one minor change to the generalization relationship: we now render his as a
directed line with a closeunfilled triangular arrowhead at the superclass end (in the 0.8 documen-
tation set, we rendered this as a filled triangle).

We have shown another stylistic convention here. Specifically, we have used italic font for abstract
classes (and operations) and normal font for concrete classes (and operations). This convention is
a shorthand notation for including the property “abstract” with the class name (or operation signa-
ture), but it may be particularly convenient for large lists of classes and operations.

Handler

KeyboardHandler MouseHandler JoystickHandler

Figure 2: Generalization

Figure 3 shows a change in syntax from the V0.8 definition of “and-generalization.” And-general-
ization occurs when a superclass generalizes more than one independent dimension. Different di-
mensions represent orthogonal abstract ways of describing an object. Each dimension is an
incomplete view of the superclass. Concrete classes are formed by multiple inheritance as a Carte-
sian product of the different dimensions. In other words, a concrete class has a list of superclasses,
one from each dimension of generalization of the original abstract class. For example, the class
Sailboat is a subclass WindPoweredVehicle = andWaterVehicle ;the clasTruck is

a subclass cMotorPoweredVehicle andLandVehicle . This construct is semantically
equivalent to forming the Cartesian product of the different dimensions, even if all combination
subclasses (such Sailboat ancTruck) are not shown. In V0.8 we required a dummy class

for each dimension, which was unnatural and unworkable in a system with many packages. Now
we allow adiscriminatol label to be attached to a generalization arc. If several generalization arcs
share the same label, then they represent the same dimension of generalization of the superclass;
different labels define independent dimensions of generalization. (The “empty” label is just a par-
ticular label, so that a generalization without any labels is just a special case of a dimension.)

Further clarifying the semantics of generalization, we do not assume or preclude the concepts of
dynamic classification and multiple classification (the terms are due to Odell). These are very use-
ful ideas for analysis, but some users may choose to forgo them because they are not directly sup-
ported by the leading OO programming languages. Concepts such as dynamic and multiple
classification are properties of the dynamic environment; the same static class model can be used
with either assumption. There are many other properties of the dynamic environment that different
users may want to vary. We do not feel that a single definition of dynamic semantics will work for

all purposes. Accordingly, as part of our work toward formal specification of UML semantics we
are investigating mechanisms to support “pluggable semantics” that permit the language to be ex-
tended. These mechanisms could be used to tune the execution semantics. (See section 3.4 for an
example using the «becomes» relationship to represent dynamic classification in action.)

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 8

Vehicle
venue
power power venue
WindPowered MotorPowered Land Water
Vehicle Vehicle Vehicle Vehicle
V4
Truck Sailboat

Figure 3:And-generalizatio with discriminator labels

In the final UML document we will suggest some hints to tool builders to provide optional notation

to enhance user comprehension of models. One such suggestion is an optional notation for showing
an incomplete generalization, i.e., a diagram in which some subclasses of a superclass are shown
but others are missing from a particular diagram (presumably they are shown on another diagram).
We suggest the ellipsis symbol “...” to explicitly indicate that some subclasses are missing from a
diagram. We propose that editing tools automatically generate or suppress this symbol as appro-
priate (i.e., it is a statement that view omits something, not a statement that the model lacks
something). This convention could also be used for associations, attributes, operations, etc. To
avoid visual overload such visualization options must be dynamically selectable.

2.4 Association Navigation

In the version 0.8 documentation set, we definavigability as an element of the role affiliated

with each end of an association relationship; however, we combined its symbol with the by-value/
by-reference distinction. In the UML, we have decided to designate navigability with an open ar-
row, as illustrated ilFigure 4 Navigability is visually distinguished from inheritance, which is de-
noted by an unfilled triangular arrowhead icon near the superclass.

In Figure 4 we have marked the association as navigable only in one direction, namely, from the
Handler totheClient , but not the reverse. This might indicate a design decision, but it might
also indicate an analysis decision to partition the system into packages suchClient class

is frozen and cannot be extended to know aboltHandler class, but thHandler class can

know about thecClient class.

Handler Client

Figure 4: Association Navigation

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 9

We chose this particular notation for navigability for two reasons:

* It was consistent with the use of the open arrowhead to show directionality in all other
uses.
* It was visually striking, but not so overwhelming that it stood out as a primary element.

A related change is a reassessment of the “by-value” adornment for associations. A “by-value” im-
plementation always implies aggregation: the value is physically part of the other object, so it must
be an aggregation. Therefore it is dangerous and unnecessary to allow “by-value” to be specified
separately from aggregation. We have realized that this is really an adornment on an aggregation,
a “tightly-bound” implementation of an aggregation. Therefore, the notation for “by-value” imple-
mentation is now a solid (filled) diamond on the aggregation symbol; a hollow diamond implies a
“by-reference” aggregation, the normal default. The small squares to mark “by-value” and “by-ref-
erence” are thus subsumed by this approach. Note that a “by-value” aggregation is semantically
equivalent to an attribute, but may be visually more appealing when the part has its own internal
structure.

There are certain rules on compatible adornments of associations:

* Only one side (at most) of an association can be an aggregate.
* If one side is a “by-value” aggregation, then the association is navigable to the other side.

2.5 Packages

In the version 0.8 documentation set, we used two different grouping mechanisms—categories for
the logical model and subsystems for the code model—each with a distinctive icon. In the UML,
we decided to collapse these two mechanisms into one all-purpose packaging construct, which can
also be used for other groupings of modeling elements, such as use cases and processors. We call
such a grouping packag and we draw it as a familiar desktop, namely, the “tabbed folder.” We
made these changes for three reasons:

* We needed a grouping mechanism elsewhere, and found that we kept adding new mech-
anisms that were all very similar.

* The semantics of categories and subsystems were similar, and use of stereotypes made it
possible to introduce a more general concept yet retain some distinctions.

Figure 5 rovides an example of several packages. In this figure we see four paClients

Business Model , Persistent Store, andNetwork . In this sample diagram we show

two classes inside ttBusiness Model package, together with one nested packBank. A

real model would have many more classes in each package. The contents might be shown if they
are small, or they might be suppressed from a high-level diagram showing the system architecture.
The entire system is a package.

This figure shows a fairly regular hierarchical structure, with packages dependent upon other pack-
ages. As in the 0.8 documentation set, we use the dependency relationship to show design and im-
plementation dependencies. For example, we note that the piClients depends upon the
packageBusiness Model andNetwork directly, meaning that one or more elements within
Clients depends on one or more elements within the other packages. Three of these outermost
packages are shown in an elided form (and by convention we place their name in the body of the
icon to save space), whereas the pacBusiness Model is shown partially expanded. In this

case, we see that the packBusiness Model owns the class«Customer andAccount as

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 10

well as the packacBank. Ownership may be shown by a graphical nesting of the icons or by
the expansion of a package in a separate drawing (which might be more convenient in an on-line

tool). Thus, it is possible to show relationships to the containing package as well as to nested ele-
ments.

]
Clients
'| N
AN
| N\
|| Business Model
I
| Customer
I
|]
ll " Account
Ban
I
I
I
| AN
| A_‘
I
V 71 Persistent Store
~
_ ~
~
~

Network &

Figure 5: Packagewith Dependencies

The semantics of packages do not change from the 0.8 documentation set: a package owns its con-
tents and defines a nested name space for its contents. This means that every class (or other ele-
ment) may belong to exactly one package. In other words, packages partition the elements in a
model. A package may contereference to classes owned by other packages. In cases when the
other packages are not sho such references must be marked with fully qualified names, in the

form PackageName:: ClassName . A package can add associations to referenced classes but
cannot modify their contents (attributes and operations). The navigability of associations within a
package must be compatible with the visibility of the underlying classes.

Packages provide an organizational structure for the model, including grouping, naming, and con-
figuration control units. Otherwise, packages do not add semantics beyond those of their contents.

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 11

However, they may be used to understand models by summarizing semantics derived from their
contents. Used in a top-down fashion for design, packages permit designers to constrain properties
of their contents, such as dependencies on other elements, and therefore they can be used to specify
semantics of groups of elements at a high level.

Packages turn out to be a wonderfully general mechanism for organizing models. They may be
used to designate not only logical groupings and physical ones, but they may also be used to des-
ignate use case groups and processor groups. A use case group and a processor group is, as the
names suggest, a packaging of use cases and processors, respectively. In each case, the usual se-
mantics of package ownership apply. Also as usual, stereotypes may be used to distinguish one
kind of package from another.

2.6 Nodes

The version 0.8 documentation set adopted the use of platform diagrams, which in 0.9 we now
name deployment diagrams. These diagrams contained two different symbols, one designating a
processor and the other designating a device. We distinguished these two semantically and iconi-
cally. In particular, processors had computational resources and thus could run processes and hold
objects, whereas devices could not. Both processors and devices were rendered as a three-dimen-
sional rectangular shape, but with processes having shaded sides. In the UML, we decided to col-
lapse these two concepts into one. We made this change for two reasons:

* In real systems, it is rare to encounter any device that has no computational elements.
What looks like a device to one system probably looks like a processor to another.

* Improvements in the semantics of stereotypes made it possible to introduce a more gen-
eral concept.

In the UML, we call the elements that contain resources (including CPUs and memories) nodes. A
node thus representresourcen the real world upon which we can distribute and execute ele-
ments of our logical models. A node is rendered as a three-dimensional rectangular solid with no
shadows. This icon is simple to draw and still conceptually different from all other elements, which
are all drawn as two-dimensional shapes. It also conveys the idea of a “physical presence.”

Figure 6 Jrovides an example of a deployment diagram. In this figure we see six nodes. Two of
these nodesFax andPrinter) are designated with tikdevice» stereotype since, in the con-

text of this system, they are not computationally interesting; it is of course not required to show a
node’s stereotype. Three of the remaining nodes are adorned with roles with respect to the server.
For example, there are a sePC nodes foiOrder Entry . Nodes are classes and thus can have

the properties that classes have. In this case we have shown the multiplicity of each class within
the entire system: many order entry PCs and many printers and one of each other node. (We could
also draw an instance-level version of this diagram to show a particular deployment of nodes in an
individual instance of a system.) Notice also that we have used the stereotype notation to distin-
guish different kinds of connections; in this case the system employs ISDN conr.ections

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 12

*
Order Entr
PC Y
1
«ISDN» «device»
Fax
1 Receiving
PC «|SDN>»
1
Server
1 «ISDN» «device»
PC Purchasing Printer

Figure 6: Nodein a Ceployment Diagram

2.7 Conditionals in Interaction D iagrams

A scenario is a single execution history of an interaction. Because collaboration diagrams and se-
guence diagrams did not have conditional branches in version 0.8, they were restricted to showing
scenarios. This meant that they could only show individual executions of a system and not the gen-
eral interaction pattern. We have realized that there is no reason why the general interaction pattern
should not be shown. Therefore, we have added a notation for conditionals to collaboration dia-
grams and sequence diagrams. Accordingly, we collectively callinteraction diagram be-

cause they document general interactions.

In a collaboration diagram, a conditional is indicated with a guard condition in square brackets
(Figure 7, the same notation used for synchronizing with another thread (which is also a kind of
guard condition on execution), and the same notation used for guard conditions in state diagrams.
In addition, each arm of the condition is labeled as a separate thread, the same as a concurrent
thread. A branch is simply a pair of parallel threads in which only one thread is chosen on any given
pass; a concurrent fork is a pair of parallel threads in which both threads are chosen. Therefore a
given named sequence in the messages indicates a single thread of control that is always executed
sequentially.

In a sequence diagram, a conditional is indicated by splitting a message arrow into two parallel tar-
gets Figure 8. Note that in the x=0 case in this example, neither branch is taken. As with finite
state machines, at any given branch point, the conditional expressions in an interaction diagram
must be unambiguous. A branch of control may require “splitting” the target object into two sepa-
rate, parallel traces that represent alternative histories. This notation works if the subsequent con-
trol patterns are not too complicated. In cases of nested conditionals, itis better to “split” the entire
sequence diagram by duplicating it or by separating the subsequences into separate subdiagrams.

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 13

We make the observation that a conditional is merely a fork of control into two (or more) parallel
threads that may not both execute together. In other words, conditionality and concurrency are
closely related.

2: more() [x>0] 1.A1: foo(x)

x [x<0] 1.B1: bar(x) | LALL: doit@)

—

1.B1.1: doit(w)

Figure 7: Collaboration Diagram with Conditional

Figure 8 Iso shows a recursive call (on the operatimore”). We have decided to use the intui-

tive notation from the Siemens pattern group’s Object Message Sequencd (OMSC) in

which recursive calls are shown by stacking multiple activities on the object lifeline. Another as-
pect from (OMSC) is the notation for creation and destruction of objects in the sequence diagram:
The object icon is drawn level with the arrow for the operation that creates it; a large “X” indicates
the destruction of an object, usually by external command but in this case a self-destruction as the
last act of a method before returning. An arrow to a vertical dotted line indicates a call to a pre-
existing object.

1. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, MichePattern-Oriented
Software Architecture: A System of Patte Wiley, 1996, ISBN 0471958697.

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum

op() @
obl:C1

[x>0] foo(x)

14

[x<0] bar(x)

doit(w)

doit(z)

more()

— — —— — ——~(— —— — —]

Figure 8: Sequence Diagrewith Conditional, Recursion, Creaticard Destruction

Rational Software Corporation

Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 15

3. What's New

3.1 Semantics of Stereotypes and Properties

In the version 0.8 documentation set, we introduced a general property mechanism for all UML
elements. The purpose of this mechanism was to provide a simple yet expressive means to extend
the UML in ways that we could not yet then imagine. Part of this property mechanism included the
concept of a stereotype, which was essentially the metaclassification of a UML element or, as we
sometimes called it, the property that had no name.

Our initial work with stereotypes was motivated by a desire to distinguish various kinds of classes
in a model (the word “stereotype” comes from Rebecca Wirfs-Brock). As we continued in our
work on unification, we discovered that stereotypes were a far more powerful mechanism that we
first realized. First and foremost, they helped us address the problem of metaclassification, such as
distinguishing exception classes which should generally only be thrown or caught as well as dis-
tinguishing various kinds of analysis objects as found in OOSE (and which we further discuss in
section 3.2). Second, they enabled us to collapse semantically similar concepts into one (such as
nodes, as we discussed in sections 2.5 and 2.6), thereby simplifying the UML. Third, they allowed
us to define core UML semantics very precisely, yet allowed end users some degrees of freedom
in tailoring the language to their needs. For example, as we describe further in section 3.5, we al-
ready understand the most common forms of message synchronization (simple, synchronous, asyn-
chronous, and various timed synchronization) but there is no way that we could ever specify alll
forms of synchronization, for not all of them yet exist. For example, the Java model of message
synchronization is different than that of Ada’s and it’s likely that as experience with internet lan-
guages grow, other models will arise. In our approach, the UML can adapt to these new semantics
without altering core UML semantics.

In the version 0.8 documentation set, we underspecified the semantics of stereotypes, largely be-
cause we didn’t exactly understand their implications. Now, we can finally state their semantics
more precisely. Specifically:

» A stereotype represents the metaclassification of an element. It represents a class within
the UML metamodel itself, i.e., a type of modeling element. It is a way to allow users
(methodologists, tool builders, and user modelers) to add new kinds of modeling types.

» Every element in the UML may have at most one stereotype; this stereotype is omitted
when the normal predefined UML modeling semantics suffice.

» There is a separate list of stereotypes for each kind of UML element.

» We predefine some of these stereotypes, but we also allow users to define their own.

» Stereotypes have semantic implications which may be specified for every specific stereo-
type value. We are investigating ways to allow the semantics to be specified by users.
Meanwhile the semantics can be stated in natural language or built into a particular edit-
ing tool.

A predefined stereotype is one whose value and semantics we define as part of core UML. We can
think of at least two kinds of stereotypes: those with specific added semantics and those that pro-
vide convenient conceptual grouping but don’t really add to the semantics. Our current list includes
the following predefined stereotypes with semantics:

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 16

» Class and object stereotypes

* Event Designates a named moment in time, thus reifying events that
trigger transactions in finite state machine models.

» Exception Designates an event that may be thrown or caught by an opera-
tion.

* Interface Designates the interface of a class or a package, consisting of a

set of message names and their signatures together with their dy-
namic semantics

» Metaclass Designates the class of a class (as in Smalltalk).
* Utility Designates a named collection of non-member functions.
» Task stereotypes
* Process Designates a heavy-weight task attached to its own address
space.
* Thread Designates a light-weight task that executes with other threads in

the same address space of an enclosing process.

The following lists are offered for convenience; they are not formally a part of the UML. They
might be used in a tool to change the rendering, but they don’t really have additional semantics
beyond the nature of the things they contain:

» Package stereotypes
» Category
* Processor group
* Module group
» Subsystem
* Service package
» Use case group
* Node stereotypes
* Device.
* Processor
* Memory
» Object type stereotypes (fro®OSE; other methods have also defined similar lists)
 Entity object type
» Control object type
* Interface object type

Relationships may be adorned with stereotypes as well. In fact, section 3.2 describes several other
predefined stereotypes that map to concepts in OOSE, some of which are attached to class relation-
ships.

Our list of predefined stereotypes is not yet complete. All of these lists will likely evolve before
the final UML report is prepared.

Tagged values are extensible properties consisting of an arltextualtag and a value. We are

also compiling lists of recommended tags. Section 3.4 describes one new predefined tag, location,
which denotes the node to which the item is attached. We are considering other tags, such as per-
sistence, which would denote if an object’s state is transient or sticky (or replicated or indetermi-
nate; the list of possible values is open-ended).

There is one other important improvement to the notation for stereotypes that we have developed
since the 0.8 documentation set. Specifically, we recommend that tools allow every stereotype to
be further distinguished by style (color, line thickness, fill pattern, font) as well as by icon. The

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 17

purpose of this improvement is to permit tool builders and end users to tailor the UML's graphical
syntax in controlled ways, and to permit models to have special visual cues. For example, we might
wish to have all exception classes stand out by rendering them in color. To do so, the user might
designate the stereotyexception to be mapped to red, and then attach this stereotype to all
relevant classes. Because support for color varies among systems (and people!) use of color should
be reserved to the individual user, rather than being predefined in UML.

On the other hand, attaching an icon to a stereotype is a bit more universal. In the UML, we permit
users to attach an icon to a stereotype. (The details of specifying the image would be up to the ed-
iting tool.) In its canonical form, this icon may be displayed to the right of the stereotype value;
Figure ¢ provides such an example (middle). Inits expanded form, this same item may be rendered
simply with the icon and the item’s name, aFigure ¢ (right side). In fact, the three itemsFig-

ure ¢ are semantically equivalent; they are just rendered differently.

«actor» «actor» % %

Customer Customer

Customer

Figure 9: Stereotype Icons

Tools may permit and provide alternate views of UML symbols beyond those that we have provid-
ed. In fact, one of the major values of a tool is to provide ways for users to dynamically alter views

of models to highlight various topics of interest. For example, the canonical form of a node is a
three-dimensional rectangle; tools may render nodes in more domain-specific ways, such as by dis-
playing the icon for a PC. Similarly, we have specified that a canonical class icon contains three
compartments, one each for the name, the attributes, and the operations. For some purposes addi-
tional compartments are useful, for example, a list of business rules or a list of responsibilities of
the class. Itis permissible for tools to add additional compartments whose syntax must be specified
by the toolmaker. We have already noted that compartments or selected contents of compartments
should be suppressible within views. We support similar extensions in this spirit. However, with

all extension mechanisms, including stereotypes, properties, view tailoring, special icons, etc.,
there is a danger of creating a private language that others cannot understand or use, so the benefits
of special extensions must always be weighed against the loss of a common base.

3.2 Use Cases

Since the introduction of the 0.8 documentation set, we have worked to integrate the OOSE seman-
tics of use cases fully into the UML. We had gotten the structural elements of use cases and sce-
narios fairly right, but we had not addressed the elements of OOSE’s analysis and design models
very well at all, nor had we considered the implications of robustness analysis. In doing this inte-
gration, we found that UML'’s stereotypes helped us add these features with little additional com-

plexity.

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 18

We treat actors as classes with stereotypes for their semantics and notation. The stereotype icon for
an actor is a stick figure, asFigure ¢ As with any stereotyped class, either the class icon or the
stereotype icon can be used.

Generalization applies to actors and use cases. Concrete actors are specializations of abstract actors
and concrete use cases are specializations of abstract use cases. Furthermore, actors may have
(communication) associations with use cases, meaning that instances of the actor participate in in-
stances of the use caUse case classes may be related to other use cases classeextends

anduse: relationships; we regard these as stereotypes of the generalization relationship.

Interactions between actors and use cases can be described with both sequence diagrams and col-
laboration diagrams.Both actors and use cases can be described in words, of course. Indeed, itis
particularly important to identify the purpose of a use case in words. There are also several other
means of modeling use cases, for example, by listing their responsibilities, by listing their attributes
and operations, and by defining their patterns of interaction using state machines.

Managing use cases at the user requirement level is fairly straightforward. The complexity of map-
ping use cases to design artifacts increases as a model progresses to the design stage. Some of these
design artifacts include internal classes, packages, and interfaces. Interaction diagrams (sequence
diagrams and collaborations diagrams) provide a way of doing this mapping, which can occur on
several different levels. First, responsibilities of the use case are allocated to supporting classes,
package, and interfaces in the design model. Attributes of the use case must be mapped onto at-
tributes or associations of the supporting classes. each operation in the use case must be

mapped onto operations on clasFinally the flow of control among objects must be designed so

that the proper operations are invoked at the proper times within the execution of the use case; this
can be shown on interaction diagrams for the system as well as state diagrams for the constituent
classes. The degree of formalism employed in the mapping depends on the development process
followed. The UML does not prescribe a particular mapping between use cases and other entities.
The mapping required by any particular process can be modeled using UML dependency relation-
ships with appropriate stereotypes.

In the UML, integration of OOSE semantics also encompasses the following elements:

» The use of stereotypes to model interface, entity, and control objects
» The use of stereotypes to model the OOSE association stereotypes

Clarifying the relationship of use cases to scenarios and classes was largely a semantic issue, and
had no notational implications. In 0.8, we had originally attached use cases to the class model di-
rectly, but we eventually realized this was wrong: use cases stand as peers to class models. The
package scoping mechanism can accommodate various approaches to organizing system models,
including independent use case models and class models as well as other possibilities. Finally, we
may also attach state machines to use cases to definitively specifying their dynamic semantics.

In the 0.8 documentation set, we had rejected the stick figure icon for actors, and treated actors as
objects. This was wrong: actors are classes. Actors may be modeled as a special stereotype of class-
es with their own stereotype icon. The UML is actually thus more general than OOSE, since a
project could identify other stereotypes for classes that interact with use cases. For example, to
model a system of interconnected systems, a project might introduce a stereotype denoting a sys-
tem class.

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 19

Interface, entity, and control objects from OOSE can be handled in the same fashion. Basically,
these are just stereotypes of classes, and so a project can predefine these three stereotypes when
following an OOSE process. Other processes with different lists of predefined stereotypes can just
as easily be handled.

OOSE'’s process has a rich set of association stereotypes; in practice, users of this process report
that this set is necessary but sometimes insufficient. Again, using UML'’s stereotype mechanism,
we can satisfy the OOSE association stereotypes but at the same time leave room for the introduc-
tion of other kinds of associations. The following table illustrates the mapping of OOSE associa-
tions into UML. Note that this mapping requires no new special notation:

OOSE UML Stereotype
attribute association
consists of association (aggregation
communicates association communication
subscribes to association subscribes to
acquaintance association
extends generalization extends
inheritance generalization
uses generalization uses
depends on dependency

In OOSE, requirements are first class citizens, but there was no means of graphically rendering a
requirement. In UML, we may use attach the sterecrequirement to a note, and thereby
graphically reify this concept. Using existing UML semantics, we may thus show the dependencies
of a requirement to other modeling elements.

3.3 Interfaces

In pushing the semantics the UML further, we found the need to model interfacdnterface is

a class stereotype that designates the external face of a class or a package, consisting of a set of
operations and their signatures together with their dynamic semantics. Other classes may support
or use an interface; we thus say that a cconform: to an interface in a particulrole. The role
describes thpart played by eacllasswithin the interface; norménterfaces havsuppliel and
clientroles that complement each other. Such semantics are adequate to describe most libraries and
frameworks, such as the interfaces found in Microsoft's COM as well as in Java’s conception of
interfacesWhereas in COM and Java interfaces are largely only static named groups of operations,
the UML permits attaching dynamic semantics, so that a partial ordering of operations lanal for
interface may be specifieWe call specification of legal activity sequencesprotoco of the in-
teraction. For real-time applications more complicated protoconecessary to describe patterns

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 20

of interactiol, including multiple role, two-way communicatic, and constraints on interaction se-
quences.

We examined a number of existing approaches to specifying interfaces and found a great deal of
similarity among them. These include ROOM protocols, OOSE contracts, RDD contracts, Mi-
crosoft COM interfaces, and Helm, Holland & Gangopadhyay contracts. We have tried to incor-
porate the best of these ideas into a broadly-useful construct for describing interfaces.

An interface describes the legal patterns of interaction between two objects. Thrange

possible interaction complexity: the simples an interface consists of a set of functions that can

be called at any time in any order (a simple function librarmore complex interfaces a set of
functions with constraints on the order in which they can be called (a function library with setup
functiong, for example. An interface hasuppliel andclientroles, each of which corresponds to a
participant. (However, in many cases the client is uninteresting and only the supplier is really im-
portant.). The legal interaction sequences can be specified by a state machine in which the states
correspond to activities by the participants and the transition triggers correspond to messages
among the participants. (In the case of a simple class library the state machine can be omitted. Even
in a more complicated case, frequently it is the participation in an interface that is of most interest,
rather than seeing the state machine.) An interface may be drawn as a class with s«in- :ype
terface» (Figure 1(). The name of the class is the name of the interface. Dependency arrows
from participant classes to the interface class are labeled with ster«conforms» and with

the name of the role within the interface (such as “client” or “supplier”). Separate groupings of
classes conforming to the interface may be shown on separate class icons; each appearance defines
a set of classes that interact, i.e., an instantiation of the int:rface.

Normally we think of the interface as “belonging” to the supplier, but of course any interaction has
two sides and most interfaces impose restrictions on what the clients can ask as well as what the
supplier must do. People often think of an interface as a set of operations that the supplier provides,
but this is insufficient in many practical cases: there are constraints in the order in which the oper-
ations can be called which means that the interface really requires a grammar or a state machine
for its full specification.

We provide a stereotype icon for showing interfaces in a more compaciFigure 1)). The sup-

plier of an interface (i.e., the class, package, or entire system conforming to the “supplier” role)
shows a protruding solid “lollipop” labeled by the name of the interface. The client of an interface
shows a dashed dependency arrow to the interface circle. This notation shows the matchup of sup-
pliers and clients. Either the client or the supplier may also be drawn in isolation with the interface
icon to show conformance to the interface.

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 21

«conforms» «conforms»
client ; supplier
Foo | chent S| «nterface» | S ‘ppier Bar
Xyz
«interface» -7 «conforms»
"""" supplier
277 «conforms» abc PP
client
Figure 10: Reified Interface Notation
Xyz
Foo |________ >0 Xyz
Bar O— ZYW
- O—
- abc
| -~ tuv
777

Figure 11: Symbolic Interface Notation

3.4 Distribution

In the version 0.8 documentation set, we indicated that our future work would address the problems
of distribution and concurrency. In the UML, we have introduced a solution to these problems,
largely by using existing UML features in creative way.

The problems of distribution and concurrency are not independent. Briefly, distribution involves
at least the following three issues:

» The allocation and possible migration of objects (including processes and threads) rela-
tive to nodes in the deployment view

» The grouping of distributed objects; objects are rarely distributed in isolation, but rather,
tend to be distributed in groups

» The specification of mechanisms for registering, identifying, moving, and communicat-
ing with remote objects

Similarly, concurrency involves at least the following four issues:

» The presence of the processes and threads that compose the system’s process architecture

» The allocation of classes and objects to these processes and threads

» The patterns of communication among these processes and threads

» The allocation and possible migration of these processes and threads to memories and
processors in the deployment view

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 22

The problems of distribution and concurrency bridge the logical and physical views of a system.
To be clear, the essential modeling problems we are trying to solve include:

» How do | model the physical distribution and migration of objects in a system?
» How do | model the process architecture of a system?

This section addresses how the UML handles the first question, and section 3.5 addresses the sec-
ond.

Modeling the physical distribution and migration of objects in the UML requires the introduction

of one predefined propertlocation), plus the use of composite objects to denote distribution
units. Thelocation property denotes the name of the node to which the item is attached. Finally,

a distribution unit (a stereotyped object) designates a physical packaging of objects which are dis-
tributed and may migrate as a unit across nodes. Since a distribution unit has a location and can be
identified, it is a composite object that contains other objects.

The interface stereotype is an important element of modeling distributed systems. In the publish-
and-subscribe mechanisms of CORBA ORBS and Microsoft's COM, one typically publishes an
interface to which clients can subscribe and against which others implement, even if that imple-
mentation is distant from the intended clients. The semantics of interfaces were explained further
in section Figure 3.3.

The location property allows one to model the physical partitioning of a system. To be precise, the
location of an object manifests itself as a dependency in the UML metamodel, between the object
and a node (or nodes). From the user’s perspective, this dependency is rendered as a property.
Thus, in a class diagram, certain classes might be designated to “live” on a particular node or nodes.
For example, in a customer support system built upon a three-tier architecture, we might designate
the clas<Customer to be attached to a server node, meaning that all of its instances reside there,
while the clas:Order Form might be attached to a client, with an association betCus-

tomer andOrder Form that essentially spans the two nodes. Instances of one class can also
exist on multiple nodes (in which case the classt ke visible on multiple nodes).

In a collaboration diagram, we can then model the migratiorCustomer object from server

to server. In the UML, the same object may be represented at multiple points during its lifetime
with distinct object icons connected by «becomes» dependency. Each appearance shows dif-
ferent values for its properties and attributes, such as the location property. Thus, at one point we
might seeaCustomer residing orfirstServer and then at a later time residingsecond-

Server .

The«becomes» dependency shows two stages in the life of a single olFigure 1J). This

diagram shows the migration of an object from one node to another as well as an example of dy-
namic classification in which an object changes its class. The dependency could be applied to the
associations as well but this seems unnecessary in most practical cases. A related dependency re-
lationship iskcopies» which indicates that one object is as a copy of another object, presumably

for performance or reliability reasons. The semantics of copying require further work.

The location of an object can also be shown by physical nesting of the icons. An object might be
owned by a process that in turn is inside a node. This notation is intuitive but impractical for large
numbers of objects, but might be useful for showing collaboration diagrams that cross physical
node boundariesFigure 1.).

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 23

Figure 1. shows the distribution notation to show objects that migrate from node toFigure
13shows the migration of an object from one process to another on different nodes, using graphical
containment to show the relative locations of nodes, processes, and (Figure 1: shows the
distribution notation to show static dependencies among code. The understanding is that the code
is present on the given nodes (either as an ordinary procedure, as some variety of DLL, or as an
active object). Modules may also be marked to indicate whether the caller must be in the same node
or can be remote. Classes may be drawn inside the modules that they are defined within, although
a separate diagram may be necessary for large modules.

location=ProcA
X

theY

location=ProcA
Z

\
\ «becomes»

\
y

\
«becomes» \\

y

location=ProcB |~ theX
X theY

Figure 12: Reified Distribution Notaticin a Collaboration Diagram

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum

24

Nodel

ProcA

«cluster»

«becomes» |

Node2

(I

/

ProcB \//

«cluster»

Figure 13: Explicit Distribution Notation

Rational Software Corporation

Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 25

Nodel Node2
ModuleA [~-- | | xyz
T>™>0——
7 ModuleB g
abc L A X Y
N T
ProcW

Figure 14: Distribution Notation with Modules

3.5 Real Time Semantics

In the version 0.8 documentation set, we introduced several elements that addressed some of the
problems of modeling time- and space-critical process architectures. These elements were not
clearly identified as such in the 0.8 documentation set, and so we summarize them here:

» Timing marks may be attached as constraints to sequence diagrams and collaboration di-
agrams in order to model timing (and space) budgets.

» Messages may have different kinds of synchronization semantics. We can represent these
with stereotypes on the message; the three main kinds call (send—wait, no process
synchronization, no existing activity in the callee, caller blocks until nested activity ter-
minates and returnsasynchronot (send—no wait, the caller does not wait for the callee,
which has existing activity), arrendezvol (send—wait, the caller waits for the existing
activity in the callee to reach a designated rendezvous state).

In 0.8, we underspecified the semantics of processes in threads. In the UML, we remedy this issue
by introducing the following new features:

» Tasks are first class citizens. A task is the reification of a thread of control, distinct from
the objects that it touches.

» Atask is rooted in aactive objec (an object that maintains its own thread of control). A
task may be implemented within a single process using a stack (the conventional imple-
mentation). However, we do not wish to preclude the distributed implementation of a task
that crosses address spaces. The important thing is that a task is a sequential flow of con-
trol.

* A model may show classes of tasks as well as instance of tasks, and as such may exploit
all the existing UML semantics of classes and objects.

A task object is an object with its own memory and thread of control. In class models, a task class
may designate a whole set of active objects. In object models, a task object reifies a flow of control
and as such sits at the head of a message trace. In class diagrams we render a task class as just a
class, butwith an appropriate stereotype. In interaction diagrams (including sequence diagrams and

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 26

collaboration diagrams) we render a task object as an object. In both cases, the stereotypical icon
is a rhombus tilted to the ric. (The ext stereotype can also be used but is less ".)sual

4. Tentative Proposals

In this section we include some proposals that are not yet final. These proposals deal with impor-
tant issues but still require further consideration. We ask for reader feedback to help settle these
iIssues.

4.1 Notation for Types versus Instances

A desirable goal of a notation is uniformity across many different situations. One overriding situ-
ation that arises throughout all of modeling is the distinction between modeling elements represent-
ing types and instances, including classes and objects, associations and links, use case classes and
use case instances, nodes and node instances, operations and invocations, etc. In the 0.8 documen-
tation set we proposed a distinction between classes and objects: classes are drawn as rectangles
and objects are drawn as hexagons. We did not propose a similar pairing for other symbols because
we felt that the meaning was obvious from context. This is not a totally convincing argument since
the meaning will not always be obvious from context.would like 1o have a uniform graphical

marker to distinguish types and instances that can be applied unifoiany icon, and which also

looks good. Unfortunately this is not as easy as it seems because there are many competing pres-
sures. However, we are considering the following possibilities and we would ask for reader feed-
back and suggestions:

 Bold lines for types and thin lines for instances. This works uniformly. The definition of
bold and thin must be adjusted for the medium (screen, printer, etc.). This distinction is
harder to use on hand-drawn diagrams.

» Drawing a small extra mark in the upper right or the upper portion of the icon, like a styl-
ized echo. This works well for rectangles, somewhat less well for curved shapes. It would
require the definer of a new icon to provide two forms, as the extra marks probably cannot
be automatically generated. This convention is easy to draw by hand although it might be
tedious for a whole diagram.

» Drawing a 3-D shadow under the entire icon. This works well for areas, not so well for
stick figures (such as the actor “stick man”). This could probably be automated, although
the images would have to be drawn in a careful order and involves extra graphics opera-
tions.

We will stay with the version 0.8 approach if and only if we can find no compelling yet simple way
to uniformly distinguish classes and instances for all the UML modeling elements.
4.2 Traceability

The version 0.8 documentation set introduced the concept of the dependency relationship. This is
sufficient for capturing dependencies within a model but was not intended to capture relationships

between elements in two distinct versions of a model or two different models. For such purposes

we need to capture the derivation of elements from other elements across models.

For this reason, we have added a general traceability relationship to the UML. Its semantics in-
clude:

» Every element may have a trace to one or more elements in other models.

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 27

* Not all such traces are interesting; different development styles will designate specific
traces as essential.

» Atrace is purely structural; when we state that element A traces to element B, we simply
mean that there is a connection between the two that may be followed.

e There is no graphical rendering of a trace defined by the UML.

» Tools may attach other semantics to traces; for example destroying element B might be
prohibited if there are any traces to it.

As a typical example, we might want to trace a requirement from a use case model to a class in an
analysis model and then possibly to a whole collaboration in a design model.

4.3 Use Cases, Patterns , and Interactions

As described in section 3.3, an interfdescribeshe external face of a class or a package, con-
sisting of a set of operations and their signatures together with their dynamic semantics. Interfaces
expres: theexternally-visible behaviorf a single class. However, no class is an island, and so we
needed to search for ways to model interactions across a collaboration of classes. This lead us to
investigate the modeling of patterns as described by Gamma, et al, in their seminDesign,
Pattern:. For example, the Gamma pattChain of Responsibility describes the collab-
oration between Client object and a chain Handler objects. This pattern effectively de-
scribes an interacticamong everal classes. We call theinteractior patterns: the pattern

includes a class structure as well as a dynamic statement of the legal collaboration. Note that UML
interfaces are insufficient for modeling this kind of collaboration, since the pattern involves more
than a binary client/supplier relationship.

Patterns such as this are first class modeling elements. We call them “fii” because they are

in fact essential elements in the vocabulary of specifying a system’s architecture. We believe we
have found a way to reify patterns in the UML without adding significant complexity: a pattern is
essentially a design of a use case.

For example, itFigure 15 we see¢Chain of Responsibility expressed as an abstract use
case. We would draw such a diagram to state that we have imposed this particular pattern upon our
architecture. If we zoom into the use case, that is, we ask for the interaction pattern corresponding
to the use case, we would seeinteraction diagrams specifying the realization of the use case as

a set of collaborating objec Zoom out, as we see in this figure, and we can show how classes
conform to this pattern, using roles to specify the role that each class plays. Thus, thKey- ises
boardEventHandler , MIDIEventHandler , andGeneralEventHandler conform to

this pattern aHandlers . By conform, we mean that the concrete class satisfies the semantics of
the class that participates in the pattern.

This approach scales up to not only include generative patterns as found in Gamma’s book, but also
to domain-specific interaction patterns which caused vithin a particular domairsuch as ank-

ing system, as well as the ad-hoc design patterns found in every applicahere are still some
technical problems to be worked out. Patterns itDesign Patterr book usually have important
instance-level regularities that do not always show up in the class diagram. We need to have a way
to show both the class structure and the varieties of instance structure implied by a particular pat-
tern. In this example, each handler class has a successspecific ther class, but thgeneral

pattern permits successors to be of the same or a different class. The interesting aspect of many
patterns is their dynamic behavior. We can certainly show this with interaction diagrams, but only
in the context of a specific model; it is harder to keep the “patternness” of the pattern open. Finally

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 28

patterns are templates, in a sense, in which classes, associations, attributes, and operations might
all be mapped into different names which keeping the essence of the pattern; we need a way to
clearly parameterize the patterns. Nevertheless we feel that we have enough facilities to capture
patterns within the UML using this simple approach of pushing the semantics of use cases.

Handler/ “| KeyboardEventHandler
MusicApplication a T
< 4 \
Client ~ /
- y || successor

MIDIEventHandler
]

\
~ |
~ successor
~ \Handler N

~

Chain of
Responsibility

™ |GeneralEventHandler

Figure 15: Conformance to a Pattern
5. What's Next

5.1 Schedule

First, a little history. In October 1994, Grady and Jim joined forces to begin unifying the Booch
and OMT methods. In October 1995, we released the 0.8 documentation set as the first fruits of our
work. At the same time Ivar joined us, and we have been working since then to unify the Booch,
OMT, and OOSE methods. This 0.9 document represents the results of that collaboration thus far.

Next, our future schedule. After the release of the 0.9 document, our work will fathese rajor
taske:

» We will resolve the tentative proposals described in section 4.

* We will resolve the details of the other technical issues as described in section 5.2.

» We will write additional collateral about the UML as described in section 5.3.

» We will complete a formal submission to the Object Management Group (OMG) in re-
sponse to their request for proposal.

It is this last task that is driving most of our work forward and creating for us a solid deadline for
completing all the loose ends. The OMG submission is currently due around the end of 1996/early
1997. We will likely designate that release of the UML documentation set as version 1.0, reflecting
the fact that this will be a major, stable, and complete release. Between now and that submission,
we will incrementally be delivering some of the collateral as described in section 5.3 We will also
be presenting two tutorials on the UML at OOPSLA’96. The first tutorial (to be offered twice) will
focus on the basic syntax and semantics of the UML. The second tutorial will focus on the formal

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 29

semantics of the UML. This first tutorial will be presented by Grady, Jim, and Ivar, and the second
will be lead by Gunnar Overgaard, who is helping us develop the UML formal semantics.

Between now and the OMG submission, you will likely see courses and tools that support the
UML; we have even encountered some large projects that are starting to use the UML. The UML
is reasonably stable enough for this kind of early use, and we are in fact quite happy to see this level
of support already. However, do realize that some details remain to be worked out, and these details
won’t be completely resolved until version 1.0, therefore changes must be expected in preliminary
implementations of the UML.

5.2 Technical Issues

We have several technical issues to complete. For all of the technical issues, we have working pro-
posals that we are considering but they were not yet ready for release as part of the 0.9 document.
These technical issues include:

» The reification of tasks and operations

» The semantics of multiple models

* A number of low-level issues in the metamodel
» A formal specification of the UML semantics

In section 3.5, we discussed the fact that in the UML, tasks will become first class citizens. We
understand the basic semantics of tasks, their common stereotypes (processes and threads), their
graphical notation, and their connection to other parts of the UML, nainteraction diagrams

and the logical models of classes and objects. However, we have not yet completing integrating
these concepts into our metamodel, and in the process we expect to come to a better understanding
of task semantics. Hopefully, will find ways to make them even simpler. We also understand the
basic interaction between the semantics of tasks and the semantics of distribution, but since this is
relatively new ground we are proceeding carefully.

In section 4.2, we discussed the semantics of traceability. We introduced this concept in the UML
to begin to address the multi-model problem. While we do understand the basic semantics of trace-
ability, we have further work to do to make this simpler, and to express what kind of traceability
relationships are most important.

We have a number of low-level issues in the metamodel left to resolve, virtually none of which will
affect the typical UML user; they are primarily important only to tool builders and to the formal
specification. Since the 0.8 documentation set, we have been reworking the metamodel, trying to
make it self-consistent, precise, and simple. We intend to release a complete metamodel in version
1.0.

Creating a formal specification of the UML is hard work. We are pursuing a formal specification
primarily because the very process of creating it forces us to uncover subtle issues that would oth-
erwise have been glossed over. We are being assisted in this work by Gunnar Overgaard. It is our
intent to deliver a preliminary formal model of the UML along with the 1.0 submission, and then
continue that work to get a reasonable formal coverage of the entire UML. We expect to use a bal-
ance of mathematical notation and precise English to write the specification.

With regard to the resolution of all public comments on the UML, we have in fact retained all the
comments we have received thus far. While we could not response to each submitter personally
because of their sheer volume, will have and will continue to survey them to make certain that

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

Unified Modeling Language V0.9 Addendum 30

we’ve not let any critical issues drop through the cracks. Ed Eykholt has helped us manage the de-
tails of tracking the comments, and thus far, we have identified major trends in the comments sent
to us. These trends have in fact impacted how we prioritized our work for this 0.9 document. Prior
to the 1.0 submission, we will review all these comments plus the new ones we expect to get after
release of the 0.9 document. We very much value this feedback, and have already learned a great
deal about users want and like.

5.3 Other Collateral

In addition to the stream of documents consisting of the 0.8 release, this 0.9 release, and the forth-
coming 1.0 release, there are a number of other pieces of collateral we have already written or are
preparing for the UML. This collateral includes:

» White papers published in various public journals
* Web documents concerning the UML
» A series of books on the UML

Grady, Jim, and Ivar have and will continue to publish technical papers describing the UML. A
number of these papers have already appeared in two SIGS journals, namely, JOOP (the Journal
of Object-Oriented Programming) and ROAD (the Report on Object-oriented Analysis and De-

sign).
Just prior to the release of this 0.9 document, we released a series of Frequently Asked Questions

(FAQ) about the UML on our web site (www.rational.com). Over the coming months, we will add
to these FAQ as means of addressing other common UML issues.

We are currently working on several books about the UML, including a Reference Manual, a User
Guide, and a book on process. Grady, Jim, and Ivar are coauthors on all three of these works. These
books will provide a complete and definitive statement of the semantics and use of the UML. After
these books are substantially complete, we will likely turn our attention to updating some of our
earlier works to the UML.

In addition to the collateral we are preparing, we are aware of a number of other individuals who
have or will be writing books that either use or teach the use of the UML. There is already one book
on Java that uses the UML, there are several public courses, and we know of several other books
that are being written that address different aspects of the UML, all based on our previous prelim-
inary publications. We hope for widespread tool support, training courses, and consultant usage in
the future. We strongly encourage this kind of support, and we will work with authors, trainers, and
consultants to ensure that their questions are addressed so that there will be wide-spread and con-
sistent support for the UML.

Rational Software Corporation Tuesday, August 06, 1996 10:26 am

	1. Overview
	1.1 Purpose
	1.2 Organization
	1.3 Acknowledgments
	1.4 Points of Contact
	1.5 Copyright

	2. What’s Changed
	2.1 Name Changes
	2.2 Syntax of Stereotypes
	2.3 Generalization
	2.4 Association Navigation
	2.5 Packages
	2.6 Nodes
	2.7 Conditionals in Interaction Diagrams

	3. What’s New
	3.1 Semantics of Stereotypes and Properties
	3.2 Use Cases
	3.3 Interfaces
	3.4 Distribution
	3.5 Real Time Semantics

	4. Tentative Proposals
	4.1 Notation for Types versus Instances
	4.2 Traceability
	4.3 Use Cases, Patterns, and Interactions

	5. What’s Next
	5.1 Schedule
	5.2 Technical Issues
	5.3 Other Collateral

