
10 February 2004 QUEUE rants: feedback@acmqueue.com

R
umors of the demise of the Waterfall Life-cycle Model
are greatly exaggerated. We discovered this and other
disappointing indicators about current software

engineering practices in a recent survey of almost 200
software professionals. These discoveries raise questions
about perception versus reality with respect to the nature
of software engineers, software engineering practice, and
the industry.

WHY DO URBAN MYTHS EXIST IN
SOFTWARE ENGINEERING?
About two years ago, we asked ourselves the question,
“What practices are really being used in the specification
and design of software systems?” We were under the usual
impressions about the demise of the use of the Waterfall
model and the adoption of various best practices. Our
understanding was based on echoed assumptions of
authors, but we couldn’t recall justification for these posi-
tions. A search of the literature, unfortunately, provided
no convincing support for the conventional wisdom.
Given the lack of data, therefore, we thought that a
survey of practitioners from a diverse group of small and
large companies in defense, pharmaceutical, chemical,
telecommunications, banking, and government indus-
tries (including several Fortune 500 companies) would be
enlightening.

We built a Web-based survey instrument, but rather
than enumerate the questions or survey mechanics, we
refer the reader to that site.1 Data was collected over a
seven-week period during the spring of 2002. Of the
1,519 individuals who received both an e-mail invitation
and a reminder, 194 completed the survey,2 a response
rate of approximately 13 percent.

The survey results convinced us that so-called conven-
tional wisdom is akin to urban mythology. These myths
persist because we want to believe them—and because no
data exists to refute them.

Don’t worry. We’re not going to review the survey
results here. These results can be found, without interpre-
tation, in an article we previously published.3 Instead, we
want to opine on some of the more interesting responses
and their implications. Be warned, however, we are about

to enter a “no-spin zone,”
or more appropriately, a
“no-myth zone.”

MYTH 1: THE DEMISE OF
THE WATERFALL LIFE-CYCLE MODEL IS IMMINENT
The Waterfall process model (in which a software prod-
uct is viewed as progressing linearly from conception,
through requirements, design, code, and test) is a relic
of yesteryear. Introduced (but not named) by Winston
Royce4 in 1970 when computer systems were monolithic,
number-crunching entities with rudimentary front ends
(by today’s standards) and users’ needs were filtered
through the partisan minds of the computer illuminati
building the systems.

OK, perhaps that’s a little strong, but it’s fair to say
that most systems built in that era were spec’ed out by
the programmers themselves—with little input from what
we would now call stakeholders. In such an environ-
ment the Waterfall works. Requirements seldom change
after specification because users are not involved in the
development; they can’t provide feedback about incorrect
assumptions or missing features and needs. This era is
over, though. Software systems are so much closer to the
user that their voices cannot be ignored; they’ll reject the
system if it doesn’t meet their needs.

This introduces a significant force for requirements
change that the Linear Sequential Model (a cunning
name change in an attempt to protect the guilty) can-
not tolerate. This model of development assumes that
requirements are set, stable, and fully evolved before
analysis begins, because development progresses linearly
through the phases from requirements through system
deployment. A phase is revisited only if artifacts created
in that phase fail inspection, review, or test. If you run
into people who dispute this argument, remind them that
water doesn’t flow up a waterfall.

The modern reality of software development is that
change is unavoidable and must therefore be explicitly
accommodated in the life cycle. It is not an error that
must be fixed; it’s a natural aspect of system construc-
tion. This change is not isolated to requirements, but the

In software

engineering,

HOW COMMON IS

COMMON SENSE?

opinion
Phillip A. Laplante and Colin J. Neill,
Penn State University

“The Demise of the
Waterfall Model Is Imminent”
and Other Urban Myths

12 February 2004 QUEUE rants: feedback@acmqueue.com

requirements example is the most immediate and most
significant. The more we understand something, the
more we realize the flaws in our initial assumptions and
conceptions. If we cannot readily adapt our solutions to
these changes, the costs of accommodating such require-
ments “errors” escalate exponentially.

To accommodate these issues, people have suggested
a number of alternative process models. An early modifi-
cation to the standard Waterfall introduced prototyping
as a feedback and discovery mechanism so that initial
misunderstandings and omissions could be identified
early. Subsequent process models attempted to further
mitigate such risks by breaking down projects into a
series of “mini-Waterfalls” and iterating over the tasks, or
delivering increments of the entire system in a sequence
of releases eventually resulting in a complete capability.

It is both surprising and disappointing, then, that in a
survey of almost 200 practitioners, accounting for several
thousands of projects over the past five years, the domi-
nant process model reported was the Waterfall, with more
than a third claiming its use.5 This result raises a question:
Do practicing professionals know the Waterfall when they
see it? Perhaps they are confusing it with other process
models. This seems unlikely, but so does its dominance.
It’s more likely that in many circumstances, doing the
wrong thing is easier than doing the right thing—and
this is not a recipe for success.

The fact of the matter is that, despite much progress,
the Waterfall model isn’t quite dead yet. A lot of people
identify it as their development
method of choice. Either they’re accu-
rately describing the situation, which
is bad, or they’re confused, which
isn’t much better. In either case the
death of the Waterfall model eludes
us, alas.

MYTH 2: WE THROW AWAY OUR
FIRST ATTEMPT
Closely related to the choice of life-
cycle model is the issue of proto-
typing. To many, the argument for
prototyping is like the argument
for motherhood and apple pie:
Why wouldn’t you want to explore
the problem space with a rapidly
constructed mock-up or skeleton?
Everyone involved gets to try out
their ideas and validate their under-
standing of the problem at hand. It

also provides an ideal mechanism for customer discussion
and feedback. So, we are in agreement that prototypes are
great.

Well, actually, this is too simplistic. Although it’s dif-
ficult to argue against prototyping per se, it’s easy to argue
against the uses of prototyping in practice. Developers,
just like everyone else, hate to throw away the products
of their labors. “I’ve built it once and everyone liked
it, why do I have to build it all again?” is the common
refrain. The obvious response, to us at least, is, “Is it as
robust, maintainable, reliable, and, therefore, as fully
tested as ‘production-level code’ (whatever that means)?”

In other engineering disciplines this isn’t an issue
since the prototypes couldn’t be used in the final systems;
they are manufactured. In software the manufacture pro-
cess is a disk copy, and this has allowed prototypes to be
used as final production systems.

We fail to see the advantage in this. The software
industry has consistently failed to deliver robust, reliable,
error-free systems, yet we continue to allow elements
of solutions to persist that have not been subject to the
rigors of production development; in prototypes it is
common to defer structural and architectural concerns
and to give scant consideration to fundamental practices
such as exception handling.

There is an apropos phrase that should be applied
here: “Throw the first one away.” This advice isn’t new;
Fred Brooks wrote about it in The Mythical Man-Month.6
Unfortunately, 20 years later, this is still not the domi-

nant practice. Our survey asked
respondents whether they performed
prototyping, and if they did, whether
they allowed those prototypes to
evolve into production systems
(evolutionary prototyping) or threw
them away. The results from that
survey question indicate that half of
the time evolutionary prototyping
is used. We think this is probably
self-evident to many people given a
little thought—ask yourself, do you
or anyone on your team keep pro-
totypes? Does that code (in original
or evolved form) make it into final
designs? Not only our survey, but
also experience shows the disap-
pointing reality.

Now, we’re not suggesting that
evolutionary prototyping cannot
be used successfully. For example,

opinion

Do practicing
professionals
know the Waterfall
when they see it?

14 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 15 more queue: www.acmqueue.com

opinion

relentless refactoring (design repair) can improve the
quality of existing code. Also, situations in which few
requirements are available benefit greatly from this.

Our fear is that evolutionary prototyping is being
employed in situations other than those for which it was
conceived, and is merely the official name given for poor
development practices where initial attempts at develop-
ment are kept rather than thrown away and restarted.
The code might compile, it may run, and it may even
pass tests, but there is more to software quality than these
operational properties. We desire a host of other proper-
ties in our products. We need to develop robust, reliable,
maintainable—and possibly reusable and portable sys-
tems—and these characteristics require more forethought
and a wider perspective than is afforded during prototyp-
ing. The objective of prototyping is to explore an idea
or technology, or to demonstrate a capability, feature, or
interface—very different objectives from those described.

MYTH 3: THE INDUSTRY HAS RECOGNIZED
THE VALUE OF BEST PRACTICES
The final myth we will examine here is that of methodol-
ogy adoption. As professors of software engineering, we
are sometimes criticized for having a tainted, academic
view of the world of software development. We espouse
the use of standard techniques and methodologies with-
out consideration for tight deadlines, ill-informed manag-
ers, or a host of other real-world problems.

This is, of course, not true. We are well aware of such
issues, an understanding borne of our own experiences in
“industry.” Our collective 25 years’ experience in aero-
space, enterprise systems, and application development—
within both industry and academia—has exposed us to all
these considerations: unrealistic expectations on budget
and deadlines, irrational management and incompetent
staff, moving targets of requirements, target platforms
and technologies. In none of these situations has an ad
hoc approach worked when attempted. So we realize
that unless best practices are followed and promoted,
the industry will always languish in crisis. It is simply
indefensible to suggest that ad hoc, random practices will
conquer the complexities of the problems we solve.

Unfortunately, many still do try to defend such a posi-
tion, suggesting that the techniques don’t work, they take
too long, or they stymie creativity. Whatever the reason-
ing, it is a frightening reality that in many development
efforts no systematic approach to analysis and modeling
is followed. This is clear from the responses to our survey.
First of all, we were surprised to discover that object-ori-
ented techniques were used only 30 percent of the time,

especially given the exposure and seeming interest in
object-oriented technologies and languages. That surprise
pales, however, with the shock and disappointment we
felt at finding that the most dominant practice was none
at all—a practice (if it can be called such) reported by a
full third of the survey participants.

It is considered trite to rant allegorically about the
way other engineering disciplines cope with correspond-
ing complexities and issues, and we realize the unique
problems presented by software development. Remem-
ber, though, that we are not suggesting everyone follow
a specific approach; we do not promote RUP (Rational
Unified Process) for all projects, CMM (Capability Matu-
rity Model) level 5 for all organizations, XP (extreme
programming) for all teams, or object-orientation for all
applications. Each problem, organization, and project has
its own characteristics, requiring a range of techniques
and strategies—but never none!

DEBUNKING MYTHS
We realize that the opinions we draw from our results are
subjective and “localized.” But combined with anecdotal
real-world experience, we must draw the inevitable con-
clusion: All is not rosy in Programmingville, USA.

So what can you do to help debunk these myths? Bet-
ter, how can we help eradicate these outmoded practices
so that such myths will become unassailable facts? Fight
complacency, for one. Seek to be an advocate against the
minions of those succumbing to inertia, who refuse to
change and refuse to adopt new methodologies. Point
out those who cling to the archaic—for example, the old
Waterfall model—or who refuse to adopt sound practices,
such as throwaway prototypes. Question what appears to
be the obvious.

The second thing that you can do is to become an
agent of change. Work within your organizations to adopt
appropriate methodologies. Remember that a one-size-
fits-all approach might work for sock buying, but it won’t
work for software development: A range of solutions and
techniques is required. Promote sound practices, espe-
cially with respect to your more senior colleagues, who
may be defenders of the past. We almost want to say pro-
mote “best practices,” but this is an overloaded term that
probably captures unrealistic ideals. Perhaps we should be
content with “decent practices.” Fortunately, your newer
colleagues probably have already bought into better prac-
tices, and the old ways are being unlearned by corporate
inertia. Work to help them maintain their respect for the
contemporary.

Finally, of course, the real enemy of ignorance is

14 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 15 more queue: www.acmqueue.com

enlightenment. Continue to learn and adapt practices to
integrate the best of the past, present, and future. Q

REFERENCES
1. Software Requirements Practices Questionnaire:

see http://www.personal.psu.edu/staff/c/j/cjn6/
survey.html.

2. Neill, C. J., and Laplante, P. A. Requirements engineer-
ing: the state of the practice. IEEE Software 20, 6 (Nov./
Dec. 2003), 40–45; http://csdl.computer.org/comp/
mags/so/2003/06/s6040abs.htm.

3. See reference 2.
4. Royce, W. W. Managing the development of large soft-

ware systems. Proceedings of IEEE WESCON (Nov. 1970).
Reprinted in Proceedings of the 9th International Confer-
ence on Software Engineering (1987), 328-338.

5. See reference 2.
6. Brooks, F. The Mythical Man-Month, 2nd Edition. Addi-

son-Wesley, New York: NY, 1995.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

PHILLIP A. LAPLANTE, Ph.D., is associate professor of
software engineering at the Penn State Great Valley
School of Graduate Studies. His research interests include
realtime and embedded systems, image processing,
and software requirements engineering. He has written
numerous articles and 17 books, has cofounded Real-Time
Imaging, and edits the CRC Press Series on image pro-
cessing. Laplante received his B.S. in computer science,
M.Eng. in electrical engineering, and Ph.D. in computer
science from Stevens Institute of Technology—and an
M.B.A. from the University of Colorado. He is a senior
member of the IEEE, a member of ACM and the Inter-
national Society for Optical Engineering (SPIE), and a
registered professional engineer in Pennsylvania.
COLIN J. NEILL is assistant professor of software engi-
neering at the University of Pennsylvania. His areas of
expertise include object-oriented analysis and design,
realtime systems design, and telecommunications. He has
a B. Eng. in electrical engineering, M.S. in communica-
tions systems, and a Ph.D. in realtime systems design, all
from the University of Wales in Swansea, U.K.
© 2004 ACM 1542-7730/04/0200 $5.00

Coming in March

Coding for DSPs
Coding for DSPs
• Why hardware choices matter
• Mapping algorithms to DSP—No easy task
• What the heck is a DSP anyway?

Also Next Month
• UML fever: Are you sick?
• BPM: Grok business needs before coding

http://www.personal.psu.edu/staff/c/j/cjn6/survey.html
http://www.personal.psu.edu/staff/c/j/cjn6/survey.html
http://csdl.computer.org/comp/mags/so/2003/06/s6040abs.htm
http://csdl.computer.org/comp/mags/so/2003/06/s6040abs.htm

