A Tool for Supporting Feature-Driven
Development

Marek Rychly and Pavlina Ticha

Department of Information Systems,
Faculty of Information Technology, Brno University of Technology,
Bozetéchova 2, 612 66 Brno, Czech Republic
rychly@fit.vutbr.cz, xticha05@stud.fit.vutbr.cz

Abstract. This paper deals with the Featured Driven Development
(FDD), an agile software development method. According to the require-
ment analysis for the FDD method application, an information system
has been created providing all team members with instruments to follow
the method. This tool has been implemented as a multi-user web-based
application enabling creation of feature lists, planning a project, support-
ing cooperation among members of a feature-team, and tracking project
progress in an illustrative way. To support project management and
communication with customer representatives, a wide range of reporting
features has been provided.

Keywords: Agile software development, Feature driven development,
Feature, Feature-team, Class ownership.

1 Introduction

Traditional software development suffers from slow interaction between the de-
velopment process and evolving user requirements. It follows from application
of traditional software development methods to projects with rapidly changing
business requirements. In this context, approaches to software development can
be broadly divided into two groups. At one extreme, there are classical software
development methods where user requirements are obtained in the first phases of
the development process and each one of the later phases follows an earlier one
(e.g. “the waterfall” model). At the other extreme, there are agile software devel-
opment methods [1], which embrace and promote evolution of user requirements
throughout the entire development process (e.g. “eXtreme Programming”). The
first extreme produces precisely designed and documented software systems, but
those often do not match current user requirements, while the second extreme
produces software systems matching the latest user requirements, but often with
an inconsistent design and poor documentation.

The Feature Driven Development (FDD) [2] is an iterative and incremental
software development process. Although the FDD method is one of agile soft-
ware development methods, it is built around the traditional industry-recognised

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 196-Z07] 2008.
© IFIP International Federation for Information Processing 2008

A Tool for Supporting Feature-Driven Development 197

practices derived from software engineering, including planning, design and docu-
mentation phases with fine-grained decomposition of a system’s functionality and
developers’ responsibilities, accurate progress reporting, frequent verification,
etc. The application of the FDD method leads to better project management
and consistency of a software’s design, implementation and documentation.

The paper describes requirement analysis for a software supporting the FDD
method [3]. The tool is designed and implemented as an information system
providing all team members with instruments to follow the FDD method on
real software projects run in a middle-sized software development company. An
important feature of the tool is ability of tracking changes in user requirements
and map them into modifications in classes and into team members responsible
for implementing the changes. Using the feature contributes to an increase in
safety of development process.

The remainder of the paper is organised as follows. In Section 2] we introduce
the FDD process in more detail. In Section Bl we analyse the FDD process
and describe requirements concerning the supporting tool. In Section [and
Section B we describe the design and (briefly) implementation of the tool.
In Section [6] we review main approaches that are relevant to the subject and
discuss advantages and disadvantages of our system compared with the reviewed
approaches. Finally, in Section [, we summarise our approach, current results
and outline the future work.

2 Feature Driven Development (FDD)

The Feature Driven Development (FDD) has been published in 1999 [4], after
its successful application at an international bank in Singapore in 1997. The
FDD is a highly iterative and collaborative agile development method that is
composed of five processes (see Figure[I]). The processes are formally described
using the traditional ETVX-based (Entry-Task-Verify-eXit) process descriptions
[2]. Informally, the processes can be described as follows:

Develop Build a
an Overall —pp» Features —Pp»
Model List

Plan by
Feature

Design by
Feature

Build by
Feature

Fig. 1. The five processes of the FDD method (form [2])

198 M. Rychly and P. Ticha

Develop an Overall Model — In collaboration with domain experts and de-
velopers, an overall domain object model is created gradually in series of
“walkthroughs” of a software system’s scope and context for each area of
the problem domain. It captures the key abstractions and their relationships
in the system.

Build a Features List — According the initial domain object model, a list of
features is created where each feature describes an object or its method in
the domain model. A “feature” is defined as a small, deliverable client-valued
piece of a system’s functionality, which can be implemented in no more than
2 weeks. The features are grouped into feature-sets, which represent business
processes or work-flows, and the feature-sets are grouped into subject-areas
(or subject-domains), which represent business functions or business domains
implementing core capabilities of the system. There are recommended for-
mats for descriptions of the features, feature-lists and subject-areas, which
facilitate its mapping into objects and methods [4]. The recommended format
of the descriptions is

— for a feature: action the result (by, for, of, to, ...) a(n) object [(of, for,
with, ...) parameters], e.g. “verify the password for an user with the
login”,

— for a feature-list: action (for, of, ...) a(n) object, e.g. “authentication of
an user”,

— and for a subject-area: object management, e.g. “user management”.

Plan By Feature — The feature-sets and features are analysed and their time
intensities are estimated. The feature-sets are sorted according to priori-
ties assigned by a customer’s representatives, estimated time intensities and
technical dependencies. Then they are assigned to individual ad-hoc feature-
teams. Inside the feature-teams, classes from the domain model are assigned
to individual developers. Each developer is responsible for creation and main-
tenance of his classes. The developer is a member of all feature-teams, which
have assigned the features related to the developer’s classes.

Design By Feature and Build By Feature — Those two processes are it-
erated for each work package, i.e. for a small group of features from one
feature-set. The work package is processed by one feature-team and it is
a unit of integration with other feature-sets and feature-teams. Members
of the feature-team collaborate to create sequence diagrams and another
useful design models for their features, and design interfaces and declarations
for corresponding classes and methods. After that, individual developers
implement and integrate their classes or parts of the classes into a system.

The FDD processes uses software engineering “best practices” such as domain
object modelling (the model is a primary representation of knowledge), devel-
oping by feature (iterative and incremental), individual class ownership, ad-hoc
set up teams of developers, inspection and reviews (of an overall model, feature-
lists, design models and a code), regular builds and verification by a customer’s
representatives, progress reporting, etc.

A Tool for Supporting Feature-Driven Development 199

2.1 Roles and Responsibilities in the FDD Processes

The FDD method defines more roles than many of other agile methods [IJ.
The roles can be classified into three categories: key roles, supporting roles and
additional roles [2]. One team member can act as multiple roles, and a single
role can be shared by several team members.

The six key roles in a FDD project are: project manager (the leader of
a project), chief architect (overall design of a system), development manager
(the coordinator of teams), chief programmer (the leader of a feature-team
preparing work packages), class owner (designer, coder, tester and documentarist
of its classes) and domain experts (detailed knowledge of user requirements and
problem domains).

The five supporting roles comprise release manager (controls progress of the
process), language lawyer /language guru (has detail knowledge of programming
language or technologies), build engineer (responsible for build process and
version management), tool-smith and system administrator (technical support
of a project).

The three further roles that are needed in some projects are: testers (verify
that a system fulfils requirements), deployers (maintain data compatibility and
prepare new releases) and technical writers (prepare user documentation).

3 Software Support for the FDD Method

To support of the FDD method, we need to track the five processes, which
are described in Section Bl from points of view of the roles that are listed in
Section 2l A software support for the FDD method should control application
of the FDD processes to real software projects.

The first FDD process is focused on the developing of an overall domain
model. According to the original presentation of the FDD method [E], it is
recommended to use UML visual models [5] with coloured objects. The initial
domain model provides a basis for feature-lists, that will be created in the second
FDD process. However, in the most projects, many features are arising during
the later processes, especially in the processes “design by feature” and “build
by feature” as modifications and extensions of the existing features. This issue
forbids description of the domain model in details during the first process and
requires modifications of the model in later processes. The software support of
the FDD method should allow modification of domain models in relation to
feature management.

To support the second FDD process, which is aimed at building of feature-
lists, a software support for the FDD method needs to keep track of all features
in a project and their grouping to feature-sets and subject-areas. Generally,
lists of features can be created in two ways: top-down and bottom-up, i.e. as
decomposition of subject-areas to feature-sets and then to single features and
as composition of features into feature-sets and feature-sets into subject-areas,
respectively. The software has to support both ways.

200 M. Rychly and P. Ticha

In the third FDD process, a timetable for feature-sets and features is created.
For each feature, it includes the time of its start and its estimated duration. There
are two requirements contrary to each other: keep the start-time and duration
of a whole project and permit individual planing of features in scope of feature-
teams. To balance those requirements, we split the whole project into two-weeks
intervals, which are appropriate to maximal time intensities of features [2]. Then,
the feature-teams can plan their features within the assigned two-weeks intervals
independently and the time-requirements of the whole project are complied. The
supporting system should allow to assign features to intervals and their detailed
planing, including control of their dependencies and balancing of a workload.

The last two FDD processes are focused on designing and building of individ-
ual features in compliance with the principle of feature-ownership. Owner of a
feature creates a list of activities leading to implementation of the feature. Each
activity can require modification of a class or its part related to the feature.
The modification will be done solely by the owner of the class (a developer).
This implies also ownership of a part of a project’s source code. The software
support of the FDD method should track those relationships between features,
developers and parts of classes.

Finally, a tool for supporting the FDD method has to provide a set of visual
reports. The reports should continuously show progress for individual features,
feature-sets, subject-areas and a whole project, as well as a proper form of work-
load overviews for individual developers and feature-teams. This information is
important for correct planing decisions.

To summarise, the basic requirements to software support of the FDD method
according to its five processes are the following: a support of an initial domain
model, tracking of its modification and connections of its parts to individual fea-
tures; a support of features, feature-sets and subject-areas, and their composition
and decomposition (top-down and bottom-up approaches); a support of individ-
ual planing of features in scope of feature-teams without substantial impact on
duration of a whole project; a support of the principle of feature-ownership and
class-ownership and collaboration of the owners of features and classes; and a
support of wide range of visual reports required for planing decisions.

4 Design of the Tool for Supporting FDD

The Figure 2] shows the basic user roles, which cover important roles from
Section 2] according to the requirements for a tool for supporting the FDD
method (an information system) mentioned in Section Bl Besides those require-
ments, we define “a domain” as an independent group of projects supported by
the tool, e.g. projects of one software developer company using the tool, if it is
provided as an outsourced service.

The SystemAdministrator maintains technical issues of the whole information
system (the same meaning as in Section[2Z1]), e.g. controls user rights and domains,
while the DomainAdministrator maintains technical issues of a domain specific
part of the system, e.g. controls users in the domain.The ProjectAdministrator is

A Tool for Supporting Feature-Driven Development 201

D%d

Domainddministrator User Project&dministrator

Chiefarchitect

FeatureCwner

b

Systemadministrator Guest Frojecttember ClassCwmer

Fig. 2. The hierarchy of the well-established user roles

FeatureManager |.-~"""""""""""""" " ""-"=------_._.__\JFeatureCollection
SubjectAreaCollection | . [rreateFeature() Feature SetCollection
|createFeatureSet) fL=---3
? createSubjectareal) ' Feature
_ updateFeature) i ' id
Subjectfrea updateF eatureSet() features.et S natm e
id updateSuhjectarea id composes *--.._,| description
name | deleteFaatura I “| planstart
description fi------- | deleteFeaturesety [=--- 3 description | 4 * | planEnd
start deleteSubjectareal) Sta{? aurs owns - actualStart
end 1 ol * |actualEnd
i actor
realState COMPOSEs realstate 1 {{USer” 1 state
1 realstate
WIS

Fig. 3. The class diagram of features and feature-lists

able to create, modify and delete a project, assign and withdraw users and their
roles in the project, and obtain reports relevant to the project and its parts. The
ChiefArchitect can manage a project’s domain model and features, feature-sets
and subject-areas, and make planing decisions, i.e. assign individual features
into two-weeks intervals (see the requirements of the third FDD process in
Section B]). The FeatureOwner maintains a feature-team, i.e. controls activities
leading to implementation of the feature, assigns classes that are modified by
the activities and class-owners responsible for realisation of individual activities,
watches progress of the activities and verifies finished activities. The ClassOwner
represents a developer, who implements a part of assigned feature (an individual
activity connected to the owned class) and is able to modify information about
the progress of the activity. The last role, the Guest, represent external supervisor
of a project, a customer’s representative, who is able to view reports about
progress of the project.

In the Figure Bl there is a part of class diagram related to features and
feature-lists. The instance of the class FeatureManager handles for a project a
collection of features (classes FeatureCollection and Feature) composed into
feature-sets (classes FeatureSetCollection and FeatureSet) composed into
subject-areas (classes SubjectAreaCollection and SubjectArea). Those features,
feature-sets and subject-areas have attributes representing scheduled numbers of
starting and ending two-weeks intervals. Moreover, the features have attributes
indicating actual starting and ending two-weeks intervals and their current

202 M. Rychly and P. Ticha

TR -~ Activity
== TTe gy # i
Achvityblaager T Activity Collection 'ndame
createdctivity() T 0\ description
updateActivity() name classMame
getactivityByUser() description feads by plan3tart
getactivityByFeaturelser() planStart | planEnd
getactivityByFeature(planEnd 1 actualstart
getactivity) actualStart A SWiE « |actualEnd
actualEnd \<<a0t0r>> / percentDone
state e 1 state
realState 1 realState

Fig. 4. The class diagram of features and activities

stated]. Features, feature-sets and subject-areas are connected to users (instances
of class User with stereotype Actor), that act as their owners.

The class diagram in the Figure @l shows relationship of features and activities
and their context. The instance of the class ActivityManager handles for a project
a collection of activities (classes ActivityCollection and Activity). Each activity
contains attributes that represent its scheduled and actual numbers of starting
and ending two-weeks intervals, the name of a class, which is modified by the
activity, the progress in percents and current state'. Activities are connected
to features (instances of class Feature) and users (instances of class User with
stereotype Actor), that act as owners of the modified classes during the activities
and are responsible for realisation of the activities.

The overall entity-relationship diagram of the system with basic entities is pre-
sented in the Figure Bl The diagram connects entities for features and activities
to auxiliary entities for domain management (entities Domain and Project) and
user management (entities User, Right, Role and associative entity UserRoleIn-
Project). The entities for features and activities (entities Feature, FeatureSet,
SubjectArea and Activity) have been described before, as the relevant classes in
the class diagrams in Figure Bl and Figure @

5 Implementation and Practical Results

The system has been implemented in the framework ASP.NET 2.0 and coded
in the C# language as a web-based application for the Microsoft Internet In-
formation Services web-server and the relational database management system
Microsoft SQL Server as a data storage back-end. The external database is
accessed via ADO.NET and own data abstraction layer, which maps relational
data to proper objects and vice versa (see Manager- classes in Figures Bl and [)).

The data abstraction layer providing objects based on the relational data
also generates some dynamic attributes of those objects. A good example is
the realState attribute of classes Activity, Feature, FeatureSet, SubjectArea

! The states are: “not started”, “in progress”, “attention” and “completed”.

A Tool for Supporting Feature-Driven Development 203
Project fras
UserRolelnProject i 1 e FeatureSet
Subjectirea id
user name ; T
project description has ' nams
FalE B [P] name comoRes — description
- = |description 1 start
a5 start end
*™ Domain end
1 1 id OWITS 1
Role name i
id note Activily COMPOSEs
name = ;
1 « [helongs o hame Feature
hag <<actorss description id
User className name
Right icl planstart 1235 10 | description
id firstlarme |- g B planknd Tl plantat [
name lasthame [~ actualstart : planEnd
amail actualEnd actualStart
login 1 percentDone = lactualEnd
password state state
WIS

Fig. 5. The entity-relationship diagram with basic entities (the UML notation)

and Project. The attribute represents the actual state of an activity, one or
more features or a whole project, and can assume values “not started”, “in
progress”, “attention” and “completed”, i.e. the same values as state attributes.
For instances of classes Activity and Feature, the attribute is computed form
attributes state, -Start/-End attributes and the actual two-week interval. The
attribute realState has value “attention” if the number of the actual two-week
interval is greater than planStart and state is not “in progress” or “completed”,
or it is greater than planEnd and state is not “completed”, otherwise the attribute
realState reflects attribute state.

Attributes realState of instances of classes FeatureSet, SubjectArea and
Project are derived in the hierarchy of those objects in the bottom-up direc-
tion. For object A (e.g. FeatureSet), which composes from objects Bi,..., B,
(e.g. Feature-s), attribute realState of A has value “attention” or “in progress”
if at least one of attributes realState of Bi,..., B, has value “attention” or
“in progress”ﬁ, respectively, otherwise the attribute of A reflects values of the
attributes of By,..., B,.

The result of such “automatic state analysis” of a project’s parts can be
reported by the system as the project park diagranﬁ (see Figure [B)). Moreover,
values of the realState attributes of objects in time can be aggregated through
a whole project into the project development roadmap. The roadmap indicates a
development plan and real states of completed features in percentages on Y-axis
and in time on X-axis of the graph (see Figure[7).

21f By, ..., B, are “completed” but at least one “not started”, A is also “in progress”.

3 The values of progress bars in the boxes of the project park diagram represent-
ing Feature-s are computed as arithmetical averages of percentDone attributes of
Activity-ies, which are grouped in the boxes at this level.

204 M. Rychly and P. Ticha

Project management

Create main Create model | | Create featurs Create plan Create local
tab share lizt [3] area far
21 4] 18] developers
W 33 [E]

100 20% 12%

7%

ljﬁ:ZUU? 05 2007 I 05 2007 05 2007 05 2007 05 2007

Fig.6. The project park diagram example where colours of the boxes represent
realState attributes of a project’s parts (a part of real report from the presented tool)

Mame: FDDtech Project
Plan: 1.1.2007-1.5.2007

Project development roadmap

[—&— Development plan —s— Real states]
100 T T T T T T T T T

Percent (%)
(i)
_
}

Time

Fig. 7. The project development roadmap (a part of real report from the tool)

The system can export also other reports (e.g. summary progress and trend
reports). All reports are available in HTML, PDF and RTF formats, suitable for
project managers as well as a customer’s representatives.

The source code of the described tool for supporting the FDD method is li-
censed under the GNU General Public License (GNU GPL) and will be available
as an open source projectﬂ.

6 Discussion and Related Work

In this section, we briefly review four projects that support the FDD method
of software development and compare them with our approach. Table[I compares

1 See http://www.fit.vutbr.cz/homes/rychly/fdd-tech/

A Tool for Supporting Feature-Driven Development 205

Table 1. The comparison of the tools that support the FDD method of software
development (notes: *the names marked by a star are open source projects)

Name Type | Users Feature Progress reporting
(de)composition

FDD Tools| desktop | single features, feature-sets, project park diagram

Project” user, | subject-areas (top-down) (interactive)
projects
FDD desktops| roles, | work-packages, features, | project park diagram, plan
Tracker | (shared |projects,| feature-sets, subject-areas view report, progress
DB) |domains (top-down) summary report, project

dev. roadmap (overall and
weekly), defect graph

Cognizant | Visual | roles, modifications of progress report, defect
FDD Studio |projects| components, features, report, prioritised feature
TF feature-sets, subject-areas | list, component ownership
Server (top-down and matrix
RTM bottom-up)
FDDPMA*| web- roles, | work-packages, features, project park diagram,
based |projects| feature-sets, subject-areas | progress summary report,
(top-down) project development

roadmap, plan view report,
feature completion trend

Our tool" web- roles, | work-packages, activities project park diagram,
based |projects,| (modifications of classes), | progress summary report,

domains| features, feature-sets, project development

subject-areas (top-down roadmap, trend report

and bottom-up)

the basic features of the reviewed pro ject&ﬁ7 which are described in more
detail bellow.

The FDD Tools Project [6] is an open-source Java-based desktop application
providing only basic support for the FDD method. It provides one progress report
for features (a project park diagram) and there are no means of decomposition
of the features into partial tasks. The project seems not to be actively developed
anymore.

The FDD Tracker [7] is a commercial desktop application executable on
Microsoft Windows NT-based operating systems. It provides complex multi-user
multi-domain support of the FDD method including support of different roles
and views, support of intervals of variable length, inspection management, defect
tracking and reporting, etc. The FDD Tracker does not support web-based user
interface, does not allow bottom-up composition of features into feature-lists and
does not connect parts of features to parts of a source code.

® The names of progress reports are not standardised and each project uses its own
terminology. In the table, we rename some of the progress reports according their
formats and provided information in order to allow direct comparison of the projects.

206 M. Rychly and P. Ticha

The Cognizant Feature-Driven Development [§] is a commercial tool for sup-
porting the FDD method, which is integrated in Microsoft Visual Studio Team
Foundation Server RTM. It allows defining of a software project in Visual Studio
as a collection of individual features with connection to the project’s source
code and tracking of its defects. Cognizant FDD extends five processes of the
FDD method with a new process “certify by feature”, which follows the fifth
FDD process “build by feature” in each iteration, and a new iterative process
“release” closing the whole development process [9]. Drawback of Cognizant FDD
can be its tight integration with Visual Studio, which prevents managers (non-
developers) and a customer’s representatives from interaction with products of
the FDD method.

The FDD Project Management Application (FDDPMA) [I0/T1] is open-source
Java-based application and the only web-based tool among reviewed projects.
Unfortunately, the FDDPMA does not allow bottom-up composition of features
into feature-lists and does not support relationships between features and classes
or their parts (i.e. no class ownership).

In comparison of our tool with the reviewed projects, we can find many
similar features that are recommended by the FDD method description (see
Section [2). In addition to that, our tool supports top-down and bottom-up
approaches to creation of feature-lists, provides decomposition of features into
activities, which represent tasks needed to accomplish a feature, connection of
the activities and relevant classes or their parts that must be implemented by
developers to complete an activity, and detailed hierarchical tracking of the
state and progress of features from developers (i.e. activities) to managers (i.e.
feature-sets and a project). Usage of the web-based user interface allows easy
remote access to project data, especially for domain experts and a customer’s
representatives that should participate in a project. Drawback of our system
can be isolation from other development tools and absence of advanced FDD
tools such as tracking of features verification process and defects or support for
feature-teams collaboration.

7 Conclusion and Future Work

The paper describes requirements analysis, design, and implementation of a tool
supporting the FDD method. The described system covers the five FDD processes,
features and feature-lists management, support for decomposition of the features
to activities connected to individual classes or their parts, support for feature-
owners and class-owners, control of progress at different levels of hierarchy, user
management with well-established and user-defined roles, and support of various
reports (the park diagram, the project development roadmap, summary progress
and trend reports). Some of those features (e.g. support for activities) are novel
and have not been used yet.

Incremental development of a software system with strictly defined features
and related modifications of parts of classes (i.e. mapping of user requirements
into modifications of a source code) allows better tracking of impact of individual

A Tool for Supporting Feature-Driven Development 207

increments on quality of a whole software system and contributes to an increase
in safety of development process.

Future work is mainly related to integration of human-resource management

into the tool (e.g. appointment of feature-team members according to their past
experiences and current workload) and support for source code management
(i.e. more detailed tracking of source code modifications caused by a feature
realisation).

Acknowledgement. This research has been supported by the Research Plan
No. MSM 0021630528 “Security-Oriented Research in Information Technology”.

References

10.

11.

. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development

methods: Review and analysis. VI'T' Publications 478, Espoo, Finland: Technical
Research Centre of Finland (2002)

. Palmer, S.R., Felsing, M.: A Practical Guide to Feature-Driven Development.

Prentice Hall PTR, Upper Saddle River (2002)

. Ticha, P.: Information system supporting Feature Driven Development. Master’s

thesis, Brno University of Technology, Faculty of Information Technology, Depart-
ment of Information Systems (May 2007)

. Coad, P., Lefebvre, E., Luca, J.D.: Feature-Driven Development. In: Java Modeling

in Color with UML: Enterprise Components and Process, ch. 6, Prentice Hall PTR,
Upper Saddle River (1999)

. OMG: UML superstructure specification, version 2.0. Document formal/05-07-

04, The Object Management Group (August 2005) Also available as ISO/IEC
19501:2005 standard

. SourceForge.net: FDD tools project (September 2006), http://fddtools.sf.net/
. IT Project Services: FDDTracker (2007), http://www.fddtracker.com/
. Cognizant Technology Solutions: Cognizant Feature-Driven Development (2007),

http://www.cognizant.com/html/content/microsoft/techfddvsts.asp

. Cognizant Technology Solutions: Implementing Cognizant Feature-Driven Devel-

opment using Microsoft Visual Studio Team System. Technology white-paper,
Cognizant. NET Center of Excellence (2005)

FDDPMA Development: FDD project management application (2007),
http://www.fddpma.net/

Khramthchenko, S.: A project management application for Feature Driven Devel-
opment (FDDPMA). Master’s thesis, Harvard University (June 2005)

http://fddtools.sf.net/
http://www.fddtracker.com/
http://www.cognizant.com/html/content/microsoft/techfddvsts.asp
http://www.fddpma.net/

	A Tool for Supporting Feature-Driven Development
	Introduction
	Feature Driven Development (FDD)
	Roles and Responsibilities in the FDD Processes

	Software Support for the FDD Method
	Design of the Tool for Supporting FDD
	Implementation and Practical Results
	Discussion and Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

