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Abstract

In recent years, UML has become a standard language
for modeling software requirements and design.

In this paper we investigate the suitability of UML as a
semiformal requirements specification language. Using
the Teleservices and Remote Medical Care (TRMCS) case
study as an example, we identify and demonstrate various
problems and deficiencies of UML, particularly concern-
ing use case models and system decomposition.

We also investigate whether and how the deficiencies
can be overcome and how potential alternatives could
look.
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1 Introduction

Semiformal modeling languages are a powerful means
of describing requirements. Such languages have a long
tradition, starting about 25 years ago with PSL/PSA [23],
SADT [20] and Structured Analysis [5]. About ten years
ago, object-oriented specification languages appeared ([3],
[4], [22] and many others). A few years ago, the object-
oriented approaches were consolidated into UML [21].

The structured languages like DeMarco’s Structured
Analysis [5] were plagued by many problems, in particular
the paradigm mismatch between analysis and design,
missing locality of data definitions, only partial informa-
tion hiding and no types [8]. Object-oriented modeling
languages were proposed to overcome these problems.
However, the early object-oriented specification languages
also had serious deficiencies, particularly due to their
inability to model dynamic and behavioral aspects of a
system. Jacobson [14] tried to overcome these defects by
introducing the notion of use cases. UML [21] was created
with the goals of unifying the best features of different
existing languages and of creating an industry standard.

However, UML is not the ultimate answer to the prob-
lem of creating a good language for semiformal modeling
of requirements. In this paper, we identify several defi-
ciencies of UML as a language for requirements specifi-
cation. We select issues from the Teleservices and Remote
Medical Care (TRMCS) case study representing typical

requirements specification problems. We try to model
these issues with UML and discuss the difficulties en-
countered.

We do not attempt a comprehensive analysis of the
weaknesses of UML. In particular, we do not systemati-
cally analyze the omissions, inconsistencies, vaguenesses
and comprehensibility problems in the partially overcom-
plex and ill-structured metamodel of UML and in the defi-
nition of UML semantics. Considering the size of the
UML 1.3 specification (over 800 pages), this would be a
major research endeavor. Furthermore, when looking at
the rapid evolution of UML versions, the results would
probably be outdated before completion.

The rest of this paper is organized as follows. In section
2 we outline the case study. In sections 3 and 4 we identify
deficiencies in UML concerning use case models and sys-
tem decomposition. In section 5 we investigate whether
the deficiencies can be overcome by using UML extension
mechanisms. Finally, we sketch a potential alternative to
UML.

2 The case study

As a case study we use the Teleservices and Remote
Medical Care System (TRMCS) which was defined by
Inverardi and Muccini for this workshop [7]. As this case
study is rather open, we add more precise requirements
and design decisions where appropriate. The high-level
goals and constraints of the TRMCS and some high-level
system design decisions are summarized below.

Business/system requirements for the TRMCS

Goal. The TRMCS shall provide medical assistance to at-
home or mobile patients.

Subgoals.
1. The TRMCS shall provide two main services for pa-

tients:
• adequately service help calls issued by a patient
• continuously telemonitor a patient’s health condition

and automatically generate a help call when neces-
sary.

2. These services shall be available regardless of the
actual geographic location of the patient (but within
the limits defined by the service contract).
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3. The TRMCS shall support and coordinate multiple and
geographically distributed service providers.

4. The services provided by the TRMCS shall have the
same level of reliability, safety, security, accessibility
and medical ethics as a local service provided by hu-
mans would have.

Constraints. The TRMCS shall operate on near-future
network and computing infrastructures.

Assumptions. The TRMCS assumes that a patient using a
TRMCS service has access to a highly reliable and avail-
able telecommunications system that transmits voice and
data.

We assume that the following system design decisions
have been taken based on the business/system require-
ments.

System design decisions for the TRMCS
1. The TRMCS will be a distributed system having

• a subsystem at the site of every patient
• a subsystem at the site of every service provider
• a mission management subsystem managing the mis-

sions needed to take care of the patients
• one central subsystem.

2. The central subsystem will communicate with the pro-
vider subsystems through an Intranet with guaranteed
quality of service.

3. The patient support subsystems will communicate with
the other subsystems through the Internet and the tele-
phone network.

4. All events (help calls, alarms) generated by patients are
directed to the central site. The central site routes them
to an appropriate service provider according to a policy
based on patient contracts and provider availability.

5. The TRMCS will not contain an accounting compo-
nent. It will provide accounting information to an ex-
ternal accounting system instead.

6. The TRMCS will leave all decisions about help or
treatments to humans. It only supports the decision-
making process by providing information and suggest-
ing solutions.

3 A use case model of the TRMCS

Based on the system requirements and design decisions
given above, we now want to model software require-
ments for the TRMCS, using UML as a modeling lan-
guage. Conforming to the process recommended for the
use of UML [17] we start with a use case model.

We identify the following actors who interact with the
TRMCS: Patient, Dispatcher (person in a provider’s office
who handles events and help calls), Physician (consulting
dispatchers and patients), Help Crew (visiting/rescuing a
patient who needs help), Serviceperson, Manager (of the
remote health care service), and Accounting System. For
these actors we define a first-cut set of use cases (Figure 1;
parts drawn in black).

In the following subsections, we examine various parts
of this model more closely and identify six modeling is-
sues which cannot adequately be handled with UML.
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Figure 1. Use case diagram of the TRMCS
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3.1 System-actor interaction

In a first step, we consider the patient use cases (cf.
Figure 1). Process Help Request deals with the situation
where a patient actively asks for help. Monitor Patient de-
scribes the continuous monitoring of patient data (e.g.
heart beat). Maintain Subscription of Services deals with sub-
scription, update and deletion of TRMCS services by a
patient. Browse Monitored Data allows a patient to look at
the data that the monitoring function has recorded.

A closer look at the patient use cases reveals that they
cannot specify the interaction between a patient and the
TRMCS completely. For example, the TRMCS should
warn a mobile patient when a service becomes unavailable
because she or he is moving into a region with no connec-
tion to the mobile communication network. So we need an
active model element (for example, an active object; see
Figure 1) which is able to initiate communication between
the system and an actor.

However, such an element cannot be modeled in UML:
a use case by definition describes a sequence of actor
stimuli and system responses that is initiated by an actor
([18], p.2-124). Active objects are not allowed in UML
use case diagrams.

Deficiency 1. A UML use case model cannot specify
interaction requirements where the system shall initiate an
interaction between the system and an external actor.

3.2 Rich context

When modeling the context of a system, it is important
that a rich context can be modeled, including interaction
between actors [13].

In the TRMCS for example, a Dispatcher may phone a
Physician and alert a Help Crew. Both interactions are re-
lated to the TRMCS but take place outside the TRMCS
system boundary. We also have TRMCS-external com-
munication between Accounting System, Patient and Manager
(cf. Figure 1).

However, UML cannot model context associations be-
cause it forbids associations between actors ([18], p. 2-
121).

Deficiency 2. UML cannot model a rich system con-
text.

3.3 Use case structure and decomposition

Next, we consider the dispatcher use cases. The Dis-
patcher actor has two major use cases (Figure 1). Handle
Event specifies how a dispatcher handles a help call (either
issued by a patient or raised by a TRMCS monitoring
component). A dispatcher shall handle more than one
event in parallel. Monitor Event Status specifies how a dis-
patcher interacts with the TRMCS in order to monitor the
status and progress of the events that are currently being
handled. Again, an active element is needed alerting a
dispatcher when an event occurs (cf. section 3.1 above).

The problem with Handle Event is that this is a large and
complicated use case which in fact consists of a structured
set of sub-use cases: Handle Event is a sequence of three
sub-use cases: Acknowledge Event, Take Actions and Close
Event. Take Actions is an iterative sequence of actions, for
example to phone the patient, then send a nurse to the
patient and finally informing the patient’s physician about
the findings and treatments of the nurse. Every action
again is a sequence of three sub-use cases: Analyze Situa-
tion, Decide And Act and Observe And Get Feedback. The
sub-use case Decide And Act consists of a set of alternative
use cases, for example Inform Physician or Send Emergency
Team.

Handle Event itself runs in parallel with Monitor Event
Status because the status of all open events must be moni-
tored continuously by the dispatcher.

Finally, there is a sub-use case Analyze Patient Data,
which is used both within Handle Event (when analyzing
what to do) and within the use cases of the actor Physician.

A good modeling language should allow us to model
such kinds of structural relationships among use cases in a
straightforward way. We imagine something like the dia-
gram shown in Figure 2. We also expect that the structur-
ing capability comes in combination with a decomposition
facility, such that we can draw overview diagrams show-
ing only Handle Event and Monitor Event Status as well as
detailed diagrams for the dispatcher use cases showing all
the structural details.

We now examine how UML handles the structure and
decomposition of use cases. It turns out that this is a rather
messy issue because the UML 1.3 specification is incon-
sistent and contradictory concerning the relationships
between use cases.

A. Structural relationships. The first problem concerns
structural relationships between use cases in UML. On the
one hand, the UML specification states that every use case
should express a complete sequence of interactions which
is independent of any other use case and that use cases
specifying the same system or subsystem must not com-
municate or have associations to each other ([18], pp. 2-
122, 2-124 and 2-125). On the other hand, UML provides
three kinds of relationships between use cases: Generali-
zation, «Include» and «Extend». The generalization relates
general use cases to special case use cases, which is not
applicable in our example. Both «Include» and «Extend»
imply the existence of use cases describing subsequences
which are not necessarily complete and do require com-
munication between the base use case and the included/
extending use case. «Include» corresponds to a procedure
call in programming. The relationship between Handle
Event and Analyze Patient Data can be modeled this way.
«Extend» means that the extending use case is inserted
into the extended one at a designated extension point if a
guarding condition is true (a mechanism corresponding to
macro expansion in assembler programming). The alter-
native actions (Inform Physician, Send Emergency Team, etc.
can be modeled as extensions.
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Expressing sequential, parallel or iterative relationships
between use cases is impossible in UML. A sequence of
extensions could be tried as a workaround for the missing
sequence relationships, but the resulting model would look
quite cryptic. Another, better workaround is to exploit
subsystem decomposition (see below).
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Situation

Analyze
Patient Data

ConcurrencyIterationAlternativeSequence

We use Jackson diagrams (extended with parallel decomposition) be- 
cause they provide a natural way of representing a structured decom- 
position and because a use case decomposition has some similari- 
ties to model processes in JSD [12]. The double oval indicates that 
Analyze Patient Data is a sub-use case which is invocated in a pro- 
cedure-like manner (analogous to an  «include» relationship in UML).
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Figure 2. An intuitive model of the decomposition of the
Handle Event use case (which is not possible in
UML, however)

B. Use case decomposition. The second problem con-
cerns decomposing a use case into a structured set of sub-
ordinate use cases. On the one hand, UML explicitly for-
bids decomposing use cases and forbids communication
among use cases ([18], pp. 2-122 and 2-125). On the other
hand, if a system is decomposed into subsystems, then the
use cases of every subsystem do form a decomposition of
one or more use cases of the system. The subordinate use
cases collaborate to perform a superordinate one ([18], p.
2-125), which means that they must communicate.

It turns out that the property of use case independence
(every use case being a complete sequence of interactions
which is independent of any other use case) is necessarily
violated as soon as we view a system on different levels of
decomposition.

Subsystem decomposition gives us a workaround for
modeling the structure of the Handle Event use case: we

model Handle Event and Monitor Event Status on the system
level. The sub-use cases of Handle Event are modeled in the
Service Provider subsystem (Figure 3a). The structure of
Handle Event is modeled by a collaboration within the
Service Provider subsystem (Figure 3b). However, this
model is an order of magnitude clumsier and more com-
plex than a facility for directly modeling structure and
decomposition of use cases in the style of Figure 2.
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Deficiency 3. UML can neither express structure be-
tween use cases nor a structural hierarchy of use cases in
an easy and straightforward way.

3.4 Use case interaction

UML does not model interaction between use cases.
Communication and any associations between use cases
are not allowed (see section 3.3). Preconditions such as
“use case A requires that use case X has been previously
executed” cannot be formally expressed in UML1.

In reality, however, use cases do interact. For example,
consider the patient use cases. The way how Process Help
Request and Monitor Patient are carried out (and whether
they are carried out at all) depends on the services the
patient has subscribed to in the Maintain Subscription of
Services use case.

Moreover, services itself may interact. Imagine a situa-
tion where Monitor Patient automatically issues a help call
and transmits patient data, thereby blocking the commu-
nication device. If the patient decides to issue a manual
help request at that time, the use case Process Help Request
is blocked because the communication device is in use by
Monitor Patient. In order to recognize and resolve such
problems, it is important to identify use case interactions
and to model them explicitly.

Use case interaction has similarities to feature interac-
tion [16] as observed by Finkelstein [6].

In order to express use case interaction problems, we
must be able to model states that can be accessed and
modified by use cases. UML allows individual use cases to
be modeled as state machines. However, UML cannot
model states being shared between use cases, because a
state machine must be allocated to a single classifier or
behavioral element, but not to a subsystem ([18], p. 2-141
and 2-181).

Deficiency 4. UML provides no adequate means for
dealing with use case interaction.

3.5 Use cases alone do not suffice

UML nurses the illusion that the functional require-
ments of a system can be expressed by a collection of use
cases alone, without modeling any persistent state. As
evidence, consider that the UML use case semantics say
so2, that the UML-inspired Rational Unified Process basi-
cally models requirements with use cases only [17], and
that UML does not allow inter-use case state machines
(see section 3.4 above).

                                                                        
1 In the pre-UML literature on use cases, there existed a notion of

preconditions for use cases. UML 1.3 however, defines a precondition
to be “a constraint that must be true when an operation is invoked”
(Glossary in [18], p. B-13). Preconditions for use cases could at best
be expressed informally in a textual description of a use case.

2 “...the dynamic requirements of the system as a whole can be
expressed with use cases.” ([18], p. 2-127). “Each use case specifies a
service the entity provides to its users (...). The service (...) is a
complete sequence. This implies that after its performance the entity
will in general be in a state in which the sequence can be initiated
again.” ([18], p. 2-124).

However, this approach does not work in practice for
any system where system state plays an important role.
For the TRMCS, we have already demonstrated that the
potential interaction between the patient use cases cannot
be modeled without state variables that are shared between
the use cases (see section 3.4 above). Moreover, the way a
use case has to respond to the stimuli received from an
actor frequently depends on the actual state of the system.
For example, when a Patient sends a Turn monitoring on
stimulus to the Monitor Patient use case, the reaction that
has to be specified in this use case depends on
• whether the patient has previously subscribed to a moni-

toring service,
• whether the patient is allowed to use the service (if he

did not pay his bill the TRMCS might block a service),
• whether the current geographical location of the patient

allows communication with a provider.
These conditions in turn depend on the outcome of

other use cases or on actions of a system entity which
actively monitors a system condition (cf. section 3.1). It is
impossible to specify the required reaction of the Monitor
Patient use case without referring to state variables repre-
senting the three conditions listed above.

Theoretically, one could introduce pre- and postcondi-
tions for use cases and use global state variables in these
conditions. Stereotypes would be the vehicle to do so in
UML. However, such a specification would become ex-
tremely clumsy for all systems with more than a few state
variables. As every system that needs a database belongs
to this category, this approach provides no practical solu-
tion for the specification of state-dependent requirements.
As far as we know, nobody has ever tried to integrate
state-dependent behavior into a use case model in this
way.

In a practical semiformal requirements language we
must be able to combine use cases with a model of objects
and states. The use cases capture functional requirements
by specifying the behavior of a system as observed from a
user’s perspective. The object/state model, on the other
hand, models both the state space and the events and op-
erations that modify it. In [9] we present an approach that
systematically and consistently combines a use case model
and a class/object/state-model.

However, UML is quite weak here. Classes and their
associated state machines are regarded as realizing use
cases, not to augment them with a specification of state-
dependent behavior. State machines shared by a set of use
cases cannot be modeled (cf. section 3.4 above).

Deficiency 5. A UML use case model cannot express
state-dependent system behavior adequately.

3.6 Tracing information flow

In order to model the requirements stemming from the
system design decision about routing events (decision
number four, see section 2), we have four options:
• We only model an association between the Dispatcher

actor and the Process Help Request use case.
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• We model the complete process of forwarding, routing
and delivering an event at its originating point, i.e. in the
Process Help Request use case.

• We model the parts of the process where they belong,
i.e. forwarding in Process Help Request, routing in the
Central Site  subsystem and delivery in the Service Provider
subsystem, and we model the flow of information be-
tween these entities.

• We model the parts as in the third option, but instead of
modeling the information flow, we describe the se-
quence of subprocesses (forwarding-routing-delivery) in
the originating use case (as done in the second option).
The first option ignores the information flow between

subsystems, which is incompatible with the notion of de-
composition. The second option concentrates the flow
requirements in one use case, which contradicts the prin-
ciples of information hiding and separation of concerns.
Furthermore, the first two options both leave the specifi-
cation of Central Site and Service Provider substantially
incomplete.

The fourth option introduces too much redundancy into
the specification and also breaks information hiding.

So we decide in favor of the third option. (By the way,
modeling components and flow of information were
strengths of the structured analysis methods of the Eight-
ies.) However, modeling such a problem in UML turns out
to be quite clumsy.

What we would expect is that we have to model the
items shown in Figure 4a. An Event Router entity specifies
the routing requirements in subsystem Central Site. An
Event Delivery entity specifies the delivery requirements in
subsystem Service Provider. Associations specify the in-
formation flow.

Dispatcher
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Patient

«Subsystem»
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«Subsystem»
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Event
Router

Event
Delivery

Process Help
Request

Figure 4a. Information flow from end to end

However, the information flow must also be modeled in
the context of every individual subsystem and on the sys-
tem level.
• On the subsystem level, we therefore must add the fol-

lowing model elements (Figure 4b):
• Event Router as an actor in the context of subsystem

Patient Support.

• Process Help Request as an actor in the context of Cen-
tral Site

• Event Delivery as an actor in the context of Central Site
• Event Router as an actor in the context of Service Pro-

vider.
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Figure 4b. Information flow on the level of individual sub-
systems

• On the system level, we have to model the following
associations (part of Figure 4c):
• between Patient Support and Central Site, and between

Central Site and Service Provider, expressing the infor-
mation flow between the subsystems

• between Process Help Request and Dispatcher to indi-
cate the information flow in the use case model (to be
added to Figure 1).
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Figure 4c. Subsystem decomposition of the TRMCS

As the semantic relationships between all these ele-
ments cannot be expressed formally, it is impossible to
establish or maintain them automatically with a tool. Con-
sistency must be secured manually, which is difficult and
expensive in large models.

Deficiency 6. Modeling information flow in a system
consisting of subsystems is awkward in UML.
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4 Decomposition of the TRMCS

In this section we investigate the decomposition prob-
lems which arise when UML is used as a requirements
specification language.

Every large system needs to be decomposed in order to
make it comprehensible and manageable. A good decom-
position (one that follows the basic software engineering
principles of information hiding and separation of con-
cerns) decomposes a system recursively into parts such
that

(i) every part is logically coherent, shares information
with other parts only through narrow interfaces and
can be understood in detail without detailed knowledge
of other parts,

(ii) every composite gives an abstract overview of its parts
and their interrelationships.
If high-level design decisions imply a subsystem

structure, then the decomposition of the requirements
model on the next lower level may also follow this struc-
ture. Design decisions concerning system decomposition
should follow information hiding criteria anyway. Figure
4c shows such a decomposition for the TRMCS.

UML basically has three model elements that can be
decomposed hierarchically:
• A package is a container and a namespace for an arbi-

trary set of model elements. The decomposition has no
other semantics.

• A subsystem is a specialization of a package. Subsys-
tems partition a system into a set of behavioral subunits.
Every subsystem encapsulates its behavior.

• A class can be a composite aggregation of a set of part
classes.3 4

4.1 Subsystems need high-level behavior

If a subsystem is constructed according to information
hiding criteria, it is typically not a mere container for the
model elements which make up the subsystem. In par-
ticular, a subsystem frequently exhibits behavior of its
own, speci fying the high-level behavior of the subsystem
as a whole.

The TRMCS for example, comprises a set of Service
Provider subsystems. Each of these subsystems has a high-
level behavior expressed by the following states:
• non-operational: the provider is known to the TRMCS,

but currently it is not in business,
• operational: the provider is in business and is providing

services (or is principally ready to do so),

                                                                        
3 Theoretically, composition is a specialization of aggregation and

hence defined on any set of classifiers (Class, Actor, Use Case,
Component,...). However, semantics are defined for class composition
only.

4 A classifier is also a namespace which may contain a (restricted) set of
model elements in its scope. The semantics is the same as if the
classifier additionally would be a package (except that a classifier
cannot import model elements from other namespaces).

• starting up: the provider is in the process of becoming
operational,

• closing down: the provider is in the process of becoming
non-operational.
The operational state in turn has three substates: idle

(waiting for events to serve), active (handling at least one
event), and overloaded (unwilling to accept further events).

An adequate model of these states and their associated
behavior would be a statechart (or state machine in UML
terminology) on the level of the subsystem (Figure 5).
However, UML regards subsystems as containers of be-
havioral entities only and hence disallows associating a
state machine with a subsystem5.

starting up

closing down

operat ional
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overloaded
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central site
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by dispatcher

Number of
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handled
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Number of 
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OR Dispatcher 
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OR Dispatcher
signals normal
load

Prov ider subsystem
behavior

idlenon-operational

stop AND IN idle/
Inform central site
and shut down

start/Init subsystem
and load database
from central site

Figure 5. High-level behavior of the Service Provider
subsystem (not possible in UML)

As a workaround, one could consider using classes and
composition aggregation for decomposition instead of
subsystems. This would make it easy to model behavior
on any level of the decomposition. However, classes are
unsuitable for modeling a subsystem decomposition (see
section 4.2 below).

Thus it is impossible in UML to model subsystem be-
havior as described above for the TRMCS.

Deficiency 7. UML cannot model the behavior of high-
level system components such as subsystems.

4.2 Subsystems are objects

A closer look at the Service Provider subsystem reveals
that this subsystem not only has a behavior of its own, but
also has subsystem-level operations and attributes. For
example, start, stop (cf. Figure 5) and isAvailable (deter-
                                                                        
5 In the UML metamodel, Subsystem is defined as a specialization both

of Package and of Classifier. Since state machines can be associated
with classifiers, this should also be possible with subsystems.
However, the definition of subsystem semantics does not allow us to
do so: “A subsystem has no behavior of its own” ([18], p. 2-181).
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mines whether the subsystem currently accepts events) are
operations on the subsystem as a whole. The subsystem
name, its service capacity and MaxPending (the maximum
number of events that can be pending before the subsys-
tem becomes overloaded; cf. Figure 5) are examples of
attributes characterizing the subsystem as a whole.

Taking these facts into account and recalling that a sub-
system may have behavior of its own (see section 4.1), we
can conclude that a subsystem should not be simply a
container for the model elements that make up a behav-
ioral unit of a system, as UML sees it. Instead, a subsys-
tem would be better characterized as a composite object
that plays a given role in the system. Entities of this kind
are modeled by classifier roles in UML. However, a UML
classifier role can only occur within collaborations and
there is no decomposition defined for classifier roles –
hence classifier roles cannot do the job.

A potential alternative might be to model subsystems as
UML classes and use composition aggregation as a
vehicle for hierarchical decomposition. However, this
approach does not work either. The main reason is that we
frequently have situations where objects of the same class
occur in different subsystems, playing different roles
there. In the TRMCS for example, we have an active ob-
ject alerting a dispatcher when an event arrives. We also
have an active object alerting a patient when a service
becomes unavailable. Both objects belong to the same
class Alert Actor, but they are embedded in different sub-
systems where they play different roles, collaborating with
different actors and objects. Event List is another example.
In the Service Provider subsystem, we need Event List ob-
jects in three roles: Pending Events, Events In Progress (list
of currently handled events) and Local Event History. In the
Central Site  subsystem, another Event List object plays the
role of Global Event History.

As we cannot allocate a class in two different places
(by definition, a decomposition is strictly partitioning),

decomposing classes would require defining a subclass for
every role, resulting in highly complex and artificial mod-
els.

Deficiency 8. UML cannot adequately model the de-
composition of a distributed system like the TRMCS,
neither with the language element Subsystem nor with
another UML language element.

4.3 Aspect-integrated component views

Structured Analysis, which was the standard language
before object-oriented approaches took over [5], [11], had
an outstanding strength: the hierarchical decomposition of
dataflow diagrams. This feature made it possible to de-
compose a system recursively into smaller, less complex
parts. Every part was a comprehensive local specification
of the aspects of functionality (activities), data (stores) and
behavior (control specs). Every composite was an abstrac-
tion of its parts and of the information flow between the
parts.6 In more abstract terms, Structured Analysis pro-
vided a separation of concerns by separating subproblems.

In an object-oriented requirements specification, it
would also be quite valuable to have a hierarchical de-
composition that separates subproblems, but keeps all
aspects of a subproblem together. With such a decomposi-
tion, understanding a selected subproblem would be much
easier because we no longer need to assemble the required
information from a collection of different (and possibly
separately decomposed) aspect models.

For example, consider the Service Provider Subsystem.
To get an overview of this subsystem, we want to model
the subsystem as a set of abstract, high-level components:
classes or objects and their interrelationships, use cases
and the entities they communicate with, and the high-level
behavior of the subsystem (Figure 6). For every complex

                                                                        
6 It must be mentioned, however, that this paradigm was broken by the

global data dictionary which was not decomposable.

Provider Is Not
Operational...

Service Provider

Patient Data ...

Start Up

Close Down

Central
Site...

Mission
Management...

Avaliability...

Provider Is Operational...
Dispatcher

Physician

ta
lk

 to

"close down 
initiated"

"start up
completed"

composite relationship 

object (representing a single instance)

interaction

use case

state

state transition

elementary relationship

The behavior of a composite object with state transitions is interpreted as if the object were a composite state of a state machine. 
In contrast to composite states, however, a composite object may have features (attributes and operations) and may comprise 
entities other than states (objects, use cases, etc.).

object set (representing multiple instances)

Dots after a name indicate a composite element having parts that are not shown or only partially shown in the diagram.

Figure 6. An aspect-integrated model of the Service Provider subsystem and its context (not possible in UML)
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component such as Provider Is Operational in Service Pro-
vider, we would like to do the same (Figure 7) and proceed
recursively until we arrive at simple classes or objects, use
cases and states (Figure 8).

However, modeling such an aspect-integrated decom-
position of a system is impossible in UML7. A basic prin-
ciple underlying the design of UML is to provide separate
                                                                        
7 The diagrams of Figures 6-8 have been drawn using an alternative

object modeling language called ADORA [10], [15] (see section 6).
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OR Dispatcher 
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Dispatcher
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Figure 7. Decomposition of the composite object Provider Is Operational and its context (not possible in UML). Elements of
Service Provider that do not communicate with Provider Is Operational are suppressed.
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Eventlist
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Eventlist
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Figure 8.  Decomposition of the composite object Events within Provider Is Operational and its context (not possible in UML).
Again, some elements of Service Provider are suppressed. The elements of Events are not further decomposable.
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models for different aspects; the separation of class dia-
grams and use case diagrams being the most prominent
example. Subsystems were added later to UML when the
need for a system decomposition mechanism was recog-
nized by the creators of UML. However, subsystems can-
not do the job: they can neither act as a composite object
or composite state nor can they have behavior of their own
(cf. Deficiency 7 in section 4.1).

Deficiency 9. UML cannot model all aspects of a com-
posite entity like a subsystem together in a single view.

5 Can we overcome the deficiencies?

In this section we investigate whether the problems
identified in sections 3 and 4 can be overcome using the
UML extension and tailoring facilities.

UML has a powerful built-in extension facility: the so-
called stereotypes. A stereotype in a modeling language is
a well-formed mechanism for expressing user-definable
extensions, refinements or redefinitions of elements of the
language without (directly) modifying the metamodel of
the language. Although stereotypes do not change the
metamodel, they are conceptually powerful enough to
completely redefine a language [2]. However, in the more
recent versions of UML, the power of UML stereotypes
has been seriously constrained by the decision to restrict
the number of stereotypes per model element to one and
by disallowing a stereotype to have features and associa-
tions.

Profiles are a mechanism for adapting UML to the
needs of specific kinds of systems or specific problem
domains. The basic idea is to tailor the language by se-
lecting a subset of the metamodel and introducing addi-
tional well-formedness rules, standard elements, and con-
straints. However, for those profiles that the OMG is
intending to adopt as a standard, the OMG also allows a
profile to modify the metamodel if absolutely necessary
([19], p. 23).

As we will see below, some of the deficiencies can be
fixed with stereotypes. Profiles, on the other hand, do not
provide much help in our case, because they are primarily
oriented towards tailoring by subsetting and constraining.
At best, a “Distributed Systems” profile could tie together
the minor metamodel modifications required to fix or
alleviate the deficiencies concerning subsystems and de-
composition. Doing major metamodel modifications in a
profile would be a misuse of this mechanism.

A fundamental point in the analysis of a deficiency is
whether the nature of the problem is accidental, essential
or fundamental. Accidental deficiencies in a language can
be fixed by minor modifications that fully conform to the
paradigm of the language, i.e. to its basic ideas, structures
and properties. Overcoming essential deficiencies requires
modifications affecting major concepts of the language.
Fundamental deficiencies cannot be removed without
modifying basic concepts of the language.

Analyzing our nine deficiencies, we can say that
• deficiencies 1 and 2 are accidental,

• deficiencies 3, 4, 5, and 7 are essential,
• deficiencies 6, 8, and 9 are fundamental.

Deficiency 1 (missing active model elements in use
case diagrams) can be removed with a stereotype «active»
for use cases or with a slight modification in the meta-
model allowing the inclusion of active objects in use case
diagrams. Deficiency 2 (no rich context) can be removed
with a small, local modification in the metamodel, allow-
ing associations between actors.

Deficiency 3 (no adequate modeling of use case struc-
ture and hierarchy) can partially be treated by defining a
use case structure diagram in the style of Figure 2. This
can be accomplished with a set of stereotypes for use cases
and dependency relationships. However, consistency be-
tween such use case structures and the structure introduced
by the subsystem decomposition cannot be ensured. Re-
moving this problem would require a uniform model de-
composition concept – a fundamental modification.

Deficiency 4 (inadequate treatment of use case interac-
tion), Deficiency 5 (inadequate modeling of state-depend-
ent system behavior) and Deficiency 7 (no models of high-
level component behavior) are related. As first aid for
alleviating these problems, the following three measures
could be taken. They imply moderate modifications of the
UML metamodel and the UML semantics.
• Allow a subsystem to have behavior of its own, i.e.

allow the attaching of state machines to subsystems.
• Augment the use case model in the specification part of

a subsystem with a class/object model which models
state variables and operations/events modifying them.
Consider this class/object model not as a realization of
the use case model; instead view the two models as be-
ing complementary.

• Establish consistency between the two models with sys-
tematic cross-referencing [9].
In order to remove these deficiencies completely, a se-

mantic integration of the aspects of structure, functional-
ity, behavior and user interaction would be necessary –
again a fundamental modification.

The treatment of Deficiency 6 (awkward information
flow models), Deficiency 8 (inadequate decomposition
concepts), and Deficiency 9 (no aspect-integrated views of
composite entities) as well as the complete removal of
deficiencies 3, 4, 5, and 7 would require modifications in
the very foundations of UML – abandoning the concept of
a loosely coupled collection of aspect models and moving
towards an integrated model with a uniform decomposi-
tion mechanism (cf. section 6).

6 Is there an alternative to UML?

For the practical use of a universal semiformal require-
ments specification language in industry, there is currently
no alternative to UML.

However, from a research point of view there is life
beyond UML. UML is built upon two fundamental con-
cepts:
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1. A class model is the core of a UML specification. This
can easily be seen when analyzing the contents of the
Core Package in the UML metamodel. The UML class
concept still preserves the basic paradigm of its an-
cestor, the entity-relationship model: it is basically a
flat structural description of the objects that the system
has to deal with.

2. Specifications in UML consist of a collection of
loosely coupled models (class model, use case models,
collaborations, activity models, etc.). These are tied to-
gether by very few and semantically quite weak rules.
Both these concepts are not at the heart of an object-

oriented modeling approach. If we put them aside, we
open a design space for object-oriented modeling lan-
guages which are conceptually different from UML.

In our research group we have developed such a lan-
guage which we call ADORA (    A    nalysis and     D    escription    o   f
R   equirements and    A   rchitecture) [1], [10], [15]. The foun-
dation of ADORA is a hierarchy of abstract objects where
each object truly integrates the aspects of structure, func-
tionality, behavior and user interaction.

In ADORA we get rid of the problems related to de-
composition and aspect interaction plaguing UML (Defi-
ciencies 3 to 9). A detailed description of ADORA is be-
yond the scope of this paper. Figures 6, 7 and 8 give an
impression of how an ADORA model looks.

7 Conclusions

In this paper, we have described a set of deficiencies of
UML as a language for semiformal requirements specifi-
cation. We have taken a pragmatic approach, identifying
the problems that become apparent when using UML for
the specification of a distributed system. We have also
analyzed the nature of these deficiencies and discussed
how to overcome them. It turns out that some problems
can be fixed, while major deficiencies are rooted in fun-
damental concepts of UML and thus are here to stay with
UML.

Our findings provide insight and guidance both for the
further evolution of UML and for research on alternative
modeling languages for requirements specification that
might replace UML in the future.
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